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Two- and three-point functions at criticality: Monte Carlo simulations of the
three-dimensional (q + 1)-state clock model
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We simulate the improved (q + 1)-state clock model on the simple-cubic lattice at the critical point on lattices
of a linear size up to L = 960. We compute operator product expansion coefficients for the three-dimensional XY
universality class. These are compared with highly accurate estimates obtained by using the conformal bootstrap
method. We find that the results are consistent.
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I. INTRODUCTION

In recent years substantial progress in critical phenomena
in three dimensions has been achieved by using the conformal
bootstrap (CB) method. For reviews, see, for example, [1,2].
In particular, in the case of the three-dimensional Ising univer-
sality class, the results for critical exponents are considerably
more accurate than those obtained by other methods [3,4].
Very recently also accurate results for the three-dimensional
XY universality class were provided [5].

In addition to critical exponents, the CB method provides
accurate estimates for so called operator product expansion
(OPE) coefficients λi jk . These are defined by the behavior
of three-point functions at the critical point. The OPE coef-
ficients are difficult to access by other methods. In the case of
the three-dimensional Ising universality class, only recently
results have been obtained by using Monte Carlo simulations
of lattice models [6–9]. These are far less precise than those
obtained by using the CB method. However, the agreement
of the results from the lattice and CB method gives further
support for the fact that both methods examine the same
renormalization group (RG) fixed point.

The functional form of two-point functions of primary
operators is fixed by conformal invariance

〈O1(x1)O2(x2)〉 = C1δ�1,�2

|x1 − x2|2�1
, (1)

where Oi is the operator taken at the site xi, and �i is its
scaling dimension.

Also the form of three-point functions is fixed by confor-
mal invariance. Normalizing the operators such that Ci = 1,
Eq. (1), one gets [10]

〈O1(x1)O2(x2)O3(x3)〉

= λ123

|x1 − x2|�1+�2−�3 |x2 − x3|�2+�3−�1 |x3 − x1|�3+�1−�2
,

(2)

where the OPE coefficients λ123 depend on the universality
class. For a detailed discussion, see, for example, Ref. [1].

In the present work, we apply the idea of Ref. [9] to the XY
universality class in three dimensions. To this end, we simu-
late the improved O(2)-symmetric φ4 model and the improved
(q + 1)-state clock model on the simple-cubic lattice at the
critical temperature. To reduce the statistical error of the two-
and three-point functions, we use a variance reduction method
[11,12]. To reduce finite-size effects, large linear lattice sizes
L are considered. In our simulations, we go up to L = 960.
On top of that, an extrapolation to L → ∞ is still needed. Our
estimates for the OPE coefficients turn out to be consistent
with those obtained by using the CB method.

In Table I we summarize results for the scaling dimensions
�i and the OPE coefficients λi jk obtained by using the CB
method. In the case of the scaling dimensions, we give the
most accurate results obtained from Monte Carlo simulations
[13–15] of lattice models for comparison. In the case of �s,
we also give the estimate obtained by analyzing specific-heat
data for 4He near the λ-transition [16–18]. Note that the scal-
ing dimensions are related with the critical exponents that are
usually discussed in critical phenomena [19]. In particular, the
critical exponent of the correlation length is given by ν =
1/(3 − �s) and the exponent of the correlation function at
criticality η = 2�φ − 1. The estimate of ν obtained by using
high temperature (HT) series and Monte Carlo simulations of
lattice models [20,21] differs from that obtained from exper-
iments [16–18] by several times the combined error. Recent
Monte Carlo studies [13,14] and the CB work [5] confirm the
results of Refs. [20,21].

The outline of the paper is the following. In Sec. II we
define the models that are simulated and we summarize nu-
merical results, for example for the critical temperature, which
are used in our simulations. Next, in Sec. III we define the ob-
servables and briefly recall the variance reduction method. In
Sec. IV we discuss the simulations and analyze our numerical
results. Finally, we conclude and give an outlook.

II. THE LATTICE MODELS

We performed preliminary simulations by using the O(2)-
symmetric φ4 model on the lattice. The final results were
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TABLE I. Scaling dimensions and OPE coefficients for the
three-dimensional XY universality class. Comparison of conformal
bootstrap (CB) results [3,5] with estimates from Monte Carlo (MC)
or experiment (EXP). The leading charge 0, 1, and 2 scalars are
denoted by s, φ, t , respectively. For a discussion of the meaning of
the errors that are quoted, see the references.

Quantity Method Value Ref.

�s EXP 1.50946(22) [16–18]
MC 1.51153(40) [13]
MC 1.51122(15) [14]
CB 1.51136(22) [5]
CB 1.5117(25) [3]

�φ MC 0.51927(24) [13]
MC 0.519050(40) [14]
CB 0.519088(22) [5]
CB 0.51926(32) [3]

�t MC 1.2361(11) [15]
CB 1.23629(11) [5]

λφφs CB 0.687126(27) [5]
CB 0.68726(65) [3]

λsss CB 0.830914(32) [5]
CB 0.8286(60) [3]

λtts CB 1.25213(14) [5]
λφφt CB 1.213408(65) [5]

obtained from simulations of the (q + 1)-state clock model
with q = 32. Note that in the limit q → ∞, the dynamically
diluted XY model studied in Refs. [20,21] is reached. Both
models have a parameter that can be tuned such that leading
corrections to scaling vanish. Models taken at a good approx-
imation of this value are denoted as improved. The idea to
study improved models to get better precision on universal
quantities goes back to Refs. [22,23]. For a discussion, see,
for example, Sec. 2.3 of the review [19].

In the following, we define the models and summarize
estimates of the improved models and the inverse critical
temperature given in the literature.

A. The O(2)-symmetric φ4 model

The O(N )-symmetric φ4 model on the simple-cubic lattice
is defined by the reduced Hamiltonian

Hφ4 = −β
∑
〈xy〉

�φx · �φy +
∑

x

[
�φ 2

x + λ
( �φ 2

x − 1
)2

]
, (3)

where �φx ∈ RN is the field at the site x = (x(0), x(1), x(2) ),
where x(i) ∈ {0, 1, 2, . . . , Li − 1}. Here we are labeling the
components of x by an upper index. A lower index is used
to discriminate different sites on the lattice. 〈xy〉 denotes a
pair of nearest-neighbor sites on the simple-cubic lattice. In
our simulations, L0 = L1 = L2 = L throughout. In the present
work, we consider the case N = 2.

For the O(2)-symmetric φ4 model on the simple-cubic lat-
tice, the authors of Ref. [21] find for the improved model λ∗ =
2.15(5) and βc = 0.509 150 3(3)[3] and 0.508 335 5(3)[4] for
λ = 2.1 and 2.2, respectively. These estimates are obtained by
requiring that (Za/Zp)∗ = 0.3203(1)[3], where Zp and Za are
the partition functions for a system with periodic boundary

conditions in all directions and antiperiodic in one direction
and periodic in the remaining ones, respectively. The super-
script ∗ refers to the fixed point value for the given lattice
geometry. The number quoted in parentheses refers to the
statistical error obtained in a specific fit, while the number
given in square brackets is an estimate of the systematic error.
In the case of βc, the number given in square brackets is
the error due to the uncertainty of (Za/Zp)∗. Here we have
reanalyzed unpublished data generated in 2013 for λ = 2.1
using the estimates (Za/Zp)∗ = 0.320 37(6) and (ξ2nd/L)∗ =
0.592 38(7) given in Table 3 of Ref. [14] as input. We arrive
at

βc(λ = 2.1) = 0.509 150 4(1), (4)

where the number quoted in parentheses includes both the
statistical as well as the systematic error. We simulate
the O(2)-symmetric φ4 model by using a hybrid of local
METROPOLIS, local overrelaxation, and single-cluster [24] up-
dates. For a discussion of this algorithm, see, for example,
Appendix A of Ref. [15].

B. The (q + 1)-state clock model

The model can be viewed as a generalization of the q-state
clock model. The field �sx at the site x = (x(0), x(1), x(2) ), where
x(i) ∈ {0, 1, 2, . . . , Li − 1}, might assume one of the following
values:

�sx ∈ {(0, 0), (cos(2πm/q), sin(2πm/q))}, (5)

where m ∈ {1, . . . , q}. In our simulations, we take L0 = L1 =
L2 = L throughout. Compared with the q-state clock model,
(0,0) is added as a possible value of the field variable. In
our simulation program, we store the field variables by using
labels m = 0, 1, 2, . . . , q. We assign

�s(0) = (0, 0) (6)

and for m > 0

�s(m) = (cos(2πm/q), sin(2πm/q)). (7)

The reduced Hamiltonian is given by

H = −β
∑
〈xy〉

�sx · �sy − D
∑

x

�s 2
x − �H

∑
x

�sx. (8)

In our simulations, we consider a vanishing external field �H =
�0 throughout. We introduce the weight factor

w(�sx ) = δ0,�s 2
x
+ 1

q
δ1,�s 2

x
= δ0,mx + 1

q

q∑
n=1

δn,mx (9)

that gives equal weight to (0,0) and the collection of all values
|�sx| = 1. Now the partition function can be written as

Z =
∑
{�s}

∏
x

w(�sx ) exp(−H), (10)

where {�s} denotes a configuration of the field.
Note that in the limit q → ∞, we recover the dynamically

diluted XY (ddXY) model studied in Refs. [20,21]. The re-
duced Hamiltonian of the ddXY model has the same form as
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Eq. (8):

HddXY = −β
∑
〈xy〉

�φx · �φy − D
∑

x

�φ 2
x − �H

∑
x

�φx, (11)

where �φx is a vector with two real components. The partition
function is given by

Z =
∏

x

[∫
dμ(φx )

]
exp(−HddXY), (12)

with the local measure

dμ(φx ) = dφ(1)
x dφ(2)

x

[
δ
(
φ(1)

x

)
δ
(
φ(2)

x

) + 1

2π
δ(1 − | �φx|)

]
.

(13)

In Ref. [14] we simulated the model with q = 8. We find
D∗ = 1.058(13); see Eq. (63) of [14]. For nearby values of D,
we obtain

βc(D = 1.05) = 0.560 823 90(10), (14)

βc(D = 1.07) = 0.558 883 40(10). (15)

In Appendix B 2 of Ref. [14], we study the q-dependence of
nonuniversal quantities such as the critical temperature. We
find that already for q = 8 the estimates differ only slightly
from those for the limit q → ∞. At the level of our statistical
accuracy, estimates for q � 10 cannot be distinguished from
those for the limit q → ∞. Taking the results of Appendix B 2
of Ref. [14], we arrive at

βc(D = 1.05) = 0.560 824 18(10)[10], (16)

βc(D = 1.07) = 0.558 883 68(10)[10] (17)

for q � 10. The number in square brackets gives the uncer-
tainty of the extrapolation. The major part of the simulations
here is performed for q = 32. In this case, six bits are needed
to store the field variable at one site. Also, the arrays needed
to store possible changes in the weight that are used to speed
up the METROPOLIS and cluster updates are still small enough
to fit into the cache of the CPU. We use a hybrid of local
METROPOLIS and single-cluster updates [24] to simulate the
model. For a detailed discussion, see Sec. IV of Ref. [14].

III. THE OBSERVABLES

Let us define the observables measured on the finite lattice.
Note that in our measurements, following Ref. [9] we replace
the field at the site x by the sum of its six nearest neighbors.
The idea is that statistical noise is reduced, and furthermore
in the case of the (q + 1)-state clock model the rotational
invariance is better approximated.

Let us define the correlation functions that are measured
in the simulations. To this end, we use the notation of
the O(N )-invariant φ4 model. In the following, we denote
the components of the field variable �φx by φx,i with i ∈
{0, 1, . . . , N − 1}. We study correlation functions of φ and the
two derived quantities s and t . The observables are defined for
N � 2. In our numerical study discussed below, we consider

the case N = 2. The scalar s with charge 0 is given by

sx =
∑

i

φx,iφx,i − s̄, (18)

where s̄ = 〈∑i φx,iφx,i〉 for the given lattice size. The scalar
with charge 2 is given by the traceless compound

tx,i j = φx,iφx, j − δi j
φ2

x

N
. (19)

Note that these lattice quantities also contain scaling fields
with the same symmetry properties but larger scaling dimen-
sions than the lowest. Furthermore, conformal invariance is
only well approximated at length scales considerably larger
than the lattice spacing. Therefore, the correlation functions
show corrections at small distances. In the case of improved
models, the leading correction should be related with the
breaking of the rotational invariance of the continuum by
the lattice. The corresponding correction exponent is ωr =
2.02(1) [20,21,25]. For a recent discussion of corrections to
scaling in an improved model, see Sec. III of Ref. [14].

The two-point functions, without any normalization, are

gφφ (x1, x2) =
∑

i

〈
φx1,iφx2,i

〉
, (20)

gss(x1, x2) = 〈
sx1 sx2

〉
, (21)

gtt (x1, x2) =
∑

ik

〈
tx1,i,ktx2,i,k

〉
. (22)

We consider the following three-point correlation functions:

Gφφs(x1, x2, x3) =
∑

i

〈
φx1,iφx2,isx3

〉
, (23)

Gsss(x1, x2, x3) = 〈
sx1 sx2 sx3

〉
, (24)

Gtts(x1, x2, x3) =
∑

ik

〈
tx1,i,ktx2,i,ksx3

〉
, (25)

Gφφt (x1, x2, x3) =
∑

ik

〈
φx1,iφx2,ktx3,i,k

〉
. (26)

Note that our normalizations of the two- and three-point func-
tions are not the same as those of Refs. [3,5]. This leads to a
factor of

√
2 in the result for λφφt , while it cancels in the other

three cases [26].

A. Our choices for x1, x2, and x3

The variance reduction method requires that the lattice is
subdivided into blocks. For technical reasons, we compute
correlation functions only for the sites at the center of these
blocks. These sites are given by x(i) = nski. In our simulations,
we have used the three different choices ns = 2, 4, and 6.
Throughout the linear lattice size L is a multiple of ns and
ki ∈ {0, 1, . . . , L/ns − 1}. In the following, we refer to ns as
stride. To keep the study tractable, we have to single out a few
directions for the displacements between the points. In the
case of the two-point functions, we consider displacements
along the axes, the face diagonals, and the space diagonals.
In the following, these are indicated by (a), ( f ), and (d),
respectively. In our simulation program, we summed over all
choices that are related by symmetry to reduce the statistical
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error. In the following, we shall denote the two-point func-
tion by gr,O1,O2 (x), where r ∈ {a, f , d} gives the direction and
x = |x1 − x2| is the distance between the two points. In the
case of the three-point functions

Gr,O1,O2,O3 (x) = 〈O1(x1)O2(x2)O3(x3)〉, (27)

we consider two different geometries that are indicated by r.
For r = f , the largest displacement is along a face diagonal.
For example,

x3 − x1 = ( j, 0, 0), x3 − x2 = (0, j, 0). (28)

Our second choice is indicated by r = d and the largest dis-
placement is along a space diagonal. For example,

x3 − x1 = ( j, 0, 0), x3 − x2 = (0, j, j), (29)

where j = nsk, where k is an integer. Also here we sum in
our simulation over all choices that are related by symmetry
to reduce the statistical error. The argument x of G gives the
smallest distance between two points x = j.

To eliminate the constants Ci, Eq. (1), and the power-law
behavior from the three-point functions, we directly nor-
malized our estimates of the three-point functions by the
corresponding ones of two-point functions. For the direction
r = f we get, for example,

λφφt 
 2−�t /2 G f ,φφt (x)

ga,φφ (x) g1/2
f ,tt (

√
2x)

. (30)

Based on the numbers given in Table I, we used as numerical
values �t = 1.236 29, �s = 1.5113, and �φ = 0.519 08 for
the scaling dimensions. Note that the systematic error of the
estimate of λi jk due to the uncertainty of the scaling dimen-
sions is negligible.

B. Variance reduced measurement

The variance reduction method used here is based on the
ideas of Refs. [11,12]. The method is discussed in detail in
Sec. V of Ref. [9]. Here we summarize the basics for com-
pleteness.

In the case of an N-point correlation function, the lattice is
partitioned into N areas Bi, where each of these areas contains
one of the sites x1, x2, . . . , xN . These areas are chosen such
that for each pair i �= j none of the sites in Bi is a nearest
neighbor of a site in Bj . Let us denote the collection of the
remaining sites as R. Now the sampling of the correlation
function can be reorganized in the following way.

In a straightforward approach, one would estimate the
expectation value of the N-point correlation function by av-
eraging over M configurations,

O1(x1)O2(x2) · · · ON (xN )

= 1

M

∑
α

O1,α (x1)O2,α (x2) · · · ON,α (xN ), (31)

where α labels configurations that have been generated by
using a Markov chain. We assume that the process is equili-
brated and the configurations are generated with a probability
density proportional to the Boltzmann factor. Oi,α (xi ) denotes
the value of Oi(xi ) assumed for configuration α.

In the case of the variance reduced measurement, we first
average Oi(xi ) over configurations on Bi that have been gen-
erated while keeping the field on R fixed:

O1(x1)O2(x2) · · · ON (xN )

= 1

M

∑
α

O1,α (x1) O2,α (x2) · · · ON,α (xN ), (32)

where

Oi,α (xi ) = 1

m

∑
γ

Oi,α,γ (xi ). (33)

Here we have generated m configurations labeled by γ on Bi,
keeping the field on R fixed. The configurations on R are la-
beled by α. The effect of this averaging for each site separately
is that we consider mN configurations for the N-point function.
For small m, this translates into

ε2 ∝ 1

mN
(34)

for the statistical error ε of the estimate of the N-point cor-
relation function. As m increases, the effect of fixing the
configuration on R becomes visible and ε2 converges to a
finite limit as m → ∞ and can be reduced only by increasing
M. There is in general an optimal value of m. This value of m
depends on the choice of Oi and the distances. Finding a good
choice of m requires some numerical experimentation. Below
we shall specify our implementation of this general idea.

We only used the sites ( j0ns, j1ns, j2ns), with ji ∈
{0, ns, 2ns, . . . , Li/ns − 1} for the measurements of the two-
and three-point functions. As areas we consider blocks of the
size l3

b , where lb = 2ns − 1. The sites used for the measure-
ment are at the center of the blocks.

Computing the block averages, we used local updates only.
In particular, in the case of the (q + 1)-clock model, we
used the first version of the METROPOLIS update discussed in
Sec. IV A of Ref. [14]. Computing averages for the blocks,
keeping the remainder R fixed, we update more frequently
toward the center of the blocks. To this end, we perform a
cycle of updates, similar to the cycle used in a multigrid
updating scheme. In particular, we sweep over subblocks of
the size 33, 53, . . . , l3

b . In addition, as the smallest subset, we
consider the central site and its six nearest neighbors. For each
of these sweeps, we perform a measurement. The frequency nx

of the sweeps is chosen such that the number of sites times nx

is roughly the same for all sizes. For example, in the case ns =
6, where lb = 11, in one such cycle 268 measurements are
performed. In our production runs for ns = 6, we performed
160 update cycles for a given configuration on the remainder
R. Hence in total 160 × 268 = 42 880 measurements are per-
formed for a given configuration on R.

Note that for our setup, two blocks with the central sites
x1 and x2 are separated if |x(i)

1 − x(i)
2 | � 2ns for at least one

direction i. Computing the two- and three-point functions, one
therefore has to note that only results for |x(i)

k − x(i)
l | � 2ns for

at least one direction i are valid.
The simulation is built up in the following way: First we

equilibrate the system without measuring by performing 2000
times the following sequence of updates: one sweep with the
METROPOLIS update type 2, one sweep with the METROPOLIS
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update type 1, and L times a single cluster update. These
updates are discussed in Sec. IV of Ref. [14].

For each measurement, we performed ten times the follow-
ing sequence of updates: two METROPOLIS sweeps followed
by L single cluster updates. In the first and the sixth sequence,
the first METROPOLIS is of type 2, while all others are of type 1.
Note that here the measurements, including the updates of the
blocks for variance reduction, are far more expensive than the
updates of the system as a whole. Therefore, between the mea-
surements, a relatively large number of updates is performed
in order to measure on essentially uncorrelated configurations.
In principle, the final configurations of separated blocks could
be used as an update of the main Markov chain. In our case,
a 1/23 of the blocks could be used to this end. For simplicity,
we abstained from doing so.

C. Finite-size effects

Compared with the linear size L of the lattice, the distances
that we consider for our two- and three-point functions are
small. In that respect, they can be viewed as local scalar
operators with charge 0 such as the energy density. The energy
density on a finite lattice of the linear size L, for a vanishing
external field, behaves as

E (βc, L) = cL−�s + Ens. (35)

For a discussion, see Sec. IV of Ref. [9]. In the analysis of
our data, we assume that the finite-size scaling behavior of the
two- and three-point functions is given by Eq. (35), where,
of course, the values of the constants depend on the quantity
that is considered. Given the huge amount of data, we abstain
from sophisticated fitting with Ansätze motivated by Eq. (35).
Instead, we consider pairs of linear lattice sizes L1 = L, L2 =
2L, and we compute

Gex(2L) := G(2L) + G(2L) − G(L)

2�s − 1
, (36)

where G is the quantity under consideration. Equation (36)
is derived by inserting L1 and L2 into Eq. (35) and solving
the system of two equations with respect to the nonsingular
(ns) part that remains in the limit L → ∞. As in the case of
Eq. (30), we use �s = 1.5113 as the numerical value for the
scaling dimension. In the analysis of the numerical data, for
simplicity, we apply Eq. (36) to our estimates of the scaling
dimension and the OPE coefficients λi jk computed for finite
lattice sizes L. Note that the first term on the right-hand side
of Eq. (35) is subject to corrections to scaling. Given the small
number of different linear lattice sizes L that we consider here,
these are not taken into account in the extrapolation. Their
effect is monitored by comparing the results obtained by using
different values of L in the extrapolation.

IV. NUMERICAL RESULTS

A. Preliminary simulations

To check the q-dependence of our results for the (q + 1)-
state clock model, we have simulated the linear lattice size
L = 120 with stride ns = 2 for q = 8, 16, and 32. In all
three cases, D = 1.05. In the case of q = 8, we simulated
at β = 0.560 823 90, Eq. (14), and for q = 16 and 32 at β

= 0.560 824 18, Eq. (16). The statistics is 139 100, 139 640,
and 259 820 measurements, respectively. For each measure-
ment, we performed m = 40 measurements on the blocks.
For each block measurement, we performed one sweep over
the 33 blocks. We compared the results for the four different
OPE coefficients for all distances studied. At the level of our
statistical accuracy, we find no dependence on q. Therefore,
we are confident that the results obtained below for q = 32 are
essentially unaffected by the breaking of the O(2)-symmetry.

Furthermore, we simulated the O(2)-symmetric φ4-model
at λ = 2.1 and β = 0.509 150 4, Eq. (4). We simulated the
linear lattice size L = 120 and used the stride ns = 2. We
performed 81 970 measurements with m = 60 updates of the
blocks for each measurement. We compared our results for the
OPE coefficients with those for the (q + 1)-state clock model
discussed above. In particular, comparing with the q = 32
case, we only find a difference that is clearly out of the error
bars for λsss at the distance x = 4. In the case of the φ4 model,
we get 0.879 27(40) and 0.843 35(64) for the directions f
and d , respectively. These numbers can be compared with
0.876 98(30) and 0.840 26(49) for the (32 + 1)-state clock
model. We also simulated the φ4-model for the stride ns = 4
and the linear lattice size L = 240. Here we find no difference
compared with the corresponding simulations of the (32 + 1)-
state clock model discussed below. Hence the small distance
effects in the correlation functions are mainly caused by the
lattice and the nearest-neighbor interaction.

Since the simulation of the φ4 model takes about three
times as much CPU time as that of the (q + 1)-state clock
model [14] and 16 times as much memory is needed to
store the configurations, we simulated the (q + 1)-state clock
model with q = 32 in the major part of our study.

B. Production runs using the (32 + 1)-state clock model

In the major part of our study, we simulated the (32 + 1)-
state clock model with the linear lattice sizes L = 240, 480,
and 960. We performed measurements by using the strides
ns = 2, 4, and 6. In principle, one could do the measurements
for these three different strides in the same set of simulations.
However, for simplicity, for a given simulation we performed
measurements for one value of ns only.

Our final results are mainly based on the simulations with
ns = 6. For ns = 6, we performed 70 587, 11 196, and 1272
update and measurement cycles for L = 240, 480, and 960,
respectively. On one core of an AMD EPYC 7351P 16-Core
Processor, the simulations using ns = 6 took about 10 years in
total.

C. Scaling dimensions from the two-point correlation functions

As a check, we extract the scaling dimensions �φ , �s, and
�t from the behavior of the two-point functions g(x). In the
first step, we compute

�eff(x,�x) = −1

2

ln[g(x + �x)/g(x)]

ln[(x + �x)/x]
, (37)

where �x = ns, �x = √
2ns, and �x = √

3ns for r = a, f ,
and d , respectively. These results are extrapolated to the infi-
nite volume by using Eq. (36).

224509-5



MARTIN HASENBUSCH PHYSICAL REVIEW B 102, 224509 (2020)

FIG. 1. We plot our numerical estimates of �t as a function of
the distance x between the lattice sites. Here we plot results for the
direction f only. The stride is ns = 6 throughout. We give estimates
computed for the linear lattice sizes L = 240, 480, and 960 and
the extrapolations using the pairs (240,480) and (480,960) of linear
lattice sizes. For comparison, we give the estimate obtained by using
the conformal bootstrap method [5] as a solid black line.

In Fig. 1 we demonstrate the effectiveness of the extrap-
olation. We give the results for �t obtained for the linear
lattice sizes L = 240, 480, and 960. The measurements are
performed with the stride ns = 6. Here we give results for the
direction f only. We see a clear dependence of the results
on L that increases with increasing distance. In contrast, the
extrapolated results for (L1, L2) = (240, 480) and (L1, L2) =
(480, 960) differ only slightly. Note that the error bars given in
Fig. 1, as for the figures below, are purely statistical, indicating
one standard deviation. Furthermore, for a given ns, the results
for different distances are obtained from the same simulations.
Hence there is a statistical cross-correlation.

Next we check for the effect of operators with higher di-
mension in the same channel. The effect should decay with
increasing distance between the two sites. In Fig. 2 we plot
extrapolated results for (L1, L2) = (480, 960) of �t . Data are
taken from our runs for the strides ns = 2 and 6. We give
results for all three directions that we consider. Similar to the
case of the Blume-Capel model on the simple-cubic lattice,
we find that the amplitude of corrections is quite different for
different directions [9]. For the direction f the deviations at
small distances x are the smallest, while for d they are the
largest. To check whether it is plausible that corrections due
to the violation of rotational symmetry by the lattice dominate,
as discussed in Sec. III above, we plot D + cx−2.02 as dashed
and dash-dotted lines for the directions a and d , respectively.
For D we take the value of �t obtained by the CB method.
The coefficient c is simply chosen such that the numerical
estimate of �t at x = 8 and 6 × √

3 for the directions a and d
are matched, respectively.

The observations are similar for �s and �φ , so we do
not discuss them in detail here. Our numerical result for
�t is consistent with that obtained by using the CB method
[5] and previous Monte Carlo simulations. However, we do
not reach the accuracy of [5] and the lattice result [15]. As

FIG. 2. We plot �t obtained by extrapolating our results for
(L1, L2) = (480, 960) as a function of the distance x between the
lattice sites. These results are obtained by using the strides ns = 2
and 6. We omit the results for ns = 4 to keep the figure readable. a,
f , and d denote the three different directions that we consider. For
comparison, we give the estimate obtained by using the conformal
bootstrap method [5] as a solid black line. In addition, we give
dashed and dash-dotted lines that include an estimate of corrections
to scaling for the directions a and d , respectively. For a discussion,
see the text.

our final estimate, we might quote �t = 1.2352(23) from the
extrapolation of (L1, L2) = (480, 960) for the direction f and
the pair of distances (12, 18) × √

2. Looking at Figs. 1 and 2
it seems plausible that for this choice, systematic errors due
to the finite value of x and due to the imperfection of the
extrapolation to the infinite volume are not larger than the
statistical error.

In a similar way we get �φ = 0.519 53(32) from the ex-
trapolation of (L1, L2) = (480, 960), the stride ns = 2, the
direction f , and the pair of distances (12, 14) × √

2, or �φ =
0.518 64(52) for the stride ns = 6 and the pair of distances
(12, 18) × √

2. Finally, we obtain from the measurements
with the stride ns = 6, the direction f , and the pair of distances
(12, 18) × √

2 the estimate �s = 1.5098(21).

D. OPE coefficients and the three-point functions

Here we follow a similar procedure to that for the scaling
dimensions. In the first step, we compute estimates of λi jk for
given linear lattice sizes L by using Eq. (30) and analogous
equations. Then we extrapolate to the infinite volume by using
Eq. (36). Similar to Ref. [9], we have measured the three-point
function for two different geometries that we denote by f and
d . It turns out that small distance corrections are smaller for f .
Final results, however, are fully consistent. Therefore, in the
following we restrict the detailed discussion on geometry f .

In Fig. 3 we plot results for λφφs obtained from sim-
ulations with the stride ns = 6 and the linear lattice sizes
L = 240, 480, and 960. In addition, we give the results of
the extrapolation using Eq. (36) and the pairs of lattice sizes
(L1, L2) = (240, 480) and (L1, L2) = (480, 960). We see a
clear dependence of the results on L that increases with in-
creasing distance x. In contrast, the extrapolated results for
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FIG. 3. We plot our numerical results for λφφs as a function of
the distance x. Here we consider simulations with stride ns = 6
and three-point functions for the geometry f . We give results for
the linear lattice sizes L = 240, 480, and 960. These results are
extrapolated by using Eq. (36) for the pairs (240,480) and (480,960)
of linear lattice sizes. The distance x for the pair (240,480) is slightly
shifted to make the figure more readable. For comparison, we give
the estimate obtained by using the conformal bootstrap method [5]
as a solid black line.

(L1, L2) = (240, 480) and (L1, L2) = (480, 960) differ only
slightly. Only for distances x � 48 does the estimate obtained
from the pair (L1, L2) = (240, 480) decrease significantly
with increasing distance x. Based on this observation, we
conclude that the extrapolation for (L1, L2) = (480, 960) is
reliable in the range of distances x considered below. We have

FIG. 4. We plot our numerical results for λφφs as a function of
the distance between the lattice sites. Here we consider simulations
with stride ns = 2, 4, and 6, and three-point functions for the ge-
ometry f . We give results for the extrapolation of the lattice sizes
(L1, L2) = (480, 960). The values of x for ns = 2 and 6 are slightly
shifted to reduce the overlap of the symbols. For comparison, we give
the estimate obtained by using the conformal bootstrap method [5] as
a solid black line. The dashed line contains in addition a correction
∝x−2.02.

FIG. 5. We plot our numerical results for λsss as a function of the
distance between the lattice sites. Here we consider simulations with
stride ns = 2, 4, and 6, and three-point functions for the geometry f .
We give results for the extrapolation of the lattice sizes L = 480 and
960. The values of x for ns = 2 and 6 are slightly shifted to reduce
the overlap of the symbols. For comparison, we give the estimate
obtained by using the conformal bootstrap method [5] as a solid black
line. The dashed line contains in addition a correction ∝x−2.02.

checked that the same also holds for the other three OPE
coefficients that we study.

Next, in Fig. 4 we plot the extrapolated results for
(L1, L2) = (480, 960) obtained for the strides ns = 2, 4, and
6. To check whether it is plausible that corrections due to the
violation of rotational symmetry by the lattice dominate, we
plot l + cx−2.02 as a dashed line, where l is the estimate of
λφφs obtained by the CB method and c is chosen such that our

FIG. 6. We plot our numerical results for λtts as a function of
the distance x between the lattice sites. Here we consider simula-
tions with stride ns = 2, 4, and 6, and three-point functions for the
geometry f . We give results for the extrapolation of the lattice sizes
L = 480 and 960. The values of x for ns = 2 and 6 are slightly shifted
to reduce the overlap of the symbols. For comparison, we give the
estimate obtained by using the conformal bootstrap method [5] as
a solid black line. The dashed line contains in addition a correction
∝x−2.02.
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FIG. 7. We plot our numerical results for λφφt as a function of the
distance between the lattice sites. Here we consider simulations with
stride ns = 2, 4, and 6, and three-point functions for the geometry f .
We give results for the extrapolation of the lattice sizes L = 480 and
960. The values of x for ns = 2 and 6 are slightly shifted to reduce
the overlap of the symbols. For comparison, we give the estimate
obtained by using the conformal bootstrap method [5] as a solid black
line. The dashed line contains in addition a correction ∝x−2.02. Note
that we have multiplied our numbers, which are based on Eqs. (20),
(22), and (26), by a factor of

√
2 to match with the conventions of

Ref. [5].

numerical estimate for the distance x = 6 is matched. Indeed,
the data fall reasonably well on the dashed line. In the case of
ns = 4 and x = 20 there is a deviation by about 2.6 standard
deviations. The deviations at x = 12 and 16 go in the same di-
rection. Since the estimates at different distances are obtained
from the same simulations, there is a statistical correlation
between them. Hence it is still reasonable to attribute these
deviations to statistical fluctuations. For the stride ns = 6 we
get λφφs = 0.6881(10) at x = 24. The dashed line suggests
that for x = 24 the finite x effect is smaller than the statistical
error. Hence one might base a final result on this estimate.

Next let us discuss the numerical results for λsss. First
we convinced ourself that also here the extrapolation using
Eq. (36) is effective. In Fig. 5 we give results of the ex-
trapolation using the linear lattice sizes L = 480 and 960
for the strides ns = 2, 4, and 6. The relative statistical error
is larger than for λφφs. The effect of the variance reduction
is more important than for λφφs. Going to larger distances, it
is mandatory to use larger block sizes.

Similar to Fig. 4, we plot l + cx−2.02 as a dashed line,
where l is the estimate of λsss obtained by the CB method, and
c is chosen such that our numerical estimate for the distance

x = 6 is matched. Based on that, it seems plausible that for the
stride ns = 6 at the distance x = 18, the small distance error
is at most of a similar size to the statistical one. We read off
λsss = 0.8303(41).

Next, in Fig. 6 we plot our extrapolated results for λtts

obtained from the simulations with the strides ns = 2, 4, and
6. Similar to Fig. 4, we plot l + cx−2.02 as a dashed line, where
l is the estimate of λtts obtained by the CB method, and c is
chosen such that our numerical estimate for the distance x = 6
is matched. The final result could be based on the estimate
λtts = 1.2530(16) obtained by using the stride ns = 6 at the
distance x = 18.

Finally, in Fig. 7 we plot our numerical results for λφφt .
Similar to Fig. 4, we plot l + cx−2.02 as a dashed line, where
l is the estimate of λφφt obtained by the CB method and c is
chosen such that our numerical estimate for the distance x = 6
is matched.

We read off λφφt = 1.214(7) for x = 18 and the stride ns =
6. For the distance x = 24, we get λφφt = 1.213(10) instead.
Note that we have multiplied our numbers, which are based
on Eqs. (20), (22), and (26), by a factor of

√
2 to match with

the conventions of Ref. [5].

V. SUMMARY AND DISCUSSION

We have demonstrated that OPE coefficients for the three-
dimensional XY universality class can be determined by using
Monte Carlo simulations of a lattice model with a relative
error of about 1% or less. To this end, we have simulated
the improved (32 + 1)-state clock model using linear lattice
sizes up to L = 960. The outline of the study is similar to
that of Ref. [9], where we studied the Ising universality class.
The key ideas are variance reduced estimators of the two- and
three-point correlation function and an extrapolation to the
infinite volume.

Our results are fully consistent with those recently obtained
by using the conformal bootstrap (CB) method [5], further
confirming that the CB method and the lattice model examine
the same RG fixed point. One has to note, however, that the
estimates obtained by using the CB method are by about two
orders of magnitude more precise than those obtained here.

There is still room for improvement. For example, the mea-
surement, which takes considerably more CPU time than the
generation of the configurations, could be easily parallelized
and could hence be speeded up, for example by running it on
graphics processing units.
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