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Two-dimensional (2D) topological superconductors (TS) host chiral Majorana modes (MMs) localized at the
boundaries. In this work, we study the effect of disorder on the localization length of MMs in two-dimensional
spin-orbit (SO) coupled superconductors within quasiclassical approximation. We find nonmonotonic behavior
of the Majorana localization length as a function of disorder strength. At weak disorder, the Majorana localization
length decreases with an increasing disorder strength. Decreasing the disorder scattering time below a crossover
value τc, the Majorana localization length starts to increase. The crossover scattering time depends on the relative
magnitudes of the two ingredients behind TS: SO coupling and exchange field. For dominating SO coupling, τc

is small, and vice versa for the dominating exchange field.
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I. INTRODUCTION

Realization of topological superconductors (TSs) support-
ing Majorana modes (MMs) in condensed matter systems has
attracted much attention due to its potential application in
quantum computing [1–9]. As random impurities are variantly
present in any realistic systems, understanding the effect of
disorder on the Majorana localization length is of great im-
portance and interest. It was commonly believed that unlike
s wave superconductors, topological superconductors should
be treated as effective unconventional superconductors (like
p wave superconductors), which violate Anderson’s theorem
and are very sensitive to disorder. MMs cannot survive when
the disorder strength is much larger than the pairing gap, in
which case the bulk spectrum becomes gapless.

Plenty of works have been devoted to studying the ef-
fect of disorder on MMs in one-dimensional (1D) p wave
superconductors [10–17]. It has been shown that disorder
reduces the bulk energy gap and increases the localization
length of MMs. A phase transition to a topologically trivial
phase occurs at the gap closing point where the localization
length of MMs diverges. For multichannel systems [18–22],
the behavior is similar to the single channel case at weak dis-
order, but can go through multiple phase transitions at stronger
disorder.

Recently, it has been reported that in planar Josephson
junctions, which are effectively one-dimensional TSs [23–27],
weak disorder can also decrease the Majorana localization
length [28]. The low energy physics can be described by
a one-dimensional, multiple-channel model. In this model,
different channels experience different pairing potentials and
the Majorana localization length is determined by the pairing
potential with the smallest magnitude. The effect of disorder
is to average the pairing potential between the channels. Thus
the smallest pairing potential increases and the Majorana lo-
calization length decreases.

Two-dimensional (2D) TS supporting chiral Majorana
edge modes were theoretically proposed [29–36] and exper-
imentally realized [9] in a quantum anomalous Hall insulator
(QAHI) superconductor structure. However, we are not aware
of a previous study on the effect of disorder in 2D TSs realized
in SO coupled systems. Although the effect of disorder on
the chiral Majorana modes has been investigated in p wave
superfluids/superconductors [37–40], in SO coupled systems
with proximity induced s wave pairing, the results should be
different and depend on the ratio between SO coupling and
spin-splitting strength.

In this work, we study the properties of MMs in single-
band, spin-orbit (SO) coupled superconductors in the presence
of weak disorder. SO coupled superconductors subjected to
an external magnetic field can be driven to a topological
phase and host MMs when an odd number of electron bands
are partially occupied. In order to get the spatial distribu-
tion of MMs, we adopt the quasiclassical approximation by
integrating out the relative momentum in the Green’s func-
tion. This treatment simplifies the calculations, but we lose
the information of the fast oscillating part of the Green’s
function. However, since we are only interested in the local-
ization length of MMs, the fast oscillating part of the Green’s
function is not important. At weak disorder, we analytically
calculate the Majorana localization length and show that it
decreases with increasing disorder strength for any SO cou-
pling strength and exchange field. This effect of disorder
is due to a renormalization of the Fermi velocity. We also
numerically solve the Eilenberger equation and get the lo-
calization length for an arbitrary disorder. We find that the
Majorana localization length starts to increase with an in-
creasing disorder strength when the disorder scattering time
becomes shorter than a crossover scattering time τc. This
crossover scattering time vanishes in the strong SO limit
and increases monotonically when increasing the exchange
field.
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FIG. 1. (a) Sketch of the system under consideration. 2D Rashba
layer sandwiched by a superconducting thin film and a ferromagnetic
insulator. (b) Schematic picture of the band structure. The chemical
potential only cuts the lower band, so that the system is in the
topological phase.

II. MODEL HAMILTONIAN

We consider a heavy metal thin film with strong SO
coupling sandwiched by a superconducting thin film and a
ferromagnetic insulator as shown in Fig. 1(a). The effective
Hamiltonian describing the 2D Rashba layer with proximity
induced pairing and exchange field is given by

H =
∫

dr �†(r)H0�(r) + �c†
↑(r)c†

↓(r) + h.c., (1)

with

H0 = −∇2

2m
− μ − iα(∇xσ2 − ∇yσ1) + hzσ3 + U (r). (2)

Here �(r) = [c↑(r), c↓(r)]T, where cs(r)† is the creation
operator which creates one electron at position r with spin s.
m, μ and � denote the effective mass, chemical potential, and
pairing potential, respectively. α is the SO coupling coefficient
and hz is the exchange field in the out-of-plane direction.
U (r) is the Gaussian disorder potential with the correlator
〈U (r)U (r′)〉 = δ(r − r′)/πnτ , where τ is the scattering time
of particles in the disordered system and n is the density of
states per unit cell at the Fermi level. The schematic band
structure (without disorder and superconductivity) is shown
in Fig. 1(b). Here we consider the case where the chemical
potential only cuts the lower band, so that the system is in the
topological phase and hosts chiral Majorana edge states [5].
Taking into account the effect of disorder and expressing it in
spin ⊗-hole space, the Gorkov equation is given by(

G−1
0 + μ − 	̂

)
G = 1, (3)

with

Ĝ−1
0 = − k2

2mN
− (αkxσ2 − αkyσ1) + (ε − hzσz )τz. (4)

Here σi and τi are Pauli matrices acting on spin and particle-
hole space, respectively. 	̂ = 〈G〉

2τ
is the disorder self-energy,

where 〈·〉 means an average over all momenta. To investigate
the properties of MMs, we assume the system is in the region
x < 0. We use periodic boundary conditions in the y direction
and study the Majorana edge states localized on the x = 0
edge.

III. QUASICLASSICAL APPROXIMATION

A generalized quasiclassical theory can be obtained by
projecting the Gorkov-Green’s function onto the lower band
[41–43]. The resulting Eilenberger equation is given by (see
Appendix A)

vF · ∇̂ĝnF = [ĝnF , iετ̃3 + �τ̃1 + 	̂], (5)

where τ̃i is the Pauli matrix acting on projected space and ĝnF

is the quasiclassical Green’s function defined by

ĝnF (ε; R) =
∫

dεp

iπ
Ĝ(ε; R, p). (6)

The disorder self-energy in the Born approximation becomes
	̂ = 〈ĝ〉nF

2τ
, where τ is the disorder scattering time. Here nF is

the unit vector along the direction of Fermi momentum pF and
〈·〉nF means an angular average over all the momentum direc-
tions. This angular average should be done in the usual spin
⊗ particle-hole space. After we get the self-energy we project
it back onto the lower-band subspace. The Eilenberger equa-
tion is supplemented by the normalization condition ĝ2 = IP,
where ÎP is the identity operator in the lower-band subspace.
Writing ĝ in terms of Pauli matrices ĝ = g1τ̃1 + g2τ̃2 + ĝ3τ̃3,
the normalization condition becomes g2

1 + g2
2 + g2

3 = 1. In the
clean limit 	̂ = 0, solving Eq. (5) yields

gnF ,1 = �√
�2 − ε2

− ε√
�2 − ε2

Aeκx,

gnF ,2 = λAeκx,

gnF ,3 = iε√
�2 − ε2

− i�√
�2 − ε2

Aeκx. (7)

Here, κ = 2
√

�2−ε2

vF cos(φ) , where φ is the angle between nF and
the x axis. λ denotes the sign of the x component of nF .
A is a constant determined by the boundary conditions. The
boundary condition for an Eilenberger equation is given by
[44,45]

ĝn̄F = R̂ĝnF R̂†, (8)

where nF and n̄F are two momentum directions with the same
y components but opposite x components. In the presence of
translational invariance in the y direction, an electron with
momentum in nF direction is reflected back into an electron
with momentum in n̄F direction. R is the reflection part of the
scattering matrix at the boundary, and has the form

R̂ =
[

eiθ 0
0 e−iθ

]
eiγ . (9)

The overall phase factor eiγ does not affect the solution of the
Eilenberger equation and we drop it in the rest of the paper.
For a conventional s wave superconductor θ = 0 and A = 0,

224510-2



EFFECT OF DISORDER ON MAJORANA LOCALIZATION … PHYSICAL REVIEW B 102, 224510 (2020)

so that the quasiclassical Green’s function is homogeneous
and there are no edge states. Solving the scattering problem
for Eq. (4), we find (see Appendix B)

θ = arg (sin φ − iX cos φ), (10)

where SF =
√

α2 p2
F + h2

z and X is the time reversal symme-
try breaking factor defined by X = hz

SF
. Matching the boundary

conditions at x = 0, we get

A = � tan θ√
�2 − ε2 + ε tan θ

. (11)

The density of states N (ε, x) is the real part of g3 times the
normal state density of states 1/πvF

N (ε, x) = 2

g3(ε + i0+)

πvF
= 2

√
�2 − ε2

vF cos φ
δ(ε + � cos θ )eκx.

(12)

From this expression, one can see that there is a low energy
quasiparticle excitation localized at the edge. This is the Ma-
jorana mode. The energy dispersion of Majorana edge states
can be read out from the delta function

ε = −� cos θ = sgn(X )� sin φ√
sin2 φ + h2

z cos2 φ

S2
F

= sgn(X )�py

pF

√
1 − α2(p2

F −p2
y )

S2
F

.

(13)

As the scattering phase shifts only depend on the momen-
tum direction relative to the interface, and the quasiclassical
boundary conditions are generally local, the edge state is
present on all vacuum boundaries of the system, regardless
of their orientation, as long as they are flat on the scale of the
Fermi wavelength.

At low energy, the group velocity of the Majorana mode is
given by

vM = ∂ε

∂ py
≈ �

pF X
. (14)

Using the same method, we obtain the group velocity of the
edge mode on the other edge v′

M ≈ − �
pF X , indicating that

the edge mode is chiral and propagates in one direction. The
localization length of the zero energy Majorana mode is lM =
vF /�. Integrating N (ε, x) over x, we get the total density of
states

N (ε) =
∫

dxN (ε, x) = δ(ε + � cos θ ), (15)

which shows that the edge mode is indeed a single channel
mode. One interesting property of this chiral Majorana mode
is that the number of low energy states depends on X . Accord-
ing to ε = −� cos θ , a low energy edge state corresponds to a
large θ . When X � 1, θ is finite only when φ is small. Thus,
there is only a small number of low energy states, and the
group velocity of the chiral Majorana mode is large [Fig. 2(a)].
In the opposite limit, when X ≈ 1, θ is finite for a wide range
of φ, which indicates that there are a large number of low
energy modes, each with a small group velocity [Fig. 2(b)].
For X → 1, this model becomes similar to the spinless chiral
p wave superfluid [37–40]. Below we show that this property

FIG. 2. Energy spectrum of subgap states without disorder calcu-
lated from Eq. (13). Red and blue lines denote edge states on different
edges and the green area denotes continuous spectrum of the bulk.
(a) X = 0.1, there is only a small number of low energy edge states.
(b) X = 0.9, there are more low energy states.

is useful for understanding the effect of strong disorder on the
Majorana localization length.

IV. EFFECT OF DISORDER ON MAJORANA
LOCALIZATION LENGTH

In the presence of the disorder potential, we need to add
the self-energy term 	̂ to the Eilenberger equation. Here we
consider the weak disorder case and treat disorder potential
as a perturbation. Then we can approximate the disorder self-
energy as 	̂ = 〈ĝ0〉nF /2τ , where ĝ0 is the Green’s function
without disorder given by Eq. (7). For convenience we sepa-
rate the “bulk” part and the “edge” part of the Green’s function
without disorder

ĝ = ĝB + AĝE eκx, (16)

where ĝB is homogeous, describing the bulk properties, and
ĝE is proportional to the exponential factor eκx, describing the
properties of edge states. They are given by

ĝB = �√
�2 − ε2

τ̃1 + iε√
�2 − ε2

τ̃3. (17)

ĝE = − ε√
�2 − ε2

τ̃1 + τ2 − i�√
�2 − ε2

τ̃3. (18)

Similarly, the self-energy can be written as

	̂ = 	̂B + 	̂E eκx, (19)

where 	̂B is homogeneous and 	̂E eκx decays exponentially
away from the boundary. Since we are studying the localiza-
tion length of the zero energy state, we focus on the Green’s
function with nF pointing to the positive x direction denoted
as ĝ+. The self-energy enters the Eilenberger equation in the
commutator, which is

[	̂, ĝ+] = [	̂B + 	̂E eκx, ĝ+
B + Aĝ+

E eκx]

= [	̂B, ĝ+
B ] + ([	̂E , ĝ+

B ] + A[	̂B, ĝ+
E ])eκx

+ A[	̂E , ĝ+
E ]e2κx. (20)

Since we are only interested in the Majorana localization
legnth, we focus on the Green’s function far away from the
boundary, where ĝE and 	E can be treated as perturbations.
Thus, we can drop the third term on the right hand side
of Eq. (20), which is a higher order perturbation. Note that
in the second term on the right-hand side of Eq. (20), A
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is divergent, such that we can ignore the 	̂E ĝB term. Then
it can be seen that 	̂E does not appear in the Eilenberger
equation. The disorder self-energy has only a bulk contribu-
tion 	̂B = 〈ĝB〉nF /2τ . Here we need to be careful with the
angular average since the basis τ̃i is angular dependent. At
weak disorder, the self-energy is given by [42]

	̂ ≈ 	̂B =
(

1

2
ĝB + X 2

2
τ̃3ĝBτ̃3

)/
τ. (21)

Substituting Eq. (21) into Eq. (5), we obtain the Eilen-
berger equation in the presence of weak disorder

v′
F · ∇̂ĝnF = [ĝnF , iετ̃3 + �′τ̃1]. (22)

This Eilenberger equation has exactly the same structure as
that in the clean case, but with a renormalized Fermi velocity
and pairing potential, which are given by

v′
F = vF

1 + 1
2τ�

(1 + X 2)

�′ = �
[
1 + 1

2τ�
(1 − X 2)

]
1 + 1

2τ�
(1 + X 2)

. (23)

It can be seen that both Fermi velocity and pairing potential
are reduced by disorder. The Majorana localization length is
thus

lM = v′
F

�′ = vF

�
[
1 + 1

2τ�
(1 − X 2)

] . (24)

Since X 2 < 1, lM is always smaller than lM0 = vF /�, which
is the Majorana localization length in the clean case. Weak
disorder thus reduces the Majorana localization length for
any SO coupling strength and exchange field. This effect is
opposite to that in one dimension, where weak disorder usu-
ally increases the Majorana localization length [10–16]. The
main difference between 2D and 1D systems is that in two
dimensions there are many states near the Fermi energy and
only a few of them contribute to the Majorana edge states.
Hence, at weak disorder the disorder self-energy has only a
bulk contribution. However, in one dimension, there are only
two channels near the Fermi energy, both of which contribute
to the Majorana end states. Thus, the edge contribution to the
self-energy has a large impact on the Majorana localization
length.

V. MAJORANA LOCALIZATION LENGTH
FOR ARBITRARY DISORDER STRENGTH

In order to obtain the Majorana localization length for
an arbitrary disorder strength, we numerically solve Eq. (5)
(Appendix D). Here we use an exponential function DOS =
Ae−κx to fit the tail of the spatial dependent density of states,
and the Majorana localization length lM is defined as lM =
2/κ . The result is shown in Fig. 3. It can be seen that weak
disorder decreases lM for X = 0.8, 0.6, 0.4. Increasing the
disorder strength, the Majorana localization length starts to
increase after the disorder strength reaches the crossover value
1/τc. The crossover disorder strength depends on X . In partic-
ular, 1/τc goes to zero when X approaches 1, and increases
monotonically with decreasing X .

FIG. 3. Majorana localization length lM versus disorder strength
for different time reversal symmetry breaking factors X = 1, 0.8,

0.6, 0.4. The vertical dashed lines label the gap closing points. At
weak disorder, lM decreases with increasing 1/τ , while at large
disorder lM increases with increasing 1/τ . The crossover disorder
1/τc is much smaller than pairing 1/τc � � for X = 1, and increases
when increasing X . Here Majorana localization length is normal-
ized by lM0 and the disorder strength is normalized by the order
parameter �.

To understand the behavior of τc, we note that the increase
of 1/τc is caused by the edge self-energy 	̂E . For small X , as
mentioned above, the number of edge states is small (Fig. 2),
and thus a large disorder strength is required to increase
lM . Thus, the crossover disorder is large. Note that near the
gap closing point 1/τ = �/X 2 (Appendix E), the Majorana
localization length is finite, unlike in the 1D case where the
Majorana localization length is divergent near the gap closing
point. We explain this in Appendix F. We also calculate the
crossover disorder as a function of X as shown in Fig. 4. It
shows that when X is close to 1, the crossover disorder scales
linearly with 1 − X .

The physical picture of the nonmonotonic behavior of
the localization length is the following. Disorder affects the
Majorana localization length in two ways. On one hand, dis-
order decreases the electron group velocity, which makes the
Majorana modes more localized. On the other hand, disor-
der reduces the quasiparticle spectrum gap and delocalizes
the Majorana modes. At weak disorder, the former effect is
important, vice versa the latter is important at strong disor-

FIG. 4. Crossover disorder strength 1/τc� versus 1 − X . 1/τc�

depends linearly on 1 − X for X ≈ 1.
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FIG. 5. Sketch of QAHI-superconductor structure in the experi-
ment. The longitudinal conductance σ12 is measured.

der leading to the non-monotonic behavior of the Majorana
localization length. At large disorder strength, the system is
expected to undergo a transition at which the localization
length diverges. Such transitions in 2D class-D systems can
occur when the DOS already has a soft gap [46], and so
closing of the bulk gap in the Born approximation is not
necessarily correlated with the transition [47].

VI. RELATION TO THE EXPERIMENT

Recently, a two-dimensional topological superconductor
has been realized in a quantum anomalous Hall insulator
(QAHI)-superconductor structure [9] as shown in Fig. 5. In
the topological phase, the longitudinal conductance is half-
quantized σ12 = e2/2h as a signature of the chiral Majorana
edge state. The effective Hamiltonian describing the QAHI in
the ultrathin limit is given by [30,48].

HQAHI = Dk2 + (M + Bk2)σz + A(kxσx + kyσy) − μ. (25)

Although this Hamiltonian is different from Eq. (2) discussed
in this work, in the case where the chemical potential cuts
the conduction band, these two systems both have a nonde-
generate Fermi surface with the same spin texture. So the
QAHI can be described by a similar quasiclassical theory
with a modified boundary condition (Appendix B). Here the
time reversal symmetry breaking factor is defined by X =

heff√
h2

eff +A2 p2
F

, where heff is the effective exchange field heff =
M + Bp2

F . Using realistic parameters [48], we find that in
QAHI the SO coupling strength and exchange field are of the
same order, or X is around 0.7.

In a system with finite width, the measured conductance
might not be precisely quantized due to the coupling between
Majorana states on different edges. We predict that in this case
weak disorder can shorten the Majorana localization length
and make the measured conductance more precisely quan-
tized. In systems where the surface is accessible to scanning
tunneling microscopy (STM) measurements, the spatial extent
of the Majorana states can also be probed via the local density
of states visible in STM.

VII. DISCUSSION AND CONCLUSION

In conclusion, we use quasiclassical theory to study
the effect of disorder on the Majorana localization in a
two-dimensional topological superconductor. We find the
nonmonotonic behavior of the Majorana localization length
lM as a function of disorder strength. We show that weak
disorder decreases lM while strong disorder increases it. The
crossover disorder strength 1/τc, where dlM

dτ
|τ=τc

= 0, depends
on the time reversal symmetry breaking factor X = hz/SF .

1/τc decreases toward zero when |hz| � αpF , and increases
when reducing X .

The fact that disorder can decrease Majorana localization
length was first reported in one-dimensional multi-channel
superconductors [28]. In our work, the physics is different
from [28]. In our case, the chemical potential only cuts one
band in the normal state, and the decreased Majorana local-
ization length is attributed to the renormalized Fermi velocity.
Although in this work we study a specific model, our results
are valid in any two-dimensional gapped topological super-
conductors. This is because the renormalization of the Fermi
velocity is universal in two-dimensional superconductors, but
the time reversal symmetry breaking factor X has different
expressions in different models [9] depending on the type of
SO coupling and the direction of the magnetic field.
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APPENDIX A: BASIS OF THE PROJECTED
EILENBERGER EQUATION

Since the chemical potential cuts only the lower band, we
can ignore the high energy band and project the Eilenberger
equation onto the lower band. The eigenvector of the lower
band used here is

|ψ−,e〉 = (αpF eiφ′/2, (SF + hz )e−iφ′/2, 0, 0)T/N,

(A1)

|ψ−,h〉 = (0, 0, (SF + hz )eiφ′/2, αpF e−iφ′/2)T/N,

(A2)

where |ψ−,e〉 and |ψ−,h〉 are electron and hole parts of the
eigenvector, respectively. N is the normalization factor N =√

2SF (SF + hz ). φ′ is the angle between the momentum di-
rection and the y axis.

APPENDIX B: SPECULAR HARD-WALL SCATTERING

The quasiclassical boundary condition [Eq. (8)] is ex-
pressed in terms of the scattering matrix of the interface [45].
To find it, we solve here the specular hard-wall scattering
problem for Eq. (4) in the normal state, for the 2×2 electron
and hole blocks Hτ = (ετz − μ − Ĝ−1

0 )|τz �→τ=±1. The bulk
material resides at x < 0 and is terminated by the boundary
at x = 0. Due to the exchange field in the bulk, the reflection
phase is not necessarily the same for electrons and holes, and
needs to be calculated explicitly.

We assume μ is such that there is a single Fermi surface on
the lower helical band. The scattering wave function at x � 0
is

�τ (x) = eikτ xχi,τ + rτ e−ikτ xχo,τ + cτ eκτ xχev,τ , (B1)

where χi,o,ev are 2-element spinors satisfying Hτ (kx, ky)χτ =
τεχτ at kx = +kτ , kx = −kτ , and the evanescent wave vec-
tor kx = −iκτ , respectively. Here, χi,o can be normalized to
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‖χ‖2 = const., as they carry the same current. Then, rτ is the
reflection amplitude.

We note that Hτ (−k, ky) = Hτ (k, ky)∗ and that Hτ (−iκ, ky)
is real-valued, so that we can choose χo,τ = χ∗

i,τ and χev,τ is
real.

The hard-wall boundary condition �τ (0) = 0 results to the
reflection amplitude

rτ = − det(χi,τ , χev,τ )

det(χo,τ , χev,τ )
= − det(χi,τ , χev,τ )

det(χi,τ , χev,τ )∗
. (B2)

Hence, rτ = − exp[2i arg det(χi,τ , χev,τ )].
The quasiclassical reflection amplitude is evaluated at the

Fermi surface, ε = 0. There, k− = k+ and κ− = κ+. Using
H−(kx ) = σ1H+(k∗

x )∗σ1, we can choose χi,− = σ1χ
∗
i,+ and

χev,− = σ1χev,+|−κ , where χev,+|−κ is the real evanescent
spinor at kx = +iκ . Then, r+r∗

− = e2iθ where

θ = arg z, (B3)

z = det(χi,+, χev,+) det(χi,+, χev,+|−κ ). (B4)

In the wave function basis used here (see App. A),

χi,+ ∝
(

αkF eiφ′/2

(SF + hz )e−iφ′/2

)
, χev,+ ∝

(
α(ky + κ )
S′

F + hz

)
, (B5)

where φ′ = π
2 − φ, kFx = kF sin φ′, ky = kF cos φ′, k2

F =
2m(SF + μ), κ2 = k2

y − 2m(S′
F + μ), and S′

F = 2mα2 −
SF = −SF + (S2

F − h2
z )/(SF + μ). A mechanical (if long)

calculation making these substitutions gives

z = 4mα2(μ − hz )SF (SF − S′
F )

[
sin φ − i

hz

SF
cos φ

]
. (B6)

From this and Eq. (B3), we find Eq. (10).
For QAHI, Eq. (25), we can calculate the scattering phase

change θQAHI via the same method

θQAHI = arg

[(
1 + Bhz2

DSF2

)
sin φ − i

(
hz2

SF2
+ B

D

)
cos φ

]
,

(B7)

where hz2 = Bp2
F + M and SF2 =

√
h2

z2 + A2 p2
F .

APPENDIX C: ZAITSEV’S BOUNDARY CONDITIONS

Once the reflection matrix is known, we use the decoupling
of the equations for the slowly varying quasiclassical parts
from the fast-oscillating parts of the Green’s function derived
in Refs. [44,45]. Because the problem here involves a projec-
tion to the lower band, which complicates the discussion, we
outline here for completeness how it can be handled. We also
limit the discussion to the fully reflective interface, where the
problem becomes simpler.

We consider the same setup as in Appendix B, with inter-
face at x = 0, but with Hamiltonian at x < 0 slowly varying on
a length scale λ � κ−1, k−1

Fx . When |x − x′|,−x,−x′ � κ−1,
the Green’s function ansatz, for a fixed ky, is

Ĝ1(x, x′) =
∑

ab=±
eikFx (ax−bx′ )Ĉab(x, x′), (C1)

Ĉab(x, x′) =
∑

τ,τ ′=±
|ψa,−,τ 〉〈ψb,−,τ ′ |(Cab)ττ ′ (x, x′), (C2)

where Cab(x, x′)=θ (x − x′)C>
ab(x, x′)+θ (x′−x)C<

ab(x, x′) and
C>/<

ab are slowly varying amplitudes. Moreover,|ψa,−,τ 〉 are
the lower-band null vectors, satisfying Ĥ0(akFx, ky)|ψa,−,τ 〉 =
0 for the normal-state bulk Hamiltonian H0 which is block
diagonal in the Nambu index τ .

Andreev approximation in the Gor’kov equation for Ĝ−1 =
ετ3 − Ĥ (x,−i∂x ) with slowly varying Ĥ (x), and projection to
the lower band gives, for x �= x′,

0 � 〈ψa,−,τ |[ετ3 − Ĥ (x, akFx )]Ĉab|ψb,−,τ ′ 〉
+ i〈ψa,−,τ |vx(∂xĈab)|ψb,−,τ ′ 〉 (C3)

= ([ετ3 − H̃ (x, akFx )]Cab + iavx∂xCab)ττ ′, (C4)

and similarly for the adjoint equation,

0 � (Cab[ετ3 − H̃ (x, bkFx )] − ib∂x′Cabvx )ττ ′ . (C5)

Here, (vx )ττ ′ = 〈ψ−,a,τ |(kFx/m + aασ2)|ψ−,a,τ ′ 〉 = δττ ′[1 −
mα2

SF
] kFx

m = δττ ′vF sin φ′ is diagonal, and H̃ is the projected
Hamiltonian. Hence, for x away from the interface and λ �
δ � κ−1, C++(x, x ± δ), C−−(x, x ± δ) follow the quasiclas-
sical Eilenberger equation.

When |x − x′| � κ−1, but either x or x′ is close to the in-
terface at x = 0, the evanescent state Ĥ0(−iκ, ky)|ψev,τ 〉 = 0
also has a finite amplitude:

Ĝ2 = Ĝ1 +
{∑

b=± eκx−ibkFxx′
Ĉ0b , for x > x′,∑

a=± eiakFxx+κx′
Ĉa0 , for x < x′,

(C6)

Ĉa0 =
∑
ττ ′

(Ca0)ττ ′ |ψa,−,τ 〉〈ψev,τ ′ |, (C7)

Ĉ0b =
∑
ττ ′

(C0b)ττ ′ |ψev,τ 〉〈ψb,−,τ ′ |. (C8)

The ansatz by construction satisfies (H0G2)(x, x′) =
(G2H0)(x, x′) = 0 when C>/<

ab are constant. It satisfies
also the boundary conditions Ĝ2(0, x′) = Ĝ2(x, 0) = 0 if

0 = (C>
+,b)ττ ′ |ψ+,−,τ 〉 + (C>

−,b)ττ ′ |ψ−,−,τ 〉
+ (C>

0,b)ττ ′ |ψev,τ 〉, (C9)

0 = (C<
a,+)ττ ′ 〈ψ+,−,τ ′ | + (C<

a,−)ττ ′ 〈ψ−,−,τ ′ |
+ (C<

a,0)ττ ′ 〈ψev,τ ′ |. (C10)

This is the scattering problem solved in Appendix B
above. The solution gives the boundary conditions C>

++ =
R̂†C>

−+, C>
−− = R̂C>

+−, C<
++ = C<

+−R̂, C<
−− = C<

−+R̂† where
R̂ = diag(r+, r−) is the reflection matrix [Eq. (9)]. Note that
the results here are more limited than in [45], as we assume the
special case of a nontransparent and sharp interface, where the
normal-state Hamiltonian stays constant up to the interface.

Writing the Green’s function around x = x′ also needs
inclusion of additional terms ∝ e∓κ (x−x′ ). The exact Green’s
function is continuous at x = x′, with the jump condition
[∂xĜ]x=x′+0+

x=x′−0+ = 2m. For the ansatz at x = x′, this implies
continuity of the drone amplitudes, C<

+−(x, x) = C>
+−(x, x),
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C<
−+(x, x) = C>

−+(x, x), as they are the only components os-
cillating as e±2ikFxx. The relations between C<

aa(x, x) and
C>

aa(x, x) are more complicated, but are not necessary to find
the reflective boundary condition. Together with the scattering
boundary conditions, this implies that close to the interface
(for λ � |x|, |x′| � κ−1), C>

++ = R̂†C<
−−R̂, C<

++ = R̂†C>
−−R̂.

The remaining problem is to relate C>/<

ab to the quasiclas-
sical Green’s function. To do this, we move Eq. (C1) to the
Wigner representation assuming slowly varying Cab, and drop
the ±2kFx drone amplitudes

Ĝ(kx; x) �
∑
a=±

(
Ĉ>

aa(x, x)

η − i(akFx − kx )
+ Ĉ<

aa(x, x)

η + i(akFx − kx )

)
,

(C11)

where η → 0+. The quasiclassical Green’s function ĝ is
obtained by integrating over ξ = vF (k − kF ) = vF δk in the
vicinity of the Fermi surface after fixing the momentum di-
rection so that kx = k sin φ′ and ky = k cos φ′. Because kFx =√

k2
F − k2

y =
√

k2
F − k2 cos2 φ′ also depends on k, lin-

earizing around k ≈ kF in (C11) gives

akFx − kx � (a − a′)(kF + δk)| sin φ′| − aδk

| sin φ′| , (C12)

where a′ = sgn sin φ′. Hence, we have for ĝ(x, φ′):

ĝ(x, φ′) = i

π

∫
vF d (k − kF ) P−Ĝ(kx; x)P†

−

� ivF | sin φ′|[C>
a′a′ (x, x) + C<

a′a′ (x, x)], (C13)

where P− is the projector to the lower band, and only the δ-
function parts are included in the ξ -integration. The boundary
conditions for C>/<

aa now imply a Zaitsev boundary condition
for ĝ:

ĝ(x = 0,−φ′) = R̂ĝ(x = 0, φ′)R̂†, (C14)

for sin φ′ > 0, and we find Eq. (8).
The quasiclassical approach neglects a fast-oscillating part,

which contributes a cos(2kF x) term in the DOS. However,
we do not need to consider it in the problem with a sin-
gle interface, as the equations for the slowly varying ĝ are
decoupled from the fast part. Similar decoupling was previ-
ously obtained from a different approach, explicitly for the
1D Majorana problem with a semiinfinite disordered bulk and
a single interface [16]. However, interference effects, e.g.,
between multiple interfaces, are not captured in the quasiclas-
sical approach [44]. This includes, e.g., the k f L oscillation of
the energy level of overlapping Majorana end states [17].

APPENDIX D: NUMERICAL CALCULATION

We solve the Eilenberger equation numerically by using
the simple iteration method. We first calculate the Green’s
function ĝ1 in the absence of disorder. Then we substitute
the disorder self-energy 	̂1 = ĝ1/τ back into the Eilenberger
equation and obtain another Green’s function ĝ2. We repeat
this process several times until the difference between ĝn and
ĝn+1 is smaller than 0.001.

APPENDIX E: GAP CLOSING POINT

In this Appendix, we show how to find the gap closing
point for both 1D and 2D cases. We can write the bulk Green’s
function as ĝB = gB,1τ̃1 + gB,2τ̃2 + gB,3τ̃3, which is indepen-
dent of position and momentum direction. In 1D, ĝB satisfies
the Eilenberger equation

[iετ̃3 + �τ̃1 + X 2τ̃3ĝBτ̃3/2τ, ĝB] = 0. (E1)

In 2D, the bulk Eilenberger equation is given by

[iετ̃3 + �τ̃1 + ĝB/2τ + X 2τ̃3ĝBτ̃3/2τ, ĝB] = 0. (E2)

Note that Eq. (E1) is equivalent to Eq. (E2) because
[ĝB/2τ, ĝB] = 0. Setting ε = 0, we get two solutions to
Eq. (E1)

gB,2 = 0, gB,3 = 0, gB,1 = 1, (E3)

or

gB,2 = 0, gB,3 =
√

1 − �2τ 2/X 4, gB,1 = �τ/X 2. (E4)

These two solutions coincide at 1/τ = �/X 2. Making use
of the “boundary conditions” ĝB(1/τ = 0) = τ̃1, ĝB(1/τ →
+∞) = τ̃3 [42], we find the physical solution, which is for
1/τ < �/X 2

gB,2 = 0, gB,3 = 0, gB,1 = 1, (E5)

and for 1/τ < �/X 2

gB,2 = 0, gB,3 =
√

1 − �2τ 2/X 4, gB,1 = �τ/X 2. (E6)

Therefore the gap closing point is 1/τ = �/X 2.

APPENDIX F: MAJORANA LOCALIZATION LENGTH
NEAR THE GAP CLOSING POINT

1. One-dimensional case

In one dimension, the Eilenberger equation is given by

vF ∇ĝλ = [ĝλ, iετ̃3 + �τ̃1 + 	̂λ], (F1)

where λ = +/− corresponds to right/left going electrons.
The disorder self-energy is given by 	̂λ = X 2τ̃3ĝ−λτ̃3/2τ . For
convenience, we write the Green’s function as

ĝλ = ĝB,λ + ĝE ,λ, (F2)

where ĝB,λ and ĝE ,λ are bulk and edge Green’s func-
tions, respectively. Far away from the boundary, ĝE is
much smaller than ĝB and can be treated as a perturba-
tion. Thus, we can expand Eq. (F1) up to the first order
in ĝE . The 0th order terms are gone because they just
give the bulk Eilenberger equation. The first-order terms are
given by

vF ∇ĝE ,λ = [ĝE ,λ,�τ̃1 + X 2τ̃3ĝB,−λτ̃3/2τ ]

+ [ĝB,λ, X 2τ̃3ĝE ,−λτ̃3/2τ ]. (F3)

Here we have already set ε = 0. Before the gap closes the bulk
Green’s function is just ĝB,λ = τ̃1. We also notice that ĝE ,+
and ĝE ,− have the relation ĝE ,+,1 = ĝE ,−,1, ĝE ,+,2 = −ĝE ,−,2,
ĝE ,+,3 = ĝE ,−,3 for the components ĝE ,λ = ∑3

j=1 ĝE ,λ, j τ̃ j .
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Thus Eq. (F3) can be simplified as
vF ∇ĝE ,λ = [ĝE ,λ, (� − X 2/τ )τ̃1]. (F4)

It can be seen that the effective pairing is reduced to � −
X 2/τ . The Majorana localization length is given by lM =
vF /(� − X 2/τ ), which is divergent at the gap closing point
1/τ = �/X 2. Our result is at odds with the numerical study
in Ref. [16], which finds lM = vF (� − 1/τ )−0.84. However, it
is consistent with the result from the transfer matrix method
in Ref. [28] despite the fact that this paper disregards the edge
contribution to the self-energy for strong disorder in the Born
approximation approach.

2. Two-dimensional case

In two dimensions, the Eilenberger equation is given by
Eq. (5). Using the same method as in the one-dimensional

case, we arrive at

vF ∇ĝE ,+ = [ĝE ,+, (� + 1/2τ − X 2/2τ )τ̃1] + [τ̃1, 	̂E ],

(F5)

where ĝE ,+ is the edge Green’s function with relative momen-
tum pointing to the positive x direction. If we would assume
	̂E = (1 + X 2)ĝE ,+/2τ , Eq. (F5) would be simplified as

vF ∇ĝE ,+ = [ĝE ,+, (� − X 2/τ )τ̃1]. (F6)

Equation (F6) is almost the same as Eq. (F4). At the gap
closing point 1/τ = �/X 2, the effective pairing is reduced to
0 and the Majorana localization length diverges. However, in
practice 	̂E is smaller than (1 + X 2)ĝE ,+/2τ and is not large
enough to reduce the effective pairing to zero. Therefore the
Majorana localization length is finite at the gap closing point.
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