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Spin-orbital polarization of Majorana edge states in oxide nanowires
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We investigate a paradigmatic case of topological superconductivity in a one-dimensional nanowire with d-
orbitals and a strong interplay of spin-orbital degrees of freedom due to the competition of the orbital Rashba
interaction, atomic spin-orbit coupling, and structural distortions. We demonstrate that the resulting electronic
structure exhibits an orbital-dependent magnetic anisotropy which affects the topological phase diagram and the
character of the Majorana bound states (MBSs). The inspection of the electronic component of the MBSs reveals
that the spin-orbital polarization generally occurs along the direction of the applied Zeeman magnetic field, and
transverse to the magnetic and orbital Rashba fields. The competition of symmetric and antisymmetric spin-orbit
coupling remarkably leads to a misalignment of the spin and orbital moments transverse to the orbital Rashba
fields, whose manifestation is essentially orbital dependent. The behavior of the spin-orbital polarization along
the applied Zeeman field reflects the presence of multiple Fermi points with inequivalent orbital character in the
normal state. Additionally, the spin and spatially resolved density of states leads to distinctive fingerprints of the
topological phase, especially when comparing the character of the MBS with the energy excitation close to the
gap edge. These findings unveil novel paths to single out hallmarks relevant for the experimental detection of
MBSs.
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I. INTRODUCTION

One-dimensional topological superconductivity of intrin-
sic [1–7] or artificial [8–17] p-wave superconductors can
harbor the so-called Majorana bound states (MBSs) which
are pinned to zero energy and are charge neutral. Recent
experimental observations [18–25] have brought evidence for
the presence of MBSs in artificial topological superconduc-
tors, which are based on nanosized chains with magnetic
atoms deposited on top of a superconducting substrate. In
these experiments, while the MBSs occur in an effective
spinless regime, their observed fingerprints arise from the
nontrivial spin structure of the corresponding MBS wave
function. There, the spin polarization of the MBS config-
uration can be accessed by means of scanning tunneling
microscopy (STM) through a measurement of spin-selective
conductance [26–28]. This physical scenario applies also to
semiconducting nanowires proximity-coupled with an s-wave
spin-singlet superconductor [29–33] and networks [34] where
the electronic spin orientation and spatially resolved texture of
the MBS can exhibit fingerprints that depend on the relative
strength of Rashba and Dresselhaus interactions [35]. On a
general ground, due to symmetry constraints, a Kramers pair
of MBSs is marked by an Ising spin, i.e., the spin density
is nonvanishing only along a specific direction [36,37]. On
the contrary, the spin density for the case of MBSs protected
by a sublattice (chiral) symmetry is identically zero [35,38].

However, the electron projection of the spin-density is gen-
erally nonvanishing even for effective spinless topological
superconductors, where the spin polarization is locked along
a given orientation and this can be probed by STM or charge-
transport measurements. Along this line, a radically different
situation can occur in intrinsic quasi-one-dimensional topo-
logical superconductors, where the electron spin is an active
degree of freedom in setting out the topological behavior
[39–41], and chiral protected multiple MBSs at the edges can
manifest both an Ising-type behavior and a spin texture with
characteristic spatial patterns and orientations [38].

Moving to a broader physical scenario, one can ask
whether, for superconducting materials having an electronic
structure with nontrivial spin-orbital entanglement, the elec-
tron spin and orbital moment are active degrees of freedom in
the MBSs and can leave a unique imprint on spin-resolved
and, potentially, on orbitally resolved local spectroscopic
probes. Such an appealing perspective can naturally oc-
cur when considering superconducting materials with atomic
multi-orbital degrees of freedom. These microscopic ele-
ments are commonly encountered in oxide materials, where
d bands can lead to fascinating spin-orbital correlated phe-
nomena which, apart from fundamental physical challenges,
can also lead to tantalizing solutions for emergent technolo-
gies [42]. In this framework, a prototype superconductivity
with electronic components having intrinsically coupled spin-
orbital degrees of freedom is provided by the two-dimensional
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FIG. 1. Schematic view nearby the � point in the Brillouin zone of the bands arising from the considered atomic (dxy, dxz, dyz) configura-
tions. (a) The tetragonal crystal-field potential splits the dxy with respect to (dxz, dyz), lowering the energy of the dxy state. Then, the spin-orbit
coupling leads to a configuration with nontrivial combination of spin (s) and orbital (l) angular momentum, as schematically illustrated for the
�-point Kramers states in panels (a)–(c). We notice that the states in panel (b) have only z components of l , while the configurations in panels
(a) and (c) have dominant lx and lz components, respectively. There, the degree of mixing can be qualitatively extracted from the inspection
of the angular distribution. The application of a magnetic field splits the Kramers states at the � point but, due to the spin-orbit coupling, the
splitting amplitude depends on the orbital character. For a magnetic field applied along the nanowire direction x, the lowest energy band has
a larger splitting compared with the other bands due to the dominant spin-orbital polarization along x. Once the topological state is achieved
for a given electron filling (dotted line indicates the chemical potential) the Majorana bound states (MBSs) occur at the edges of the nanowire
with a characteristic spin-orbital content, as sketched in panels (g)–(i). We notice that the spin and orbital polarizations of the MBS lie in the
xz plane coplanar to the direction of the applied magnetic field and perpendicular to the orbital Rashba field direction (i.e., y). The behavior of
the components are orbital dependent.

electron gas (2DEG) forming at the interface of oxide band
insulators. Oxide 2DEGs, indeed, are characterized by the
simultaneous presence of strong spin-orbit coupling [43] and
superconductivity [44], both widely tunable by the electric-
field effect [43,45], while 2D magnetism, coexisting with
superconductivity, [46,47] can be induced by opportune
atomic engineering of the heterostructures [48]. Hence, the
combination of magnetism, superconductivity, and inversion
asymmetry provides a quite unique platform for the real-
ization of multi-orbital topological superconducting phases.
Recently, quasi-2D electron gases formed at the interface
between LaAlO3 and SrTiO3 (LAO/STO) [49] have been
theoretically proposed as possible candidates for the realiza-
tion of topological superconducting phases in two-dimensions
[50–54], and various topological scenarios have been explored
in effective quasi one-dimensional models [55–61].

In this work we aim to assess the spin-orbital character of
MBSs and low-energy excitations occurring in a topological
superconducting phase that is induced by an applied Zeeman
magnetic field for a one-dimensional nanowire with d orbitals
(dxy, dxz, dyz) and a strong interplay of spin-orbital degrees
of freedom. Because the d orbitals have a nontrivial angular

momentum and an anisotropic spatial distribution, the nature
of the electronic states is significantly sensitive to spin-orbit
coupling and to the system’s dimensionality. Here, we focus
on a typical electronic situation in low-dimensional materi-
als where the interplay of spin-orbit coupling and tetragonal
distortions breaks the spin and orbital rotational invariance,
resulting in a characteristic atomic spin-orbital distribution
[Figs. 1(a)–1(c)]. Additionally, inversion asymmetry yields
orbital Rashba-type interaction that, together with the spin-
orbit coupling, sets out a nontrivial momentum-dependent
spin-orbital splitting. In this framework, apart from the non-
standard spin-orbital texture naturally occurring at the Fermi
level [62], the response to a Zeeman magnetic field is highly
anisotropic and orbital dependent [Figs. 1(d)–1(f)]. Thus,
once a topological superconducting phase is obtained, the
emergent MBSs may exhibit unique fingerprints of the under-
lying spin-orbital electronic substrate from which they arise.
This is indeed the key outcome of the paper and we find
distinct characteristics of the spin-orbital content of the MBSs
that we summarize in Figs. 1(g)–1(i). The inspection of the
electronic component of the MBSs reveals that the spin-orbital
polarization always has a planar orientation. Moreover, the
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components along the direction of the applied Zeeman mag-
netic field and orthogonal to the magnetic-and-orbital Rashba
fields are strongly sensitive to a variation of the spin-orbit
strength. The emerging trend is to have a tunable orientation
which depends on the orbital character of the bands where the
topological pairing sets in. We also find that the competition of
symmetric and antisymmetric spin-orbit coupling remarkably
leads to a misalignment of the spin and orbital-moment ori-
entations for the MBSs whose manifestation is inequivalent
for the dxy compared with the dxz, dyz based bands. Addi-
tionally, even in a regime where the spin-momentum locking
substantially deviates from that due to the spin Rashba cou-
pling, we find that the spin-orbital polarization has a planar
orientation. We also investigate the behavior of the elec-
tron spin-orbital polarization along the applied Zeeman field
across the topological phase transition for the MBS and the
low-energy excitations. We show that the resulting outcome
reflects the presence of multiple Fermi points with inequiv-
alent orbital character in the normal state. Moreover, the
comparison of the spin-resolved density of states for the MBS
and the low-energy excitations provide clear-cut fingerprints
for identifying the topological phase. These findings unveil a
rich scenario concerning the spin-orbital content of the MBSs
and nonstandard paths to single out hallmarks which may be
relevant for the experimental detection of MBSs.

The paper is organized as follows: In Sec. II, the model
Hamiltonian for oxide nanowires is presented. In Sec. III,
we introduce the orbital dependent Majorana fermion polar-
ization and present the topological phase diagram resulting
from the application of a Zeeman magnetic field. In Sec. IV
we provide the key fingerprints of the orientation and spatial
profile of the electron spin and orbital polarization of the
MBSs. In particular, we focus on the behavior nearby the
topological phase transition for the various bands and discuss
differences with respect to the canonical spin-Rashba model
employed to study topological phase transitions in semicon-
ducting nanowires. Section V is devoted to the investigation
of the spin-resolved density of states evaluated at different
position along the nanowire in the trivial and topological
phase. Finally, conclusions are given in Sec. VI. Appendix A
is devoted to the derivation of the Majorana polarization for
the case of multi-orbital topological superconductors, while in
Appendix B we report the characterization of the spin-orbital
polarization of the states at the Fermi level in the normal
phase. In Appendix C we report the behavior of the orbital
projected density of states for the electronic excitations near
the topological transition.

II. MODEL AND METHODOLOGY

In transition-metal oxides with a perovskite structure, the
transition-metal (TM) elements are surrounded by oxygen
(O) in an octahedral environment. Owing to the crystal-field
potential generated by the oxygen around the TM, the fivefold
orbital degeneracy is removed and d orbitals split into the
t2g sector, i.e., yz, zx, and xy, and the eg sector, i.e., x2 − y2

and 3z2 − r2. For a tetragonal symmetry, the low-energy elec-
tronic structure can be described by a model having only the
t2g orbitals contributing to the Fermi level. Additionally, for
weak octahedral distortions, the TM-O bond angle is almost

ideal and thus the three t2g bands are mainly directional and
basically decoupled, e.g., an electron in the dxy orbital can
predominantly hop along the y or x direction through the inter-
mediate px or py orbitals. Similarly, the dyz and dzx bands are
quasi-one-dimensional when considering a square geometry
for the 2D TM-O bonding network.

Furthermore, the atomic spin-orbit interaction (SO) mixes
the t2g orbitals thus competing with the quenching of the
orbital angular-momentum resulting from the crystal-field po-
tential. Out-of-plane buckling modes of the TM-O bond are
very important in 2DEGs forming at the interface of insulating
oxide materials, because they cause orbital mixing, which
is odd in space, of dxy and dyz or dzx orbitals along the y
or x directions, respectively. Indeed, the inversion-symmetry
breaking is primarily affecting the orbital degrees of freedom
and leads to an orbital momentum locking through the so-
called orbital Rashba interaction while the spin-momentum
coupling derives from the atomic spin-orbit. The atomic spin-
orbit interaction (SO) is then a crucial term to be included
into the electronic description both for the setting out of the
spin-orbital texture in the reciprocal space [62], and for the
natural mixing of the spin-orbital degrees of the t2g states in
competition with the quenching of the orbital angular momen-
tum due to the crystal potential.

Since we are interested in the analysis of the topological
phase that it established as a consequence of time-reversal
symmetry breaking due to an external magnetic field, the
model Hamiltonian we are going to consider includes both a
coupling of electron spin and orbital moments to the magnetic
field and a superconducting pairing term. The conditions to
achieve a topological nontrivial superconducting phase for a
quasi one-dimensional nanowire were already discussed in
Ref. [58]. In particular, for the chosen geometry of a nanowire
oriented along the x axis, the optimal magnetic-field direction
for achieving a topological phase is to be perpendicular to the
y direction, which is the orientation of the orbital Rashba field.

The model Hamiltonian, including the t2g hopping terms,
the atomic spin-orbit coupling, the inversion-symmetry-
breaking term, and the external magnetic field can be
generally expressed as [53,62–65]

H =
∑

k

D̂(k)†H (k)D̂(k), (1)

H (k) = H0 + HSO + HZ + HM , (2)

where D̂†(k) = [c†
yz↑k, c†

zx↑k, c†
xy↑k, c†

yz↓k, c†
zx↓k, c†

xy↓k] is a vec-
tor whose components are associated with the electron
creation operators for a given spin σ (σ = [↑,↓]), orbital
α (α = [xy, yz, zx]), and momentum k in the Brillouin zone.
Then H0, HSO, HZ , and HM represent the kinetic energy, the
spin-orbit, the inversion-symmetry breaking, and the Zeeman
interaction term, respectively.

In the spin-orbital basis, H0(k) is given by

H0 = ε̂k ⊗ σ̂0,

ε̂k =
⎛
⎝εyz 0 0

0 εzx 0
0 0 εxy

⎞
⎠,

εyz = 2t2(1 − cos kx ),
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εzx = 2t1(1 − cos kx ),

εxy = 2t1 cos kx + �t , (3)

where σ̂0 is the unit matrix in spin space and t1 and t2 are
the orbital-dependent hopping amplitudes. �t denotes the
crystal-field potential as due to the symmetry lowering from
cubic to tetragonal also related to inequivalent in-plane and
out-of-plane transition-metal-oxygen bond lengths. The sym-
metry reduction yields a level splitting between the dxy orbital
and dyz as well as dzx orbitals. HSO denotes the atomic l · s
spin-orbit coupling,

HSO = �SO[l̂x ⊗ σ̂x + l̂y ⊗ σ̂y + l̂z ⊗ σ̂z], (4)

with σ̂i(i = x, y, z) being the Pauli matrix in spin space
and l̂α (α = x, yz) are the projections of the l = 2 angular-
momentum operator onto the t2g subspace, i.e.,

l̂x =
⎛
⎝0 0 0

0 0 i
0 −i 0

⎞
⎠, (5)

l̂y =
⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠, (6)

l̂z =
⎛
⎝ 0 i 0

−i 0 0
0 0 0

⎞
⎠, (7)

assuming {dyz, dzx, dxy} as the orbital basis.
As mentioned above, the breaking of the mirror plane due

to the out-of-plane offset of the positions of the TM and
O atoms results into an inversion-asymmetric orbital Rashba
coupling that is described by the term HZ (k):

HZ = γ (l̂y ⊗ σ̂0 sin kx ). (8)

This contribution gives an inter-orbital process, due to the
broken inversion symmetry, which mixes dxy and dyz or dzx.
Finally, we consider the effects of a magnetic-field lying in
the plane of the 2D electron gas. The resulting Zeeman-type
interaction is described by the Hamiltonian HM , which char-
acterizes the coupling of the electron spin and orbital moments
to the magnetic field [66]:

HM = Mx
[
l̂x ⊗ σ̂0 + l̂0 ⊗ σ̂x

] + My
[
l̂y ⊗ σ̂0 + l̂0 ⊗ σ̂y

]
(9)

+ Mz
[
l̂z ⊗ σ̂0 + l̂0 ⊗ σ̂z

]
, (10)

with l̂0 being the unit matrix in the orbital space. We notice
that the inclusion of the orbital coupling to the field can be
neglected because the atomic spin-orbit coupling, once the
spin symmetry is broken by the Zeeman field, also acts to
orbitally polarize the electronic configuration along the same
direction [58].

Concerning the superconducting pairing, we assume that
the interaction is local, with spin-singlet symmetry and active
only for electrons sharing the same orbital symmetry [58,67–
70]. Hence, the superconducting term HP can be expressed as

HP = −g
∑
i,α

niα,↑niα,↓, (11)

where g is the pairing interaction, niα,σ = c†
i,α,σ ciα,σ is the

local spin-density operator for the σ polarization, and is the
α orbital at a given position i in the square lattice. We then
employ the usual decoupling scheme for the pairing term
using a mean-field approach for the spatial and orbital degrees
of freedom:

HP = −
∑
i,α

�i,α
[
c†

i,α,↑c†
i,α,↓ + ci,α,↓ci,α,↑

] + g
∑
i,α

D2
i,α,

with the pairing amplitude Di,α = 〈ci,α,↓ci,α,↑〉 and the order
parameter �i,α = gDi,α are taken in a gauge such as to have a
real amplitude.

For the determination of the topological phase diagram
and the spin-orbital character of the Majorana bound states
we compute the spectrum and the corresponding eigenvec-
tors of the Bogoliubov–de Gennes (BdG) Hamiltonian both
in the momentum and in real space by exploring different
electronic regimes concerning the orbital filling and the spin-
orbit strength. The numerical tight-binding Hamiltonian is
implemented by using KWANT [71] and solved with the help
of NUMPY routines [72]. In the following sections we set
the parameters of the Hamiltonian in units of the main hop-
ping term t1, specifically as the weaker hopping amplitude
t2 = 0.1, the orbital Rashba interaction γ = 0.2, the tetrag-
onal crystal-field potential �t = −0.5, the superconducting
pairing �i,α = 0.003, independent of i and α, and the atomic
spin-orbit coupling �SO varying from 0.01 to 0.1. This set of
parameters is representative of a physical regime with an elec-
tronic hierarchy of the energy scales such that �t > γ > �SO.

III. TOPOLOGICAL PHASE DIAGRAM

In this section we present the topological phase diagram
as a function of the applied Zeeman magnetic field and the
strength of the spin-orbit coupling for three representative
electron fillings corresponding to the chemical potential cross-
ing the bands nearby the � point. For clarity and convenience
we indicate as A, B, and C each sector of two bands, associ-
ated with the �-point Kramers doublet at zero field, which
occur when moving from lower to higher energies in the
spectrum [Figs. 1(a)–1(c)]. In particular, according to the
selected range of parameters for the spin-orbit coupling and
crystal-field potential, block A refers to the bands with a
dominant dxy character and subdominant (dxz, dyz ) contribu-
tions [Fig. 1(a)]. Block B at intermediate energies corresponds
to bands arising from Kramers doublets with concomitant
highest values of the spin and orbital components [Fig. 1(b)].
Finally, the high-energy bands set out block C composed of
states with dominant (dxz, dyz ) character and a subdominant
dxy contribution [Fig. 1(c)]. The main purpose is to compare
the topological phase diagram for the various bands, with the
aim to assess the role of the spin-orbital anisotropy and of the
degree of spin-orbital entanglement.

There are various approaches to identify a topological
phase transition where Majorana bound states then occur at
the edges of the quantum chain [7,12,73]. As discussed in
Ref. [35], the Majorana polarization is one of them, being a
suitable indicator for detecting the topological phases, and it
can be considered as a sort of order parameter. In analogy with
the case of a single-band electronic model, one can define the
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A-block B-block C-block C-block

(a) (b) (c) (d)

FIG. 2. Topological phase diagram evaluated by means of the Majorana polarization P(ω = 0) (see main text for the definition) with a
value of about 1 or 0 to signal the onset of a topological or trivial superconducting configuration, respectively. For convenience we indicate
as A, B, and C the physical cases for a given electron filling that refer to the two band sectors, associated with the �-point Kramers doublet
at zero field. The sectors A, B, and C occur when moving from lower to higher energies in the spectrum, as depicted in Figs. 1(a)–1(c).
(a)–(c) Topological phase diagram in the spin-orbit coupling and magnetic-field plane related to the bands for the A, B, and C sectors assuming
a magnetic field Mx oriented along the nanowire direction. (d) topological phase diagram that refers the bands belonging to the block C for an
out-of-plane magnetic field Mz. The chemical potential has been selected to be pinned at the energy lying in the middle of the split Kramers
doublet for each block to distinctively follow the topological behavior of the corresponding orbital sectors. We vary the amplitude of the
spin-orbit coupling �SO and the applied magnetic field M to search for the boundary separating the topological and trivial superconducting
phase. The black dashed line schematically indicates the transition from a topological to trivial superconducting phase as obtained by looking
at the gap closing in the momentum space. The gap amplitude for the various orbitals is �α = 0.003 in unit of t1. All the energies and electronic
parameters are in units of t1.

Majorana polarization for a multiband system as follows:

PL(R)(ω) =
∑

n

∣∣PL(R)
n (ω)

∣∣[δ(ω − en) + δ(ω + en)], (12)

with

PL(R)
n (ω) = 2

∣∣∣∣∣
N/2(N )∑

j=1(N/2+1)

∑
α,σ

un, j,α,σ vn, j,α,σ

∣∣∣∣∣. (13)

Here N is the size of the chain, en is a given eigenenergy of
the BdG Hamiltonian and un, j,α,σ and vn, j,α,σ are respectively
the electron and hole components of the eigenfunctions of the
Hamiltonian (more details of the derivation are reported in
Appendix A).

The Majorana polarization has been then used to single
out the topological superconducting phase in response to a
change of the spin-orbit coupling by considering different
representative electron fillings and an applied Zeeman field
along the directions perpendicular to the orbital Rashba field.
These field orientations are those more favorable to yield a
topological nontrivial state. Hence, in Fig. 2 we show the topo-
logical phase diagram for electron densities corresponding to
a chemical potential that uniquely crosses the energy bands
in the blocks A, B, and C (Fig. 1). A common aspect for
the phase diagrams linked to the blocks A and C is that the
trivial-topological boundary is weakly dependent on the am-
plitude of the spin-orbit coupling if the field is applied along
the easy magnetic axis (x and z, respectively), with the critical
threshold for the applied magnetic field of the order of the
superconducting gap. On the other hand, for the blocks B and
C one needs to apply a magnetic field which is significantly
larger than the superconducting gap to induce a topological
phase if the magnetic field is applied along the hard magnetic
axis. Additionally, the boundary line for the hard magnetic
direction (i.e., x for the blocks B and C), as expected, is more
sensitive to the strength of the spin-orbit coupling. Although
the phase diagram of the A and C sectors for a field applied

along the easy magnetic axis is substantially unchanged by
a variation of the spin-orbit coupling, the character of the
MBS in the topological phase is strongly dependent on the
strength of the spin-orbit interaction, as we will discuss below
in Sec. IV.

We notice that the bands A, as pointed out in Ref. [58],
show a spin-Rashba-like transition with the in-plane magnetic
field along the direction of the nanowire (Mx) and a transi-
tion point approximately determined by MT

x ≈ (�2 + ε2
0 )1/2,

where ε0 is the energy difference between the chemical po-
tential and the bottom of the band. Surprisingly, a similar
behavior with an out-of-plane magnetic field that is also ob-
served for band C, although the inversion-symmetry splitting
deviates from the canonical spin Rashba profile. Also, in this
case, we find that the transition point is essentially determined
by MT

z ≈ (�2 + ε2
0 )1/2.

The validity of using the Majorana polarization to signal
the trivial-to-topological phase transition is confirmed by the
correspondence of the critical values with those obtained by
evaluating the position of the gap closing in the reciprocal
space (black dashed lines in Fig. 2).

IV. SPIN-ORBITAL POLARIZATION OF MAJORANA
BOUND STATES

In this section we consider the behavior of the electron
spin-orbital polarization of the MBSs by focusing on the
orientation, the spatial profile, and the changeover across the
phase transition going from in-gap fermionic states to Majo-
rana edge modes. Following the schematic structure of the
energy bands, we determine the spin-orbital polarization of
the MBSs arising from each band by varying the strength of
the spin-orbit coupling. There are various questions we aim to
address. The first issue to account for is about the dependence
of the spin-orbital polarization of MBSs on the strength of
the spin-orbit coupling, the orientation of the magnetic field,
the spin-orbital anisotropy and on the character of the orbitals
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FIG. 3. x- and z-electron components of the (a), (c) spin s and
(b), (d) orbital l angular momentum evaluated near the topological
phase-transition point MT

x on the lowest-energy excited state in the
trivial superconducting phase (Mx < MT

x ) and for the MBS in the
topological configuration (Mx > MT

x ). The behavior refers to the
topological phase diagram for the electronic states belonging to the
lowest energy sector (block A) in the presence of a magnetic field
oriented along the nanowire. Solid and dashed lines refer to the
MBS spin-orbital component at the two edges of the nanowire. The
component collinear to the magnetic field owes the same sign and
amplitude at the two edges of the nanowire. The transverse spin and
orbital components with respect to the applied field have opposite
sign at the two edges but equal amplitude.

which are involved in the pairing at the Fermi level. Addition-
ally, we aim to provide distinctive fingerprints regarding the
spin-orbital orientation and the spatial texture of the MBSs
at the edge of the superconductor. Another relevant aspect in
the problem upon examination is to assess whether the spin-
orbital polarization of the electronic states at the Fermi level in
the normal state is imprinting the behavior of the spin-orbital
content of the MBS. Due to the intricate spin-orbital character
of the electronic states, we expect that the components of the
spin-orbital polarization of the MBS are strongly susceptible
to the variation of the spin-orbit coupling or the crystal-field
amplitude in a way that can be markedly orbital dependent.
Along this line, the outcome of the analysis unveils striking
behavior of the components of the spin-polarization that are
collinear or transverse to the applied magnetic field.

Let us start by considering the topological phase due to an
applied magnetic field along the x direction for an electron
pairing in the band belonging to block A with dominant xy
orbital character (Fig. 3). We observe that the spin-orbital
polarization is nonvanishing only for the x and z spatially
averaged components. However, the response to a variation
of the spin-orbit coupling reveals a remarkable behavior when
considering the collinear and transverse to the magnetic field
components for the MBS. Indeed, while the sx spin den-
sity gets reduced in amplitude when the spin-orbit coupling
increases, the sz value is essentially unchanged for any spin-
orbit value. Furthermore, the sz spin density has opposite sign
components on the two sides of the nanowire while the sx

component has the same sign and value. The fact that the
sz component has a constant amplitude means that any small
variation in the spin-orbit coupling leads to a change in the

orientation of the electron-spin moment of the MBS at each
edge of the nanowire.

When considering the electron orbital component of the
MBS, the resulting outcome is completely uncorrelated to that
of the spin density. The lx component turns out to be less
variable with respect to a change in the spin-orbit coupling
unveiling a subtle nonmonotonic behavior. On the contrary,
the lz projection of the orbital angular moment grows in am-
plitude with the increase of the spin-orbit strength. As for
the spin component, the orbital part has an opposite sign at
the two edges for the z orientation while it is collinear for
the x direction along the applied magnetic field. It is worth
pointing out that, although the spin and orbital polarizations
are substantially locked at the Fermi level in the normal-state
configuration through the combination of the orbital Rashba
coupling and the spin-orbit interaction (see Appendix B for
details), the character of the MBSs unveils a completely oppo-
site behavior. The spin and orbital orientations are essentially
misaligned and the misalignment is nontrivially tuned by a
change in the strength of the spin-orbit coupling. Another
relevant observation of our analysis is that, although the elec-
tronic states for the sector A and the resulting topological
behavior might be well described by an effective single band
spin-Rashba model, the spin-orbital content of the MBS un-
veils an intricate interplay of the quantum spin and orbital
constituents.

Moving to the topological phase for the states in the B
sector, we start by observing that the pairing involves more
than one Fermi point and that, due to the magnetic anisotropy,
the amplitude of the applied field along the x axis to reach the
topological transition has to be larger than that employed for
the configurations in the A sector. These elements completely
alter the behavior of the sx and lx components, resulting in a
smooth changeover across the topological transition (Fig. 4).
For the transverse projection (z) one has an opposite behavior
if compared with the MBSs arising from the bands in the sec-
tor A. Indeed, the lz component is essentially unaffected by the
spin-orbit coupling while the sz density exhibits an increase
in the amplitude. This is a remarkable reconstruction of the
MBS spin content with an unexpected enhancement of the
spin density for a stronger value of the spin-orbit coupling. A
similar behavior is also obtained when considering the MBSs
arising from the topological configuration in the high-energy
C block (Fig. 5). Again, the orbital component transverse to
the applied field is independent of the spin-orbit coupling,
while the spin density has a monotonic profile.

We point out that, for the bands of the sector C having
an easy orbital axis along the transverse z direction, the spin
and orbital contents of the MBSs in Fig. 6 are substantially
analogous to those of the A sector, with the transverse spin
component being slightly dependent on the spin-orbit cou-
pling. We attribute this behavior to the different character of
the quantum configurations involved in block C as compared
with the A sector. Indeed, in block C the two quasidegenerate
orbitals (xz, yz) with larger amplitude in the electronic con-
figuration are spin-orbit active for the lz angular momentum
component. On the other hand, for block A, the main com-
ponent of the electronic state is associated only with the xy
orbital. Another remark is that, for the bands of sector B and C
having an easy orbital axis along the transverse z direction, the
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FIG. 4. x- and z-electron components of (a), (c) the spin s and
(b), (d) orbital l angular momentum evaluated across the topological
phase transition point (MT

x ) for the lowest-energy excited state in the
trivial superconducting phase (i.e., for Mx < MT

x ) and for the MBS
in the topological side (i.e., for Mx > MT

x ). The behavior refers to the
topological phase diagram due to a magnetic field oriented along the
nanowire and considering the electronic states of the intermediate en-
ergy sector for the normal-state spectrum (i.e., bands of the B block).
Solid and dashed lines refers to the MBS spin-orbital component at
the two edges of the nanowire. The amplitude is the same for the two
MBS localized at the edges while concerning the relative orientation,
the component collinear to the magnetic field are parallel while those
transverse are anti-aligned.

electron orbital content of the MBSs is substantially constant
and robust against changes in the spin-orbit coupling strength.

Finally, we discuss the spatial pattern of the electron spin
density of the MBS at the edges of the nanowire (Fig. 7). As
suggested by the amplitude of the Majorana polarization, the
MBSs wave functions are localized at the two edges of the
nanowire with a characteristic decaying length of the order
of a few hundred interatomic distances. As expected, the spin
and orbital polarizations of the MBSs are nonvanishing only

FIG. 5. x- and z-electron components of the (a), (c) spin s and
(b), (d) orbital l angular momentum evaluated across the topological
phase-transition point MT

x for the lowest-energy excited state in the
trivial region (Mx < MT

x ) and for the MBS in the topological side
(Mx > MT

x ). The behavior refers to the topological phase diagram
with an applied magnetic field along the nanowire and for the elec-
tronic states belonging to the intermediate energy sector (i.e., block
C). Solid and dashed lines refer to the MBS spin-orbital component
at the two edges of the nanowire.

FIG. 6. x- and z-electron components of (a), (c) the spin s and
(b), (d) orbital l angular momentum evaluated near the topological
phase-transition point MT

z for the lowest-energy excited state in the
trivial region (Mz < MT

z ) and for the MBS in the topological con-
figuration (Mz > MT

z ). The behavior refers to the topological phase
diagram with an out-of-plane field oriented along the z direction and
for the electronic states belonging to the intermediate energy sector
(i.e., block C). Solid and dashed lines refer to the MBS spin-orbital
component at the two edges of the nanowire.

close to the edge where the MBS has a maximal amplitude.
We find that the strength of the spin component is comparable
for all the band sectors but it can exhibit a sign change as a
function of the position, thus leading to a nontrivial evolution
of the spin orientation in the xz plane. For instance, for the
A block [Figs. 7(a) and 7(d)], the sx component changes sign
upon moving away from the edge while the sz component is
always positive. Hence, although the spin orientation is pinned
in the xz plane, the spatial pattern exhibits a texture with a
significant rotation of the spin polarization. This behavior is
observed only for the MBS in the A sector while for the B-
and C-type MBSs we have a less variable modification of the
spin orientation as a function of the position in the nanowire.
It is also worth noticing that some oscillations appear in the
real-space profile of nonzero components of s and l . These
oscillations reflect the characteristic length scales of the Fermi
wave vectors of the normal-state configurations. Indeed, the
MBSs arising from the A sector show only one harmonic,
while for B and C blocks the MBSs display multiple com-
ponents for the amplitude modulation in the spatial profile of
sx,z and lx,z, that can be directly associated with the multiple
Fermi points occurring at the corresponding electron filling.
This is also confirmed by the analysis of the spectrum in the
normal state, as discussed in Appendix B.

V. SPECTROSCOPIC PROBE OF SPIN-ORBITAL
TEXTURES IN SUPERCONDUCTING OXIDE NANOWIRE

In this section we present the main spin-orbital signatures
of the superconducting excitations for representative points of
the phase diagram in proximity of the topological transition
by evaluating their energy and spatial resolution. This analysis
focuses on the projected density of states (DOS) because it can
be directly accessed via spectroscopic experiments by means
of scanning tunneling microscopy (STM) [74,75], point con-
tact, or akin tunneling probes where the spatial resolution of
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A-block

A-block

B-block

B-block C-block

C-block

(a) (b) (c)

(d) (e) ( f )

FIG. 7. Spatial profile of the x- and z- component of the spin density for the MBSs arising from the pairing of electronic states belonging to
(a), (d) sector A, (b), (e) B, (c), (f) C at a given amplitude of the Zeeman magnetic field along the x direction corresponding to the topological
side of the phase diagram. The computation has been performed for a quantum chain with 4000 sites.

the detecting technique can vary from atomic distances to sev-
eral nanometers. In this context, spin-resolved spectroscopy
with magnetic tips is generally affordable, as already success-
fully employed for the investigation of the spin polarization
of the Yu-Shiba-Rusinov (YSR) states of magnetic atoms
on the surface of conventional spin-singlet superconductors
[22]. Alternatively, by means of suitably engineered spin fil-
ter barriers in normal-ferromagnet-superconductor junctions,
one can achieve a spatially averaged spin-resolved tunneling
conductance. For this reason, our attention is primarily de-
voted to the spin-resolved spectral function. Here, since at
low temperature the tunneling conductance is proportional to
the density of states, we evaluate its spatial dependence along
the nanowire with spin-resolved projection on the low-energy
excitations of the superconductor. Defining the electronic spin
projection operator in the j direction as P̂j,±(x) = ( I+τ̂ j

2 ) ⊗
( I±σ̂ j (x)

2 ), we evaluate the spin-projected local density of states
(SLDOS) as

ρ j (E , x) =
∑

n

δ(ω − en)
(〈n|P̂j,+(x)|n〉 − 〈n|P̂j,−(x)|n〉),

(14)

or equivalently as ρ j (E , x) = 2
h̄

∑
n δ(ω − en)〈n|ŝ j (x)|n〉,

where τ̂ j are the Pauli matrices working in the particle-hole
space, ŝ j (x) is the spin operator in the j direction acting
at the x position and |n〉 is the nth eigenvector of the BdG
Hamiltonian. The energy and spatial resolution of the spectral
features are particularly valuable because they allow us to
provide a set of fingerprints of Majorana bound states. Using
Eq. (14), at a given energy we determine the difference of
the density of states for spin pointing along and opposite to
a selected orientation in the spin space. Here, j = x and j = z
correspond to directions that are parallel and perpendicular
to the applied magnetic field. In Fig. 8 we report the contour
maps of the spin-projected spectral function along the applied
magnetic field (x) and transverse to it (z) for the orbitally in-
equivalent blocks considering two points in the phase diagram
close to the topological phase transition, i.e., Figs. 8(a), 8(b),
8(e), 8(f), 8(i), and 8(j) for the trivial phase and Figs. 8(c),
8(d), 8(g), 8(h), 8(k), and 8(l) for the topological state. The

investigated energy range is up to about ten times the energy
gap, which is expressed by e1.

Let us start by observing that the SLDOS of the Majorana
bound states reflects the behavior of the spin polarization dis-
cussed in Sec. IV. As expected, in the trivial phase there are no
states in the gap, while in the topological phase there is a non-
vanishing spectral weight at the edge of the nanowire at about
zero energy. The SLDOS and thus the low-temperature spin
conductance yield a contribution only for a spin-projected
process having an orientation in the xz plane. Comparing the
sz and sx SLDOS we find a strong magnetic anisotropy in the
block B [Figs. 8(g) and 8(h)], where the spectral weight of sx

is about twice as large as sz. Other important features can be
extracted from the SLDOS looking at the gap edge and above
it.

We find that the spin character of the energy modes close
to the gap edge can undergo a dramatic change across the
topological transition. For instance, the nanowire-edge spec-
tral weight of the electronic states projected on sx disappears
across the transition at the first gap and appears at zero energy,
consistent with the emergence of Majorana edge states. This
characteristic is particularly visible for block A [Figs. 8(i) and
8(k)], and it is absent for block C [Figs. 8(a) and 8(c)]. As for
the electronic states projected on sz, we notice the appearance
of the spectral weight nearby the gap edge at the topological
phase transition for block B only [Figs. 8(f) and 8(h)], while
for the A and C blocks the appearance of Majorana edge states
does not affect the spectral weight at the gap edge [Figs. 8(b),
8(d), 8(j), and 8(l)].

Moreover, in the topological state for block A, sx at the
gap edge changes sign when going through the transition
[Figs. 8(i) and 8(k)]. This does not happen for blocks B and
C. Concerning the spectral weight projected on sz, on aver-
age, we observe a change of sign when crossing the phase
transition. When moving from the Majorana bound states to
the first-excited states the spin-projected DOS sx changes sign
for block A [Fig. 8(k)], while it remains unaltered for blocks
B and C [Figs. 8(g) and 8(c)]. Instead, for the SLDOS with
electron spin that is transverse to the applied magnetic field
[Figs. 8(l), 8(h), and 8(d)] and moving from the Majorana
bound state to the gap edge, we always observe a change of
sign with a strong decrease of the spectral weight. Indeed, as
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIG. 8. Contour map of the spin-resolved local density of states at different spatial positions along the nanowire. The calculation is for the
spin projection along the direction of the applied magnetic field (x) and transverse to it (z) [Eq. (14)]. The behavior for the energy excitations
in (a), b) the sector C, (e), (f) B, and (i), (j) A corresponds to the trivial phase with the absence of zero-energy edge modes (Mx/MT

x = 0.7 for
block A and 0.9 for blocks B and C). The spin-resolved spectral function for electronic states belonging to (k), (l) sector A, (g), (h) B, and
(c), (d) C at a given amplitude of the Zeeman magnetic field along the x direction corresponding to the topological side of the phase diagram
(Mx/MT

x = 1.3 for block A and 1.1 for blocks B and C). The computation was performed for a quantum chain with 1000 sites. sx (sz) indicates
the difference of the density of states among electronic states with spin parallel (antiparallel) to the x (z) orientations.

expected, the spectral weight distribution along the nanowire
shows oscillations in the sign of the spin-resolved DOS be-
cause the average spin polarization has to be vanishing. This
makes the SLDOS typically small in amplitude and substan-
tially absent in the interior of the nanowire. The analysis thus
indicates that, apart from the zero-energy modes, the SLDOS
at energies above the superconducting gap can provide valu-
able information on the occurrence of a topological phase
transition.

VI. DISCUSSION AND CONCLUSIONS

We have unveiled the spin-orbital character of MBSs and
of the energy and spatial resolved density of states occurring
in magnetic-field driven topological superconductors where
electron spin and angular momentum are strongly entan-
gled due to the interplay of atomic spin-orbit interaction and
inversion asymmetric couplings (e.g., spin and orbital

Rashba). Taking the paradigmatic example of an electronic
system in one dimension with anisotropic d orbitals (i.e., dxy,
dzx, dyz), which is of direct impact for multi-orbital super-
conductivity at oxide interfaces or surfaces, we find that the
resulting MBSs display a rich variety of striking spin-orbital
hallmarks. A general finding refers to the orientation of the
MBS spin-orbital polarization. It is planar and lies in the
plane set by the direction of the applied magnetic field and
the direction that is transverse to the magnetic and orbital-
Rashba fields. While the orientation’s plane is common for
the spin and angular momentum of the MBS, the spin and
orbital polarizations are typically misaligned with an angle
that is sensitive to a variation of the electronic interactions.
This behavior is in stark contrast with that of the spin-orbital
configurations in the normal state, for instance, at a given
momentum in the Brillouin zone, where the spin and orbital
components are essentially collinear. Such observation can be
potentially relevant for distinguishing the occurrence of MBSs
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from conventional in-gap bound states at the edge of the super-
conductor, as induced by inhomogeneities or extrinsic effects.

The presented analysis allowed us to understand the funda-
mental interrelation among the spin-orbital polarization of the
MBS, the strength of the coupling between the spin and orbital
degrees of freedom, and the magnetic and orbital anisotropy
of the electronic states that contribute to the formation of
the topological pairing. For this aim, we have essentially em-
ployed the atomic spin-orbit interaction as a knob to modify
the degree of the spin-orbital entanglement in order to assess
the consequences on the MBS. In this respect, the analysis
provides direct access to the spin-orbital susceptibility of the
MBS with respect to a variation of the electronic parameters.
We find that, when the magnetic field is applied along an easy
axis for the corresponding electronic states at the Fermi level,
the transverse to the magnetic field MBS spin polarization
is more resilient to variation of the spin-orbit coupling. We
qualitatively attribute this behavior to the fact that the induced
transverse component is uniquely tied to the structure of the
MBS, since there are no corresponding contributions in the
normal state, and that being a hard axis it is weakly activated
by a change in the spin-orbit coupling. A completely different
behavior is achieved when the topological phase is obtained
by applying a magnetic field along a hard axis direction for
the paired electrons. In that case, we find that the transverse
orbital component to the magnetic field gets substantially
unaffected by a modification of the spin-orbit coupling. We
argue that this strongly asymmetric behavior can be attributed
to the inequivalent orbital susceptibility of the electronic states
at the Fermi level. Indeed, for states with dominant xy orbital
character, the easy axis is in the plane, while for those with
mixed xz, yz orbital configurations the easy axis is along the
out-of-plane direction. However, the energy separation of the
orbitals due to the crystal-field potential makes the out-of-
plane direction easier to activate than the in-plane one. Hence,
there is a clear separation in the behavior of the spin and
orbital degrees of freedom of the MBS and this outcome is
expected to occur for spin-orbital correlated superconductors
in a regime where the spin-orbit interaction competes with the
structural couplings.

Although the analysis focused on the role of the spin-
orbit interaction, we argue that a similar response can also
occur when other electronic parameters are varied, especially
if considering the crystal-field potential associated with the
structural distortions. Indeed, the tetragonal splitting of the
d-orbitals typically tends to quench the orbital angular mo-
mentum and thus competes with the spin-orbit coupling by
indirectly reducing its effectiveness. In this context, we point
out that a modification of the structural configuration through
local strains or by applying an electric field would manifest
into striking effects in terms of reorientation of the spin-orbital
polarization of the MBS. Remarkably, the rearrangement of
the spin-orbital MBS is different for the spin and orbital com-
ponents and it also manifests with a complete restructuring of
the spatially resolved textures.

From an experimental point of view, we have determined
the spin-resolved density of states which could be accessed
in spin-selective transport probes and would manifest in a
strong anisotropic response of the conductance both for the
MBS and for the low-energy excitations above the gap edge.

In particular, apart from the behavior of the zero-energy Ma-
jorana modes in the topological phase, the difference of the
spin-resolved DOS nearby the gap edge can be also relevant
to single out the occurrence of a topologically nontrivial be-
havior.

Since the averaged spin-polarization of the MBSs can be
sensitive to structural changes, we also expect a significant
strain-driven magnetic anisotropy to occur in the zero-bias
tunneling conductance. A similar response would be detected
in spin-resolved STM experiments where the atomic profile of
the MBS spin polarization and of the low-energy excitations
can be directly accessed. Our prediction of spatially dependent
orientation of the spin-projected DOS with a gradient that is
sensitive to the orbital character of the paired electrons can
be employed to assess the nature of the topological phases in
multi-orbital superconductors. Finally, concerning the orbital
polarization of the MBS, we point out that it is much more
challenging to design an experiment to directly access the
orbital angular momentum of the MBS. While the anisotropy
of the d orbitals would naturally manifest into a characteristic
angular dependence of the tunneling or STM conductance, in
order to pinpoint the orbital polarization one would devise
a specific filter of orbital-selective angular momentum. One
possible way out is to design a tunnel barrier with tunable
inversion asymmetric interactions (e.g., Rashba and Dressel-
haus) that, due to the orbital momentum locking, can allow
the injected control of electrons with selected orbital polar-
ization along a given direction. This setup definitely requires
a high degree of control of interface and materials engineer-
ing. Advancements along this direction might open the path
to a fully spin-orbital spectroscopic probe of in-gap modes
of topological superconductors and contribute to single out
distinctive signatures for the experimental detection of MBSs
with a strong interplay of spin-orbital degrees of freedom.
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APPENDIX A: MAJORANA POLARIZATION

The real-space creation and annihilation operators can be
expressed in the basis of single-particle eigenfunctions of the
BdG Hamiltonian in the following form:

̂ j,α,σ (t ) =
∑

n

[un, j,α,σ ĉn,α,σ (t ) + vn, j,α,σ ĉ†
n,α,σ (t )], (A1)

̂
†
j,α,σ (t ) =

∑
n

[u∗
n, j,α,σ ĉ†

n,α,σ (t ) + v∗
n, j,α,σ ĉn,α,σ (t )], (A2)

where un, j,α,σ and vn, j,α,σ are, respectively, the electronic and
hole component of the nth eigenfunction in the orbital α and
spin σ , calculated at the position j.
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The most generic Majorana operators can be written as

γ̂ a
j,α,σ (t ) = eiϕ̂ j,α,σ (t ) + e−iϕ̂

†
j,α,σ (t ), (A3)

γ̂ b
j,α,σ (t ) = i

(
eiϕ̂ j,α,σ (t ) − e−iϕ̂

†
j,α,σ (t )

)
. (A4)

Majorana polarization has been introduced in Refs. [76,77]
in order to detect the topological phases [35,78–81]. It can be
interpreted as the difference of the probabilities of having a

Majorana modes γ̂ a and γ̂ b, at position j, in the orbital α, with
spin σ and energy ω. In the language of Green’s functions, it
is related to the two local spectral functions:

Pj,α,σ (ω) = Aa
j,α,σ (ω) − Ab

j,α,σ (ω), (A5)

with

Aa,b
j,α,σ (ω) = − 1

π
Im

[
−i

∫ ∞

−∞
eiωtθ (t )

〈{
γ̂ a,b

j,α,σ (t ), γ̂ a,b
j,α,σ (0)

}〉]
.

We can write the anticommutator of Eq. (A6) using Eqs. (A3) and (A4), obtaining:{
γ̂ a

j,α,σ (t )γ̂ a
j,α,σ (0)

} = {̂ j,α,σ (t ), ̂†
j,α,σ (0)}

+{̂†
j,α,σ (t ), ̂ j,α,σ (0)} + e2iϕ{̂ j,α,σ (t ), ̂ j,α,σ (0)} + e−2iϕ{̂†

j,α,σ (t ), ̂†
j,α,σ (0)},

and {
γ̂ b

j,α,σ (t ), γ̂ b
j,α,σ (0)

} = {̂ j,α,σ (t ), ̂†
j,α,σ (0)} + {̂†

j,α,σ (t ), ̂ j,α,σ (0)}
−e2iϕ{̂ j,α,σ (t ), ̂ j,α,σ (0)} − e−2iϕ{̂†

j,α,σ (t ), ̂†
j,α,σ (0)}.

The two nonanomalous terms are wiped out by the difference in Eq. (A5), which results in

Pj,α,σ (ω) = − 1

π
Im

[
− i

∫ ∞

−∞
2eiωtθ (t )(e2iϕ〈{̂ j,α,σ (t ), ̂ j,α,σ (0)}〉 + e−2iϕ〈{̂†

j,α,σ (t )̂†
j,α,σ (0)}〉)

]
. (A6)

Both anticommutators can be rewritten in terms of single-particle eigenfunction of the Hamiltonian:

〈{̂ j,α,σ (t ), ̂ j,α,σ (0)}〉 =
∑

n

un, j,α,σ vn, j,α,σ

(
eient + e−ient

)
, (A7)

and

〈{̂†
j,α,σ (t ), ̂†

j,α,σ (0)}〉 =
∑

n

u∗
n, j,α,σ v∗

n, j,α,σ

(
eient + e−ient

)
. (A8)

By performing the integration, we can write:

Pj,α,σ (ω) = − 2

π
Im

{∑
n

e2iϕun, j,α,σ vn, j,α,σ

[
P

(
1

ω − en

)
+ P

(
1

ω + en

)
− iπ [δ(ω − en) + δ(ω + en)]

]

+e−2iϕu∗
n, j,α,σ v∗

n, j,α,σ

[
P

(
1

ω − en

)
+ P

(
1

ω + en

)
− iπ [δ(ω − en) + δ(ω + en)]

]}
, (A9)

and therefore

Pj,α,σ (ω) = − 2

π
Im

{ ∑
n,α,σ

Re
[
e2iϕun, j,α,σ vn, j,α,σ

][
P

(
1

ω − en

)
+ P

(
1

ω + en

)
− iπ (δ(ω − en) + δ(ω + en))

]}
.

Then, by taking the imaginary part, one obtains

Pj,α,σ (ω) = 2
∑

n

Re
[
e2iϕun, j,α,σ vn, j,α,σ

]
[δ(ω − en) + δ(ω + en)]. (A10)

The integral of MP in the whole Hilbert space of a closed system is zero [81], but if two Majorana states are spatially separated,
the integral in each separated region is equal to 1. For this reason, in the main text we have calculated the integral of MP in the
left and right half of the wire, by summing over spin and orbital degrees of freedom:

PL(R)(ω) =
∑

n

2Re

[
N/2(N )∑

j=1(N/2+1)

∑
α,σ

e2iϕun, j,α,σ vn, j,α,σ

]
[δ(ω − en) + δ(ω + en)]

=
∑

n

PL(R)
n (ω)[δ(ω − en) + δ(ω + en)]. (A11)
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FIG. 9. Density plots representing the dependence upon the spin-orbit coupling �SO and the Zeeman field Mx of the average spin
polarization at the Fermi level in the normal state, for a choice of the chemical potential which is depicted in panel (i). In panels (d)–(f)
the sign of the product of the components sxlx is reported for the three distinct Fermi points.

The quantity Pn(ω) is the real part of a complex number whose
phase depends on the particular choice of the global wave
function phase factor. Therefore, the only physically relevant
quantity, for each eigenstate labeled by n, is the modulus of
Pn(ω), resulting in the final definition:

PL(R)(ω) =
∑

n

∣∣PL(R)
n (ω)

∣∣[δ(ω − en) + δ(ω + en)], (A12)

with

PL(R)
n (ω) = 2

∣∣∣∣∣
N/2(N )∑

j=1(N/2+1)

∑
α,σ

un, j,α,σ vn, j,α,σ

∣∣∣∣∣. (A13)

APPENDIX B: SPIN-ORBITAL POLARIZATION AT THE
FERMI LEVEL IN THE NORMAL PHASE

In this Appendix we investigate the spin-orbital character
of the electronic states at the Fermi level in the normal phase
of the model described by the Hamiltonian in Eq. (1). We
solve such a model by imposing periodic boundary conditions

along the wire direction x. The emerging electronic band
structure is made up by three blocks with inequivalent orbital
character, A, B, and C, each forming a Kramers doublet at the
� point, as shown in Figs. 1(a)–1(c). Depending on the choice
of the electron filling, one or several bands cut the Fermi level,
thus leading to the presence of multiple Fermi points KF . Here
we will focus on the representative case corresponding to the
chemical potential crossing the bands of block B near the �

point. In such a case, the Fermi points occur at characteristic
vectors defined as ±Ks, ±KFb1, and KFb2, which arise from
the lowest of the field split bands of the B sector, and from the
highest and lowest bands of the A sector, respectively. This
circumstance is graphically depicted in Fig. 9(i).

Figure 9 shows a comprehensive overview of the evolution
of the average spin polarization in the (x, z) plane at the
different KF vectors, upon variation of the spin-orbit coupling
�SO and of the Zeeman field Mx. We recall that the intri-
cate spin-orbital entanglement of the electronic states yields
a strong anisotropy for the magnetic response of the bands
under consideration. In particular, in the adopted regime of pa-
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FIG. 10. Contour map of the orbital-resolved local density of states at different spatial positions along the nanowire. The calculation is
for the orbital projection along the direction of the applied magnetic field (x) and transverse to it (z) [Eq. (14)]. The behavior for the energy
excitations in the sector (a), (b) C, (e), (f) B, and (i), (j) A corresponds to the trivial phase with the absence of zero-energy edge modes
(Mx/MT

x = 0.7 for the block A and 0.9 for blocks B and C). The orbital-resolved spectral function for electronic states belonging to the sector
(k), (l) A, (g), (h) B, and (c), (d) C at a given amplitude of the Zeeman magnetic field along the x direction corresponding to the topological
side of the phase diagram (Mx/MT

x = 1.3 for block A and 1.1 for blocks B and C). The computation has been performed for a quantum chain
with 1000 sites. lx (lz) indicates the difference of the density of states for electronic states with orbital angular momentum that is parallel and
antiparallel to the x (z) orientations.

rameters for the spin-orbit coupling and crystal-field potential,
the Kramers doublet of the A block is marked by a nonvanish-
ing average spin density both along the x and z directions,
while the B states are characterized by the highest values of
the spin components along z. This implies the existence of
hard and easy spin directions; specifically, x is easy from the
bands of block A whereas it is hard from the bands of block B.

The sx polarization, i.e., collinear to the applied field, is
shown in Figs. 9(a)–9(c). From the inspection of the figure,
we observe that the spin component along the direction of the
field has always a monotonic evolution with �SO and Mx. It
is evident that, for all the states at each KF , the sx component
grows in absolute value with the Zeeman field and is strongly
sensitive to the variation of the spin-orbit strength, reducing
in amplitude with increasing �SO. Beyond such similar mono-
tonic behavior, we point out some important differences which
markedly depend on the specific spin-orbital sector. We notice

that the spin polarization is more susceptible to the variation
of the spin-orbit coupling for the B state at KFs. Moreover,
we observe that the states of the A block are characterized by
an opposite sign of the spin polarization, being parallel and
antiparallel to the applied field.

The sz component, which is orthogonal to the Zeeman field,
is zero by symmetry. In our calculations, we consider a small
symmetry-breaking field along this direction and observe that
the value of sz is essentially independent of the spin-orbit
coupling, as shown in Figs. 9(g) and 9(h). The spin density
arising from the bands of block A is always vanishing. On
the other hand, in block B we distinguish two regimes: the
polarization is maximum in a small window below a threshold
of the magnetic field, which is almost independent on �SO,
while its is vanishing above this window.

Finally, in Figs. 9(d)–9(f), we display the sign of the prod-
uct (sx lx), which is representative of the relative orientation
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of the components of the spin and orbital angular momenta
collinear to the magnetic field. It is evident that the sign is
uniform in the parameter space, but shows unalike behavior
for the distinct states at the Fermi level. At KFs the spin and
angular momentum turn out to be parallel, while they have an
opposite sign in the case of the states belonging to the A block.
Such behavior reflects the different orbital susceptibility of the
states belonging to the A and B sectors; lx is unquenched and
substantial, also being antiparallel to sx at the � point, within
the Kramers doublet of block A. For the states of block B, lx
is identically zero at the � point, and the effect of the field is
to induce a small nonvanishing component, which is parallel
to the spin polarization.

APPENDIX C: ORBITAL-PROJECTED
DENSITY OF STATES

In this Appendix we report the orbital-projected density
of states evaluating the difference of the contribution of
the electronic contributions with parallel and opposite an-
gular momentum with respect to the applied magnetic field
and transverse to it, in analogy to Eq. (14), ρ j (E , x) =
2
h̄

∑
n δ(ω − en)〈n, x|l̂ j |n, x〉), where l̂ j is the orbital angular-

momentum operator in the j direction and |n, x〉 is the nth
eigenvector in the x position (Fig. 10). The analysis shows
that the behavior of the angular-momentum projected DOS
follows that of the spin DOS (Fig. 8).
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