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We have investigated the structure of macroscopic suction flows in superfluid 4He. In this study, we primarily
analyze the structure of the quantized vortex bundle that appears to play an important role in such systems.
Our study is motivated by a series of recent experiments conducted by a research group at Osaka City University
[Yano et al., J. Phys.: Conf. Ser. 969, 012002 (2018)]; they created a suction vortex using a rotor in superfluid 4He.
They also reported that up to 104 quantized vortices accumulated in the central region of the rotating flow. The
quantized vortices in such macroscopic flows are assumed to form a bundle structure; however, the mechanism
has not yet been fully investigated. Therefore, we prescribe a macroscopic suction flow to the normal fluid and
discuss the evolution of a giant vortex (i.e., one with a circulation quantum number exceeding unity) and a bundle
of singly quantized vortices from a small number of seed vortices. Then, using numerical simulations, we discuss
several possible characteristic structures of the bundle in such a flow, and we suggest that the actual steady-state
bundle structure in the experiment can be verified by measuring the diffusion constant of the vortex bundle after
the macroscopic normal flow has been switched off. By applying extensive knowledge of the superfluid 4He
system, we elucidate a type of macroscopic superfluid flow and identify a structure of quantized vortices.
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I. INTRODUCTION

We often encounter “vortices” of various length scales: the
dropping of milk into coffee, whirlpools, the Great Red Spot
on the surface of Jupiter, and so on. The suction vortex, also
referred to as the “bathtub vortex,” is one of the most familiar
classical vortices; it can be easily produced by unplugging
a bathtub filled with water. However, this vortex’s simple
generation procedure does not entail that its structure can be
easily understood. Indeed, despite several attempts, no theory
of the vortex has yet been completed [1–3]. In this paper, we
elucidate the bathtub vortex from a different perspective: that
of a bathtub vortex in superfluid 4He.

Liquid 4He, at a saturated evaporation pressure below the
λ point Tλ ≈ 2.17 K, exhibits superfluidity; in this state, its
sheer viscosity vanishes, and a number of eccentric phenom-
ena (e.g., fountain and capillary effects) can be observed.
These effects are often explained using a phenomenological
model (the so-called two-fluid model [4–6]), in which the su-
perfluid 4He at 0 < T < Tλ features two fluid components: an
inviscid superfluid with density ρs(T ) and a viscous normal-
fluid with density ρn(T ). One of the most notable properties
of superfluids is that their circulation κ ≡ ∮

L v · dl can be
quantized as

κ = h

m
n, (1)

where n is an integer, h is Planck’s constant, and m is the
mass of a 4He atom. This quantization assumes that the path
L encloses a filamentary topological defect in the superfluid.

Topological defects with a quantized circulation always form
closed loops or terminate their ends at boundaries, and thus,
they are called quantized vortex loops or lines [7]. In a bulk
superfluid, the kinetic energy per unit length of the vortex
line ε is proportional to n2; thus, it is more energetically
stable to have two vortices with n = 1 than one vortex with
n = 2. The superfluid system is very clean and offers an ideal
experimental environment for many fields of physics; thus, it
has been extensively studied over the decades by researchers
hoping to understand various physical phenomena, including
turbulence [8–11], the Kibble-Zurek mechanism [12–14], and
pulsar glitches in neutron stars [15,16].

In the experiments conducted by a research group at Osaka
City University (OCU), Yano et al. created a macroscopic
bathtub vortex by sucking superfluid 4He (temperature T =
1.6 K) out of a cylindrical container via a drain hole at the
bottom, using a rotor (see the schematic overview in Fig. 1
and the figures given in Refs. [17,18]). The rotor rotated below
the drain hole and induced a pressure difference; this allowed
normal and superfluids to flow. When the fluid achieved a
steady state, it mimicked the flow of a classical fluid [17] (as
it does under steady solid-body rotation by forming a vortex
lattice [19–24]). The experimental observations of the shape
of the dimpled surface indicates that normal and superfluids
coflow with an azimuthal velocity inversely proportional to
the radial distance r. The normal fluid has a viscosity; thus,
it can be reasonably assumed that its steady-state flow profile
resembles the profile discussed in Refs. [1,2]; that is, the down
flow is narrowly confined in the central region, forming a flow
tube above the drain hole. It is classically understood that
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FIG. 1. (a) Schematic overview of the bathtub vortex [17,18].
The entire length scale of the system (from the surface to the bottom
of the fluid) is approximately 20–30 cm. The system can be roughly
separated into three regions: region I, in which the surface of the
superfluid 4He dimples and a large vortex with circulation quantum
number n > 1 is expected; region II, in which a steady vortex bundle
is thought to develop; and region III, in which the geometry of the
bundle experiences the effects of the bottom boundary. In classical
theory, it is understood that an Ekman boundary layer exists at the
bottom and an up-flow operates just outside the down-flow traveling
through the drain hole. (b) Expected normal flow pattern. The rotor
repels the fluid and generates a pressure difference. Then, the fluid
is forced to flow through the drain hole. The classical theory implies
that the down flow of the normal fluid is tightly confined in the central
(shaded) region. (c) Expected trajectory of (remnant) quantized vor-
tices. For the system to have a giant vortex, it must be provided with
vortices/vorticity externally; otherwise, it does not conserve angular
momentum.

an up flow surrounds the down flow, owing to the vorticity
generated near the central region [2]. However, the vorticity of
the superfluid is carried by only quantized vortices; therefore,
this might not apply in the nonclassical case, and the forma-
tion of classical-like macroscopic suction flows is not trivial.
Moreover, from observations of second-sound attenuation, the
vortex-line density LL at the core region (radius ∼2 mm)
well below the dimpled surface is reported to be as much as
1.3 × 1012 m−2 [18]. These vortex lines are thought to be at-
tracted to the axis of rotation, thereby forming a vortex bundle
[25] through the particular macroscopic flow geometry of the
system of two fluids. In the presence of the down flow of nor-
mal fluid, we argue that such a highly accumulated vortex-line
density in the core region can be developed with a structural
pattern inherited from the flow geometry. Throughout this
analysis, we prescribe the profile of the normal fluid velocity
and perform a series of numerical simulations to follow the
dynamics of individual vortices, rather than a coarse-grained
vortex-line density field, to investigate the large-scale struc-
ture of the vortex bundle.

The generation mechanism of a macroscopic bathtub vor-
tex in a superfluid is not trivial. To understand such novel
macroscopic flows in superfluid 4He, it is necessary to
construct models that do not contradict the experimental re-
sults; for this, we apply extensive background knowledge on
superfluidity and computational techniques developed over
several decades. The objective of this study is to qualitatively

understand the structure of quantized vortices in such a macro-
scopic suction flow. In this paper, we argue that (1) the
deformed superfluid surface is identified as a giant vortex,
(2) a strongly polarized vortex bundle is developed along
the rotational axis beneath the dimpled surface, and (3) the
polarization of the bundle may be assessed experimentally by
measuring the diffusion constant of the bundle. We divide the
system into three regions, as shown in Fig. 1, based on the
boundary conditions. Region I is where the surface boundary
cannot be neglected. The dimpled surface created in region
I may be identified as a giant vortex from the 1/r velocity
profile around it (see Sec. III for a discussion). Region II
is a bulk, where there is presumably no giant vortex but a
bundle of singly quantized vortices that would resemble the
configuration in Fig. 6(b) or 6(c) below. Region III is a region
in which the bottom boundary condition is not negligible.
The flow geometry near the bottom layer, known as an Ek-
man layer in classical hydrodynamics, is not trivial, and the
discussion of the vortex dynamics in this region is beyond
the scope of our current work. In Sec. II we briefly review
the numerical model used to simulate vortex dynamics, i.e.,
a three-dimensional (3D) vortex filament model (VFM). In
Sec. III, the process of giant-vortex production is discussed.
Then, we discuss how vortices are transported from region
I to region II, using VFM simulations. In Sec. IV, we show
that, depending on the geometry of the normal fluid flow, two
characteristic vortex bundle structures are possible in region
II: a linear-vortex structure and a cylindrical vortex-layer-like
structure. In Sec. V, we argue that the large-scale vortex
bundle structure may be determined by the experimental ob-
servation of the diffusion constant of the vortex bundle. We
qualitatively estimate the characteristic diffusion timescale of
the bundle from the VFM simulations. Finally, in Sec. VI, we
summarize the overall structure of a bathtub vortex.

II. EQUATION OF MOTION FOR VORTICES

The core radius of a quantized vortex in superfluid 4He
is of the order of angstroms, and a vortex segment carries a
potential flow of velocity vs ∝ 1/r around it, where r is the
radial distance from the vortex core. Thus, quantized vortices
are often treated as having a δ-function-like vorticity at po-
sition s(ξ ), using the arc length parametrization ξ . Thus, the
motion of a quantized vortex obeys Helmholtz’s theorems and
follows the local superfluid flow vs(ξ ). However, at finite tem-
peratures, the temperature-dependent mutual friction terms α

and α′ become significant, and the equation of motion is [26]

ds(ξ, t )

dt
= vs + αs′(ξ ) × (vn − vs)

− α′s′(ξ ) × [s′(ξ ) × (vn − vs)], (2)

where vs and vn are the velocity fields of super- and normal
fluids, respectively; the prime symbol (′) denotes the deriva-
tive with respect to arc length ξ . Therefore, we can calculate
the time evolution of a vortex once we obtain the velocities,
vs and vn, at s(ξ ).
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In region II, we consider a symmetrically rotating flow of
normal fluid along the z axis that resembles a Rankine vortex
velocity profile of the form

vn(r, φ, z) =
⎛
⎝ 0


n
2π

r
R2

0

vz(r)

⎞
⎠ for r < R0, (3)

vn(r, φ, z) =
⎛
⎝ 0


n
2π

1
r

vz(r)

⎞
⎠ for r > R0, (4)

where R0 is the radius of the down-flow tube (which is the
same size as the drain hole at the bottom of the container) and

n is the circulation of the normal fluid. The vertical velocity
profile vz(r) is not known, experimentally or theoretically.
Since we qualitatively investigate the macroscopic structure
that is imprinted on a vortex bundle by such a flow in region
II, we assume that the structure is not highly dependent on
the detail of the flow profile vz(r). Thus, for simplicity, we
take it to be constant if r < R0 and zero otherwise. To identify
the velocity vs at s(ξ ) we apply the VFM, which is briefly
explained in the following section.

Numerical method: Vortex filament model

First, we consider a 3D vortex-line configuration, discretiz-
ing it into segments of length dξ . A vortex segment at s(ξ )
tends to move with velocity vs(s(ξ )). The term vs(s(ξ )) can be
decomposed into three contributions: the velocity vs,0, which
is induced by all vortices in the system; the velocity vs,ext,
which is imposed externally; and the velocity vs,b, which is
induced by the boundaries. The superfluid velocity vs,0 at ξ is
obtained by calculating the following Biot-Savart integral:

vs,0(ξ ) = κ

4π

∫
L

s′(ξ1) × [s(ξ ) − s(ξ1)]

|s(ξ ) − s(ξ1)|3 dξ1

=vs,loc + vs,non-loc.

(5)

The integral (5) diverges as ξ1 → ξ because we neglect the
core radius a of the vortex. Computationally, we avoid the
divergence by separating out the local term from the total
integration path L to obtain vs,loc and vs,non-loc. Applying
the local induction approximation, vs,loc can be evaluated as
vs,loc ≈ βs′ × s′′, where β = (κ/4π ) ln(R/a). To solve Eq. (2)
and perform the simulation, the path L is divided into seg-
ments of ξ , and the integration in Eq. (5) is calculated for
each segment and at every time step t in the fourth-order
Runge-Kutta scheme.

III. GIANT VORTEX AND VORTEX TRANSPORT
IN REGION I

The steady bathtub vortex in 4He features a deep cavity in
the central region. The shape of the cavity indicates that the
azimuthal velocities of both the super- and normal fluids are
inversely proportional to the radial distance r around it. This
implies that, for a fully developed bathtub vortex, the cavity
behaves like a giant vortex, that is, a quantized vortex with a
circulation quantum number n > 1.

Here, we consider how the giant vortex grows. One of
the most conceivable scenarios of giant vortex production in

FIG. 2. Snapshots of the three stages of giant vortex production.
The blue lines in each panel represent the singly quantized vortices,
and the shaded region around the vertical axis (z axis) represents the
region in which the vorticity of the normal fluid accumulates and
forms a strong down flow. Each stage is briefly described as follows:
(a) Initial stage: vortex lines gather and tend to form a lattice. (b) In-
termediate stage: the surface of the central region dimples owing to
the azimuthal velocity, which is inversely proportional to the radial
distance r and pressure difference. (c) Late stage: the dimple grows
to become a cavity by “absorbing” singly quantized vortices. At this
stage, the normal fluid circulation 
n is not necessarily equal to that
of the giant vortex, κngiant.

the initial stages of bathtub vortex evolution is as follows:
First, the vorticity of the normal fluid accumulates in the
central region along the z axis, and the quantized vortices
are also transported toward the central region from the sur-
rounding bulk fluid. As these gather, they start to exhibit
a collective rotational motion, forming some type of lattice
structure; this is analogous to the triangular-lattice formation
observed in solid-body rotating superfluid helium [27], Bose-
Einstein condensates [21–24], and superconducting currents
[28]. Then, the surface of the superfluid 4He gradually starts
to deform in the central region due to the pressure difference
and down flow. The surface becomes increasingly deformed
and generates a cavity of depth h∞ − h0 (as measured from
the height of the stationary surface h∞ at r → ∞) as the
vorticity of the normal fluid accumulates and vertical vor-
tices enter the vicinity; we can identify this as a giant vortex
of circulation quantum number ngiant > 1. Taking the cavity
depth h as a function of radial distance r, h(0) = h0 and
limr→∞ h(r) = h∞; thus, the quantum number ngiant at h(r)
can be identified as the number of singly quantized vortex
lines attached below the surface, as shown in Fig. 2(c). In
a steady state, the macroscopic flow profiles of the super-
and normal fluids coincide with each other to minimize the
mutual friction; this means that the circulation of each fluid
around the entire system is equal, that is, 
n = 
s + κNvor.
Here, 
s = κngiant, with κ = h/m, and Nvor is the number of
freely floating vortex lines.

If the system is ideally clean (i.e., no remnant vortex rings
exist), then after a sufficiently long time, 
n = 
s and κNvor =
0 are satisfied because all the singly quantized vortices are
“absorbed” into the giant one. However, because of the geom-
etry of the experimental setup, vortex rings can be constantly
transported to the central regions from the side under the
macroscopic flow generated by the rotor [see Fig. 1(c)]. We
conducted numerical simulations to qualitatively assess the
vortex-line distributions in the presence of flows proportional
to 1/r; that is, the azimuthal velocity profiles for normal and
superfluids were vn = 
n/2πr and vs = 
s/2πr, respectively,
for an r outside the giant vortex (radius of 0.25 cm).
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vz

0.25 cm

FIG. 3. Series of snapshots of VFM simulation at t = 0.0, 1.4, 2.8, 4.2, 5.6, and 7.0 s from left to right, respectively. A box measuring 2 cm
in each dimension is drawn for reference. The cylinder (radius: 0.25 cm) in each panel represents a giant vortex, around which the circulations
of both fluids are nonzero. In the system, the external normal fluid velocity vz is applied downward. The top and bottom surfaces of the box
are subject to the periodic boundary condition.

We consider the case in which the normal fluid velocity is
steady but the giant vortex of the superfluid is still growing,
that is, 
n > 
s. Figure 3 shows a series of snapshots of
the simulation, conducted with the parameters 
n = 5.0 ×
10−4 m2/s and 
s = 4.5 × 10−4 m2/s; the prescribed vertical
normal velocity component vz = −3.0 and 0 mm/s outside
and inside the cylinder, respectively. The cylinder drawn in
each panel represents the surface of the superfluid 4He, where
the giant vortex (with circulation 
s) is assumed to exist.
Initially, three vortex lines exhibiting a Kelvin wave excitation
are placed around the giant vortex. The vortex lines and giant
vortex are aligned mutually parallel; hence, they tend to repel
each other. However, because 
n > 
s, the singly quantized
vortex lines are pulled toward the cylinder under mutual fric-
tion. In the presence of external flows proportional to 1/r,
the vortices are stretched and spiral in toward the cylindrical
surface, as shown in Fig. 3. Locally, the orientation of the
vortex line near the wall is almost parallel to that of the wall;
eventually, the tip of the vortex reaches the surface.

In this simulation, special attention must be paid when han-
dling the reconnection events between the singly quantized
vortices and the giant vortex. When a vortex line approaches
and hits the surface of the hollow cylinder of the giant vortex,
a reconnection event is highly likely; this is thought to be
a crucial mechanism that sustains the growth of the circu-
lation 
s when 
n > 
s. However, the conventional method
of managing these events algorithmically [26] may not be
valid in this system because the boundary condition at the
surface of the giant vortex is unknown. We can assume that
the singly quantized vortex lines must intersect the surface
of the giant vortex perpendicularly, so that the superfluid
does not flow out of the fluid through the boundary. The
perpendicularity of the vortices at the reconnecting points is
approximately attained by introducing an “effective friction”
to the ends of the vortex lines where they meet the wall of
the giant vortex. In the numerical simulation, we simply set
the azimuthal and vertical velocity components of the vortex
segment to zero when it enters the cylinder through the wall.
The reconnected segments circle around the giant vortex, and

the remaining vortex lines are wound around the cylinder;
this can be observed in Fig. 4 and in a corresponding video
in the Supplemental Material [29]. However, in the presence
of the vertical normal flow, only the vortex segments whose
orientations are such that they induce a superfluid flow along
the normal flow grow selectively; meanwhile, those with the
opposite orientation tend to diminish gradually through mu-
tual friction. This means that spiral-shaped vortex filaments
with the same helical orientation tend to be formed, which is
similar to the vortex mill discussed by Schwarz [30].

Through the processes discussed in this section, quantized
vortices with a specific orientation were selectively produced
in region I; they then traveled to region II. As vortex lines
continue to wind around the giant vortex, the value of the
circulation 
s increases. When the value of 
s becomes suffi-
ciently close to that of 
n, the giant vortex no longer attracts
the free vortices, and the vortices enter a quasistable equi-
librium state. The vortices steadily produced in region I can
behave as a “vortex bath,” which is essential to bundle forma-
tion in region II; we discuss this in Sec. IV.

IV. BUNDLE FORMATION IN REGION II

In the presence of a steady down flow and an azimuthal
flow of normal fluid in region II, some characteristic structural

FIG. 4. Series of magnified snapshots of VFM simulation at t =
6.1, 6.2, 6.3, and 6.4 s from left to right, respectively. The panels
are shaded to render more clearly the growth of the helical structure,
which is caused by the motion of the reconnected vortices.
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patterns/polarization may be imprinted on the vortices that
are densely produced in region I and transported to region
II. We consider the normal fluid velocity profile given by
Eqs. (3) and (4), and we neglect the flow profile perturba-
tion attributable to the quantized vortices generated through
mutual friction. Microscopically, this assumption does not
hold. Recent studies [31–34] have shown that the normal fluid
profile is nontrivially modulated by the presence of quantized
vortices, through mutual friction on the scale of the intervortex
distance. However, in the analysis below, we consider only
the macroscopic vortex bundle structure that develops in the
macroscopic steady normal flow; a study of the characteristic
small-scale structures that emerge due to coupled dynamics
remains future work to be dealt with.

One factor that characterizes the macroscopic vortex bun-
dle structure is the ratio of the vertical velocity vz to the
azimuthal velocity vφ of the normal fluid. To observe the
effects of this factor, we consider a helical vortex line s(ξ )
with arc length parametrization ξ ∈ R:

s(ξ ) ≡
⎛
⎝x(ξ )

y(ξ )
z(ξ )

⎞
⎠ =

⎛
⎝X0 cos k0ξ

Y0 sin k0ξ

ξ

⎞
⎠. (6)

On the right-hand side of Eq. (2), we neglect all terms except
the one proportional to vn (the second term); then, the equation
of motion for r < R0 simplifies to

ṡ(ξ, t ) ≈ αs′ × vn

= A

⎛
⎜⎜⎝

(
k0vz

X0
Y0

− 
n

2πR2
0

)
x(

k0vz
Y0
X0

− 
n

2πR2
0

)
y


nk0

2πR2
0

( Y0
X0

− X0
Y0

)

⎞
⎟⎟⎠,

(7)

where A = α/

√
k2

0 (X 2
0 + Y 2

0 ) + 1. When X0 = Y0, the equa-

tion of motion for the helix amplitude r ≡
√

x2 + y2 is simply

ṙ =
(

k0vz − 


2πR2
0

)
r. (8)

Equation (8) indicates that when 
n

2πR2
0

> k0vz, the right-hand
side of Eq. (8) becomes negative, and the amplitude r dimin-
ishes. Assuming that the maximum wavelength of a vortex
line in such a rotating normal fluid tube (radius R0) is at most
λmax ≡ 2π/k0,min ∼ 2R0, the criterion for the helical excita-
tion on the vortex line to diminish becomes

vφ

vz
� π, (9)

where vφ ≡ 
n/2πR0 is the azimuthal velocity at radial
distance r = R0. The validity of the criterion is confirmed
through numerical simulations of the VFM in Sec. IV.

VFM simulations for region II

We consider the dynamics of six seed vortex rings ran-
domly placed near the central region of radius R0 [which is
shown as the shaded region in Fig. 1(b) schematically] and see
how the flow ratio modifies the polarization of the growing
vortices. In numerical simulations, we set the radius R0 =

2.5 mm and vz = −10 mm/s, and we adjust the circulation
of normal fluid 
n such that vφ = 10 × π and 1 × π mm/s.
Figure 5(a) and the corresponding video in the Supplemen-
tal Material [35] show the case in which vφ/vz = π . Small
excitations/Kelvin waves in the horizontal direction on the
vortex lines are visibly damped, and straight vortex lines tend
to align themselves and lengthen in the central region along
the z axis, as the rough estimate in Eq. (9) indicates. However,
when the ratio was sufficiently small, the amplitudes of the
Kelvin waves are amplified; this can be seen in Fig. 5(b) and in
the video found in the Supplemental Material [35]. A helical
excitation is amplified in the flow cylinder of radius R0. How-
ever, when the radius of the excitation exceeds R0, it ceases
to grow because of the absence of normal flow that transfers
energy through mutual friction. As more helical excitations
are generated, a helically polarized vortex bundle is formed.
Now, the individual vortices are repelled from the central
region and form a “vortex layer” surrounding the cylinder of
radius R0. The vortex layer induces a superfluid flow inside
the cylinder of the vortex layer, analogous to a magnetic field
generated by a current passed through a coil.

In both cases, the growth of the vortices along the z axis
appears to be indefinite, while the steady normal flow profile
is prescribed; however, in simulations, the maximum vortex-
line density is limited by the computational resolution ξ .
Furthermore, in reality, the dense vortex bundle would sig-
nificantly deform the normal profile, and our method will
eventually break down. We note that our above analysis ap-
plies only to the initially growing state of the bundle; however,
it is crucial for understanding the structure of the bundle.

The growth of the vortex-line density in such an ex-
ternal flow may be obtained in the numerical simulations
in the framework of the Hall-Vinen-Bekarevich-Khalatnikov
(HVBK) hydrodynamics as well. However, in the HVBK
framework the quantized vortices are treated as a coarse-
grained vortex-line density field in which the microscopic
information of vortices, such as local curvature, is lost. There-
fore, such a method may not be suitable to investigate the
vortex bundle structure directly ascribed to individual vortex
dynamics.

V. ESTIMATION OF DIFFUSION TIMESCALE

We have discussed the structure of the vortex bundle in
region II. However, the direct determination of the bundle
in experiments is difficult. Therefore, we propose that the
structure (polarization/helicity) of the bundle may be assessed
qualitatively by the determination of the diffusion constant of
the bundle.

The bundle in the steady state is energetically sustained
by the normal fluid; thus, when the rotor is stopped, the nor-
mal flow slows down, and the bundle diffuses. The diffusion
constant D of a homogeneous vortex tangle is reported to
be of the order of the circulation quantum number κ = h/m
[36–38]. However, in our case, the bundle is assumed to
possess an ordered structure; this would allow the system to
have a structure-dependent diffusion constant, which is an
experimentally measurable quantity.

We consider a system of N vertical, mutually parallel quan-
tized vortices distributed evenly within a cylindrical region
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FIG. 5. (a) Snapshots of VFM simulation with vz = 10 mm/s and vφ = 10 × π mm/s. The ratio vz/vφ is chosen to satisfy the relation
in Eq. (9). The formation of a bundle of vertical vortex lines can be observed in the central region within the cylindrical shell of radius
R0 = 2.5 mm. (b) Snapshots of VFM simulation with vz = 10 mm/s and vφ = 1 × π mm/s. Because the relation is not satisfied, the amplitudes
of the excitations are significant, and eventually, the cylinder of radius R0 is covered by helical vortex lines.

of radius R0 = 0.25 mm. The height of the system is set to
2.0 mm, and the bottom and top surfaces are subject to the
periodic boundary condition. The normal fluid component is
set to be stationary; thus, the vortices tend to move farther
apart from each other through mutual friction. When all the
vortices are straight and perpendicular to the z axis (ntwist = 0)
[as shown in Fig. 6(b)], the scenario is relatively simple:
The vortices form a triangular lattice as the radius R of the

(A
(t

)
−

A
0
)ρ

s
/γ

0
N

t
[a

rb
.

un
it

]

t [s]

0.2
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1.0

0 2 4 6 8 10
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ntwist = 1
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: N = 100

ntwist = 0 ntwist = 1

t = 0.0 s t = 4.0 s t = 0.0 s t = 4.0 s

(a)

(b) (c)

FIG. 6. (a) Normalized cross-sectional areas of the bundles as
functions of time for various numbers of vortices N and twists ntwist.
The values of the functions are proportional to the diffusion constant
D. The proportionality constant is found in Eq. (17). (b) and (c) Snap-
shots of VFM simulations with N = 60 vortices for ntwist = 0 and
1, respectively. The top and bottom boundaries are subject to the
periodic boundary condition. The disks in each panel have radii of
0.8 mm. A corresponding video can be found in Ref. [40].

occupied cross-sectional area grows from its initial value R0.
Then, the superfluid velocity within the radius R mimics a
rigid rotation. However, when the bundle is “twisted” such
that all the vortices are helically deformed [as in Fig. 6(c)],
the situation becomes more complex.

First, to qualitatively understand the diffusion process in
this system, we consider the kinetic energy ER of a bundle of
N vertical vortex lines confined in a region of radius R. For
simplicity, we assume that the vortices are not twisted (i.e.,
ntwist = 0) and that the superfluid velocity profile induced by
the vortices is given (in cylindrical polar coordinates) as

vs(r, φ, z) =
⎛
⎝ 0


s
2π

r
R2

0

⎞
⎠ for r < R (10)

and

vs(r, φ, z) =
⎛
⎝ 0


s
2π

1
r

0

⎞
⎠ for r > R, (11)

where 
s = κN . Then, the kinetic energy per unit height can
be calculated as ER/Lz = (ρs/2)2π

∫ Rmax

0 drrv2
s . Substituting

Eqs. (10) and (11) into the integral, the energy is expressed as

ER

Lz
= 
2ρs

4π

[
1

4
+ ln Rmax − ln R

]
, (12)

where Rmax is the radius of the cylindrical container. In terms
of the area A ≡ πR2, the time derivative of Eq. (12) is

d

dt

ER

Lz
= −
2ρs

8π

Ȧ

A
. (13)

We can also estimate the energy dissipation rate ε from the
mutual friction per unit length between the resting normal
fluid and the vortex lines. In the first-order approximation, the
frictional force f per unit length of a vortex segment is known
to be proportional to its velocity, and the proportionality con-
stant γ0 depends on the temperature T [39]. Therefore, we
obtain

ε = f · vs = γ0

2
s

4π

N∑
i=1

r2
i

R4
≈ γ0


2
s N

8πA
. (14)
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The sum
∑N

i=1 r2
i in the second line is approximately evalu-

ated as NR2/2, assuming an even distribution. The only major
factor determining energy loss in the system is the mutual
friction; thus, we equate Eqs. (13) and (14) to finally obtain

A(t ) = A0 + γ0N

ρs
t . (15)

Figure 6(a) plots the computationally obtained values for
the properly normalized areas of the bundle cross section (i.e.,
[A(t ) − A0]ρs/γ0Nt) as functions of time t . It can be clearly
seen that when n = 0, the values agree with Eq. (15). How-
ever, they start to diverge as time elapses; thus, higher-order
estimates are needed for a more precise discussion. Interest-
ingly, when ntwist > 1, the diffusion of the bundle is strongly
suppressed. Although a clear relationship between the number
of twists ntwist and the reduction from unity in Fig. 6(a) has not
yet been established, significant suppression of vortex bundle
diffusion can be expected in the experiments if the bundle is
twisted.

The expression in Eq. (15) relates to the diffusion constant
D in conventional two-dimensional diffusion problems; that
is, ṅ = D∇2n. A solution to the partial differential equation,
using an instantaneous δ-function-like source at time t = 0,
takes the form

n(r, t ) = N

4πDt
exp

(
− r2

4Dt

)
, (16)

where n(r, t ) is the vortex number density such that N =
2π

∫ ∞
0 rn(r, t )dr is the total number of vortices. The radius R

of the cross-sectional area of the bundle is characterized by the
exponential function in Eq. (16), and R ∼ √

4Dt . Combining
this result with Eq. (15), we obtain the final expression:

D ≈ γ0N

4πρs
. (17)

In the experiment at OCU, because the temperature T was
1.6 K and the number of vortices N was of order 104, the diffu-
sion constant was approximately D ≈ 8 mm2/s. The values of
the temperature-dependent quantities γ0 and ρs can be found
in Ref. [41].

If we linearly extrapolate our computational results for the
simplified system, then the diffusion constant measurable in
the experiment is ∼2 mm2/s if the vortex bundle is twisted. In
our above analysis, the normal fluid is assumed to be at rest for
the sake of simplicity; however, in the case of an experiment
where 104 vortices are present, this assumption may not be
valid. If the bundle of vortices and the normal flow corotate
about the z axis, then the energy loss via mutual friction in
Eq. (14) is reduced; this would lead to further reduction of the
diffusion constant, at least initially. Therefore, we would need
to wait for a sufficiently long time after the rotor is stopped (so
that the vortex-line density becomes small and normal fluid
comes to rest) to observe the predicting decay behavior.

VI. CONCLUSIONS AND DISCUSSION

Motivated by an experimental report on the bathtub vortex
of superfluid 4He, we discussed the structure of the quantized
vortex bundle that can be formed in such a macroscopic flow
based on numerical simulations using the VFM. The super-
fluid bathtub vortex system was investigated by separating it
into three regions. The top region (region I) is assumed to
contain a giant vortex with multiply quantized circulation. By
analogy with rotating superfluid 4He, we illustrated the devel-
opment process of the giant vortex (or the surface dimple).
In region I, a vortex bundle can develop alongside the giant
vortex. The bundle that forms around the giant vortex appears
to act as a major source of the vortices that are transferred
to region II; thus, it can be considered a vortex-line bath.
Region II is the region in which the boundary effect of the
vessel bottom is negligible and a vortex-line bath is present
at the top. Because the normal fluid has an intrinsic viscosity,
we assume that it establishes a macroscopic steady flow. The
steady normal flow “stirs” the transferred vortex loops; this
presumably deforms the bundle structurally, reflecting the ge-
ometry of the normal flow. Then, the bundle settles in a steady
state such that the mutual friction between the two fluids is
minimized.

The velocity profile of the normal fluid in our analysis is
that of a Rankine-vortex-like flow, containing a vertical flow
within a radius R0 along the z axis, as described in Eqs. (3)
and (4). In such environments, the vortices that constitute a
bundle either (1) align themselves parallel along the z axis or
(2) wind around the down-flow region of radius R0 and form
a cylindrical vortex layer. Whether the bundle takes structure
1 or 2 depends on the ratio of the vertical velocity vz to the
azimuthal velocity vφ of the normal fluid. Because of the
complexity of the experimental setup, no direct experimental
data are currently available to indicate the size of the ratio.
Instead of measuring the ratio, we proposed that the structure
could be elucidated indirectly by measuring the decay of the
vortex bundle. In the OCU experiment, the expected vortex
diffusion constant D was approximately 8 mm2/s if the bundle
was not twisted along the z axis. A series of VFM simulations
indicates that the diffusion constant is significantly reduced if
the bundle is twisted. By experimentally measuring the extent
to which the diffusion constant diverges from its expected
value, we can further our understanding of the structures of
vortex bundles in macroscopic bathtub vortices.
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