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Supergap and subgap enhanced currents in asymmetric S1FS2 Josephson junctions
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We have theoretically studied the supercurrent profiles in three-dimensional normal metal and ferromagnetic
Josephson configurations, where the magnitude of the superconducting gaps in the superconducting leads are
unequal, i.e., �1 �= �2, creating asymmetric S1NS2 and S1FS2 systems. Our results reveal that by increasing the
ratio of the superconducting gaps �2/�1, the critical supercurrent in a ballistic S1NS2 system can be enhanced
by more than 100% and reaches a saturation point, or decays away, depending on the junction thickness,
magnetization strength, and chemical potential. The total critical current in a diffusive S1NS2 system was found
to be enhanced by more than 50% parabolically and reaches saturation by increasing one of the superconducting
gaps. In a uniform ferromagnetic junction, the supercurrent undergoes reversal by increasing �2/�1 >1.
Through decomposing the total supercurrent into its supergap and subgap components, our results illustrate
their crucial relative contributions to the Josephson current flow. It was found that the competition of subgap and
supergap currents in a S1FS2 junction results in the emergence of second harmonics in the current-phase relation.
In contrast to a diffusive asymmetric Josephson configuration, the behavior of the supercurrent in a ballistic
system with �2/�1 = 1 can be properly described by the subgap current component only, in a wide range of
parameter sets, including Fermi level mismatch, magnetization strength, and junction thickness. Interestingly,
when �2/�1 >1, our results have found multiple parameter sets where the total supercurrent is driven by the
supergap component. Therefore, our comprehensive study highlights the importance of subgap and supergap
supercurrent components in both the ballistic and diffusive regimes. We focus on experimentally accessible
material and geometric parameters that can lead to advancements in cryogenic devices based on Josephson
junction architectures that utilize supergap currents, which are less sensitive to temperature compared to the
subgap current.

DOI: 10.1103/PhysRevB.102.224504

I. INTRODUCTION

When two superconductors with different macroscopic
phases are weakly coupled by proximity effects, a finite dis-
sipationless current can flow, demonstrating the Josephson
effect [1]. The current flow is carried through the coherent
tunneling of Cooper pairs from one superconductor (S) to
the other. The coherent nature of Cooper pairs allows for
supercurrent flow through finite-thickness normal (N) metal
and ferromagnetic (F) materials (SNS and SFS junctions). For
these types of junctions, the physical quantities of interest can
have complicated variations across the structure over a wide
range of length scales due to proximity induced inhomoge-
neous superconductivity.

The widely accepted microscopic theory of conventional
superconductors is the mean-field BCS theory, where two
electrons with opposite momenta and spins create a single
boson through lattice vibrations. This theory was later re-
formulated by introducing particle-hole space, which is the
well-known Bogoliubov-de Gennes (BdG) approach [2]. To
microscopically study systems containing a superconduct-
ing segment, one employs the associated BdG Hamiltonian
with pair potential �(x) to account for the spatially varying
superconducting correlations. The competition between su-
perconducting order and other phases in proximity coupled
junctions can induce striking phenomena that has attracted

considerable attention over the decades [3–30]. Differing ap-
proaches and a wide range of approximations have been
incorporated to study various normal and ferromagnetic su-
perconducting hybrids that have achieved success to describe
experimental observations [31–44]. For instance, a recent
study of superconducting (half-)metallic spin valves has
shown good agreement between theoretical predictions and
experimental observations [45–48].

Nevertheless, except in simple situations, it is highly chal-
lenging to obtain analytical solutions to the BdG Hamiltonian.
One particular example is asymmetric Josephson junctions,
where the pair potentials in the S regions are different, i.e.,
�1 �= �2. There are mainly two approaches for studying cur-
rent flow in S1NS2 and S1FS2 configurations. (i) The wave
function approach, where one diagonalizes the BdG Hamil-
tonian to obtain the wave functions and energies, which after
application of the appropriate boundary conditions, permits
calculation of the subgap bound states. To further simplify
the resultant expressions, the vast majority of works utilize
the so-called Andreev approximation. (ii) The other approach
is Gorkov’s Green function technique [49]. Here, one needs
to incorporate multiple simplifying assumptions for obtaining
simple and solvable equations. The best-known approxima-
tion in this approach is the quasiclassical approximation
where the Fermi energy is considered the largest energy in
the system, leading to the Eilenberger equation [50]. One
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main advantage of this approach is that it can conveniently
accommodate nonmagnetic impurities via a white-noise scat-
tering potential. In the presence of disorder and nonmagnetic
impurities one can integrate the Eilenberger equation over the
random quasiparticle scattering angle to arrive at the Usadel
equation [51]. This approach has been recently generalized to
a spin-orbit-coupled electron gas to study several phenomena
including: the spatial distribution of spin currents [52,53], also
generalized to the surface state of three-dimensional topo-
logical insulators [54,55], Weyl semimetals [56], and black
phosphorus [57].

The former approach (i) has been used to simulate bal-
listic systems, where multiple interference effects from the
propagating quasiparticles strongly influences the transport
behavior of the system. It was demonstrated that this ap-
proach, if followed analytically, can be problematic for
asymmetric S1NS2 junctions even within the quasiclassical
regime [58]. The problem becomes increasingly difficult in
asymmetric S1FS2 structures due to the inclusion of band
spin splitting. One main issue is to properly obtain the con-
tribution of supergap channels to the total supercurrent. These
modes become particularly important in asymmetric junctions
[39,55,58,59] due to the imbalance of superconducting gaps
that open up the continuum domain to states that can carry
considerable amounts of supercurrent.

In this paper, we aim to study the behavior of the super-
current in asymmetric three-dimensional S1NS2 and S1FS2

Josephson junctions in both the ballistic and diffusive regimes.
Due to the asymmetry in the pair potential “well,” three
relevant energy scales play a role in the net supercurrent
response: (i) subgap energies (ε � �1), which comprise the
resonant Andreev bound states, (ii) supergap energies (�1 <

ε � �2), and (iii) energies in the continuum, where ε > �2.
We demonstrate that our microscopic numerical approaches
in the ballistic regime can adequately describe the super-
current flow in all three energy regimes and provides an
accessible framework that recovers previous results in various
asymptotic limits for a simpler one-dimensional quasiclassi-
cal S1NS2 system [58]. Our numerical approaches allow for
exploring realms beyond those studied in the vast majority
of the literature without imposing any limitations to Fermi
level mismatch and magnetization strength (supporting weak
magnetization to a half-metallic phase). Our results reveal that
when �2/�1 = 1, the subgap component of the supercurrent
that describes the resonant bound states can properly account
for the total supercurrent in a ballistic Josephson junction,
regardless of Fermi level mismatch, junction thickness, and
magnetization strength. When �2/�1 >1, we find the the
critical current can be strongly enhanced in highly asymmet-
ric ballistic S1NS2 junctions. By means of the current-phase
relations, we find that the supergap and subgap supercurrent
components can propagate in opposite directions, and within
certain regimes, the subgap supercurrent vanishes, so that the
total supercurrent arises from supergap states.

In the full proximity limit of the diffusive regime, we find
that the critical supercurrent can be enhanced by more than
50% when increasing the superconducting gap ratio to �2/�1

∼10, in an asymmetric S1NS2 junction. The critical super-
current also shows an oscillatory behavior in S1FS2 junctions
when increasing the exchange field intensity, and addition-

ally, the supercurrent undergoes reversals as a function of
�2/�1 for certain magnetization strengths. By calculating
the total current-phase relation with its subgap and supergap
current components, our results reveal that the emergence of
a sin 2�ϕ harmonic close to a current reversal point is the
consequence of the intricate competition between the subgap
and supergap currents flowing in opposite directions.

The paper is organized as follows: In Sec. II, we have
summarized the main equations which establish the theo-
retical framework employed throughout the calculations. In
Secs. II A and II B, we present detailed formulations of the
ballistic and diffusive regimes, respectively. In Sec. III, the
main results and findings are presented. In Secs. III A and
III B, we discuss the results for the ballistic and diffusive
regimes, respectively. Lastly, in Sec. IV, we give concluding
remarks.

II. THEORY AND MODEL

In the ballistic regime, we directly solve the microscopic
Bogoliubov-de Gennes (BdG) equations [2]. In Appendix
A we also outline a complementary numerical method that
can be employed to contrast and compare results. By em-
ploying two distinct numerical approaches [34–37,60,61], it
allows for a comprehensive and accurate investigation into
general hybrid Josephson junctions without being limited to
a narrow range of ferromagnetic exchange fields and Fermi
level differences. Moreover, both approaches produce similar
results, as expected. In other words, with these methods in
the ballistic regime, one is able to consider a wide parame-
ter space from weak magnetizations to half-metallic systems
[37,45,46,48], over a wide range of Fermi level mismatches
between the S electrodes and junction insert. Of course, lim-
iting cases such as the quasiclassical regime can be studied
as well [35,56,57,61,62]. For systems containing impurities
and disorder, we make use of the Usadel equation [51] in the
full proximity limit of the quasiclassical regime to study the
diffusive motion of quasiparticles in asymmetric S1NS2 and
S1FS2 systems.

A. Ballistic regime

The effective Hamiltonian that describes our asymmetric
Josephson junction is given by:

Heff =
∫

d3r

{∑
s

ψ†
s (r)H0ψs(r)

+ 1

2

[∑
s s′

(iσy)ss′�(r)ψ†
s (r)ψ†

s′ (r) + H.c.

]

−
∑
s s′

ψ†
s (r)(h · σ )ss′ψs′ (r)

}
, (1)

where s, s′ are spin indices, σ are Pauli matrices, and the
exchange energy h describes the ferromagnet exchange in-
teraction. We consider inhomogeneous systems where spatial
variations occur in the x-direction. Thus, the kinetic part of
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the single particle Hamiltonian is defined as

H0(x) = − 1

2m

∂2

∂x2
+ ε⊥ − EF (x), (2)

in which ε⊥ = 1
2m (k2

y + k2
z ) is the quasiparticle energy

in the yz plane of Fig. 1. To accommodate the possi-

bility of differing bandwidths in the two junction ma-
terials, we take the Fermi level EF (x) to equal EFM

in the ferromagnet region and EFS in the superconduc-
tor region. Following standard procedures [2], we then
utilize the generalized Bogoliubov transformation, ψs =∑

n (unsγn + ηsv
∗
nsγ

†
n ), where ηs ≡ 1(−1) for spin-down (up),

to cast Eq. (1) in terms of the spin-generalized BdG equations
[2]:

⎛
⎜⎝

H0 − hz −hx + ihy 0 �

−hx − ihy H0 + hz � 0
0 �∗ −(H0 − hz ) −hx − ihy

�∗ 0 −hx + ihy −(H0 + hz )

⎞
⎟⎠

⎛
⎜⎝

un↑(x)
un↓(x)
vn↑(x)
vn↓(x)

⎞
⎟⎠ = εn

⎛
⎜⎝

un↑(x)
un↓(x)
vn↑(x)
vn↓(x)

⎞
⎟⎠, (3)

where uns and vns are the quasiparticle and quasihole am-
plitudes, respectively (for s =↑,↓). The generalized BdG
technique has been shown to provide a numerically sta-
ble framework for solving inhomogeneous superconductivity
problems [36,46,48,60]. For the layered Josephson junctions
[9] considered in this work, we assume each F and S layer is
infinite in the yz plane and the finite layer thicknesses extend
along the x axis (see Fig. 1). As a result, the BdG equations
are translationally invariant in the yz plane and become quasi-
one-dimensional in x.

To solve the BdG equation, we first expand [36,60] the
quasiparticle amplitudes in a Fourier series using a complete
set of N basis functions:

ψn(x) =
√

2

d

N∑
q=0

sin(kqx)ψ̂q(kq), (4)

FIG. 1. Schematic of the asymmetric Josephson junction.
The left and right superconductors have different superconduct-
ing gaps, �1,2, and macroscopic phases, ϕl,r , respectively. The
superconductor-nonsuperconductor interfaces are located at x =
±d/2. The two superconductors are connected either by a normal
metal (N) or ferromagnet (F), making S1NS2 and S1FS2 Josephson
configurations. The subgap and supergap currents are marked by J1

and J2,3, respectively, depending on the quasiparticle energy ε. The
superconducting phase difference is defined by �ϕ = |ϕl − ϕr |.

where ψn(x) = (un↑(x), un↓(x), vn↑(x), vn↓(x)), and ψ̂q =
(ûq↑, ûq↓, v̂q↑, v̂q↓). The wave vector kq = qπ/d is discretized
by the thickness of junction d . Next, we transform the real-
space BdG equations by first inserting Eq. (4) into Eq. (3) and
using orthogonality of the basis set to give:

Ĥ0(q, q′) = 2

d

∫ d

0
dx

{(
k2

q

2m
+ ε⊥ − EF (x)

)

× sin(kqx) sin(kq′x)

}
, (5a)

�̂(q, q′) = 2

d

∫ d

0
dx�(x) sin(kqx) sin(kq′x), (5b)

and

ĥi(q, q′) = 2

d

∫ d

0
dx hi(x) sin(kqx) sin(kq′x). (5c)

Here i = x, y, z and we have defined ûσ =
(û1σ , û2σ , . . . , ûNσ ), v̂σ = (v̂1σ , v̂2σ , . . . , v̂Nσ ). Additional
details on this solution process can be found elsewhere [10].

To compute the dc Josephson current, we numerically diag-
onalize the Fourier transformed BdG equations [with matrix
elements in Eqs. (5a)–(5c)] to get the eigenenergies εn and
quasiparticle coefficients uiσ , viσ (i = 1, . . . , N). The real-
space amplitudes are then obtained via the series expansion in
Eq. (4). Since we wish to determine the current-phase relation
for asymmetric Josephson junctions, the input for the pair
potential is taken to be the bulk gap, �1 exp(iϕl ) in S1 and
�2 exp(iϕr ) in S2. With this form for �(x), and making use of
the obtained wave functions and eigenenergies, we calculate
the charge current with the expression,

Jx = 2e

m

∑
ns

Im

[
uns

∂u∗
ns

∂x
fn + vns

∂v∗
ns

∂x
(1 − fn)

]
, (6)

where fn is the Fermi function. The supercurrent satisfies the
conservation law

∂Jx(x)

∂x
=2e Im

{
�(x)

∑
n

[u∗
n↑vn↓ + u∗

n↓vn↑] tanh
( εn

2T

)}
.

(7)

Thus, within the junction region where �(x) vanishes, the
current density is uniform. We refer the reader to Refs. [36,60]
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for further details on the methods used here for calculating
the supercurrent. Also, an alternative approach to study bal-
listic asymmetric S1NS2 and S1FS2 systems is described in
Appendix A.

B. Diffusive regime

In a system containing nonmagnetic impurities and dis-
order, the motion of quasiparticles can be described by a
diffusion equation because of the scattering sources. In the
quasiclassical regime, where the Fermi energy is the largest
energy scale in the system, the diffusion equation is given by
the Usadel equation [51],

D∇̂{Ĝ(ε, r)∇̂Ĝ(ε, r)} + i[ερ̂z, Ĝ(ε, r)] = 0, (8a)

Ĝ(ε, r) =
(

GA GK

0 GR

)
, (8b)

where D is the diffusion constant, ∇̂ ≡ (∂x, ∂y, ∂z ), r =
(x, y, z), and the quasiparticle energy ε is measured relative
to the Fermi level. The total Green’s function Ĝ(ε, r) is
comprised of the advanced GA(ε, r), retarded GR(ε, r), and
Keldysh GK (ε, r) propagators. The 4 × 4 Pauli matrices in
Nambu space are given by ρ̂z = τzσ0 and ρ̂0 = τ0σ0, in which
τi and σi are 2 × 2 Pauli matrices in particle-hole and spin
spaces, respectively. Throughout the following calculations,
an equilibrium state is considered so that the retarded and
Keldysh components of the total Green’s function can be
obtained from the advanced component by symmetry con-
siderations. For example, GA(ε, r) = −{ρ̂zGR(ε, r)ρ̂z}† and
GK (ε, r) = {GR(ε, r) − GA(ε, r)} tanh(εkBT/2), where kB is
the Boltzmann constant, and the system temperature is de-
noted by T . To simulate the asymmetric Josephson junction
shown in Fig. 1, we assume that the superconducting leads
are tunnel coupled to the ferromagnetic region and can be
described by [63]:

ζ Ĝn · ∇̂Ĝ = [Ĝ, ĜS], GR
S =

(
C Se+iϕ

Se−iϕ −C

)
. (9)

Here ζ is the ratio of the barrier resistance to the resistivity of
the normal layer, and n is the unit vector normal to the inter-
faces. The retarded component of the total Green’s function
inside a superconducting lead can be expressed by ĜS so that
C ≡ cosh θσ0, S ≡ i sinh θσy, and θ = atanh(�/ε). Note that
in the case of an asymmetric Josephson junction, one should
replace � and ϕ by �1,2 and ϕl,r , respectively, according to
Fig. 1.

The Usadel equation together with the boundary conditions
create a set of coupled complex boundary differential equa-
tions. To solve them accurately, we make use of a so-called
Riccati parametrization to help in establishing a stable numer-
ical algorithm. Two auxiliary unknown 2 × 2 matrices, i.e.,
γ and γ̃ , are defined for parametrizing the retarded Green’s
function:

GR(ε, r) =
(

(1 − γ γ̃ )� 2γ �̃

2γ̃ � (γ̃ γ − 1)�̃

)
, (10)

in which � = (1 + γ γ̃ )−1 and �̃ = (1 + γ̃ γ )−1. Implement-
ing the Riccati parameterized Green’s function, the Usadel
equation, Eq. (8), in the nonsuperconducting region of Fig. 1

reads ∑
k

{
∂2

k γ − 2(∂kγ )γ̃ �∂kγ
} = −2i

ε

D
γ , (11a)

∑
k

{
∂2

k γ̃ − 2(∂k γ̃ )γ �̃∂k γ̃
} = −2i

ε

D
γ̃ . (11b)

Here we have defined k ≡ x, y, z for the spatial coordinates.
To account for ferromagnetism with an arbitrary exchange
field, i.e., h = (hx, hy, hz ), one simply needs to add (h · σ )γ −
γ (h · σ ∗) and γ̃ (h · σ ) − (h · σ ∗)γ̃ into the Usadel equation
[Eq. (11a) and (11b), respectively]. Also, the boundary condi-
tions in Eq. (9) for this parametrization scheme at x = ∓d/2
are:

∂xγ = ±
(

2
C1,2

S1,2
+ γ e−iϕl,r − e+iϕl,r

γ

)S1,2γ

ζ
, (12a)

∂xγ̃ = ±
(

2
C1,2

S1,2
+ γ̃ e+iϕl,r − e−iϕl,r

γ̃

)S1,2γ̃

ζ
. (12b)

Finally, the charge current density in the equilibrium state
is given by

J(r) =
∫

dεTr{ρz[Ĝ(ε, r)∇̂Ĝ(ε, r)]K}, (13)

where ‘Tr’ represents the trace operator. To obtain the total
charge current flowing across the junction shown in Fig. 1, one
performs an spatial integration over the charge flow compo-
nent perpendicular to the junction interfaces, namely, J (x) =∫

dy
∫

dz Jx(r). Due to the charge conservation law, J (x) is a
constant within the nonsuperconducting region of Fig. 1.

III. RESULTS AND DISCUSSIONS

In the diffusive regime, all lengths are normalized by the
superconducting coherence length in the left superconductor,
ξS = √

h̄D/|�1|, and energies are scaled by the supercon-
ducting gap of the left superconducting electrode at zero
temperature, |�1|. For the ballistic regime, unless otherwise
indicated, all lengths are measured in units of k−1

F , where
kF is the Fermi wave vector in the S regions. We also
have the dimensionless zero-temperature coherence length
kF ξ0 = (2/π )(EFS/�1) and fix kF ξ0 = 100. As in the dif-
fusive regime, energies are normalized by �1. The measure
of mismatch between the Fermi levels is given by the ratio
� = EFM/EFS [34,64,65]. Throughout this paper, we assume
�2 > �1, and we consider a uniform magnetization oriented
along the z direction so that h = hz = h. Dimensionless units
are implied with h̄ = kB = 1.

To gain a detailed view of the supercurrent profile in asym-
metric Josephson junctions, we divide the supercurrent into
its three constituent parts. According to Fig. 1, these parts
consist of (i) the subgap supercurrent J1, with energies less
than �1, (ii) the supergap supercurrent J2, with energies �1 <

ε < �2, and (iii) the supergap supercurrent J3, for scattering
states with energies larger than �2. When determining the
supercurrent via Eq. (6) or Eq. (13), we divide the energy
integrals into three parts: J1 = ∫ �1

0 � dε, J2 = ∫ �2

�1
� dε, and

J3 = ∫ ∞
�2

� dε. For all approaches, the critical supercurrent is
calculated in the usual way by finding the maximum of the
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FIG. 2. The critical supercurrent Jc as a function of super-
conducting gap ratio �2/�1 for three values of the normalized
junction thickness: kF dF = 5, 50, 200, and five values of magne-
tization strength h/�1 = 0, 1, 5, 10, 15. There is no Fermi level
mismatch (� = 1).

supercurrent within a phase difference interval of �ϕ ∈
[0, 2π ], namely, Jc = max[J (�ϕ)].

A. Ballistic S1NS2 and S1FS2 Josephson junctions

To study the supercurrent profile in ballistic Josephson
configurations with asymmetric superconducting gaps, we
employ the quantum particle-in-a-box formalism described
above [60]. We emphasize that the alternative approach, de-
scribed in Appendix A, produces similar results and has
been used to study various systems, including Rashba-
Dresselhaus spin-orbit coupled, type-II Weyl semimetals,
and black phosphorus [35,56,57,61,62]. Our comprehensive
numerical treatment was also found to agree with certain
asymptotic limits, including previous results [58] that consid-
ered quasiclassical one-dimensional S1NS2 junctions within
the short and long junction limits. These limitations were
mainly imposed so that analytical solutions could be found.
Our fully microscopic approach however does not suffer from
these limitations and allows for investigations into asymmetric
Josephson configurations with more complicated band struc-
tures [35,36,57,60–62]. In what follows, our results cover a
broad range of geometrical and material parameters, including
junction thickness, Fermi energies, superconducting gap ratio,
and magnetization strength. With regards to normalization
schemes, the supercurrent density J is normalized by J0 ≡
enevF , where ne is the bulk electron density and vF is the
Fermi velocity. For clarity, plots involving the supercurrent
are also scaled by 10−2.

To begin, we plot the critical supercurrent as a function
of �2/�1 in Fig. 2. The strength of the magnetization in

the central junction region (see Fig. 1) varies as h/�1 =
0, 1, 5, 10, 15, corresponding to both S1NS2 and S1FS2

systems. Each panel in Figs. 2(a)–2(c) examines a differ-
ent junction thickness, with kF dF = 5, 50, 200, respectively.
Considering the nonmagnetic cases first (h = 0), it is seen
that the correlation between the two superconducting leads
(and thus the supercurrent), decays by increasing the junc-
tion thickness. This effect becomes more pronounced when
considering uniformly magnetized ferromagnets, as the pair-
breaking exchange field in the magnet tends to induce damped
oscillations in the Cooper pair wave function with a char-
acteristic decay that goes as 1/h. This causes Jc to become
vanishingly small for kF dF = 200 and h/�1 > 5. Note that
the results in Fig. 2 have no Fermi level mismatch (� = 1),
which when present can amplify the supercurrent signifi-
cantly, as will be seen below. One pronounced feature seen
in Fig. 2(a) for the short junction limit (i.e., kF dF = 5) is the
enhancement of the critical supercurrent by more than 100%
when increasing the gap ratio to �2/�1 ≈ 25, for h/�1 � 5.
This enhancement is diminished as the junction thickness
increases whereas the maximum enhancement of the critical
current occurs at significantly lower ratios of �2/�1 ≈ 1.
Also, as h increases, the critical current maximum gets shifted
to larger �2/�1 ratios and becomes relatively insensitive to
changes in gap asymmetry beyond �2/�1 ≈ 10.

We next investigate the effects of Fermi level mismatch,
characterized by the ratio of the Fermi levels in the two re-
gions: � = EFM/EFS . For F/S junctions, it was previously
found [34,64–66] that the characteristic damped oscillations
of the singlet pair correlations within the ferromagnet become
drastically modified for � < 1. When there is Fermi level
mismatch between the junction layers, the energy gap of the
system [66] tends to close, as revealed in signatures of the
density of states [64–66]. In Fig. 3, we plot total critical super-
current and its subgap and supergap components against the
Fermi energy ratio � for a S1FS2 junction with h/�1 = 15.
Two cases of gap anisotropy are shown in Fig. 3: (b) �2/�1 =
5 and (c) �2/�1 = 10. The symmetric case (�2/�1 = 1) is
also shown in panel (a) for comparison purposes. The subgap
critical current (Jc1) and the supergap (Jc2, Jc3) critical cur-
rents are defined as Jci ≡ |Ji(�ϕc)|, where �ϕc is the phase
angle that leads to largest magnitude of the total supercurrent,
i.e., |J (�ϕc)| = Jc. The results reveal that the total critical
supercurrent oscillates as a function of �. The general pro-
file of Jc remains approximately the same for all gap ratios
�2/�1, with an overall amplification of the magnitude of the
supercurrent when gap anisotropy is present. For the sym-
metric case �2/�1 = 1 in Fig. 3(a), the Jc2 supergap current
component vanishes and Jc3 is negligibly small. Thus, nearly
the entire contribution to the critical supercurrent comes from
the Jc1 subgap component. This is a general feature that arises
in short Josephson junctions with symmetric gaps, and it is
clear that the Andreev bound states are the dominate mech-
anism for supercurrent flow. Increasing the superconducting
gap ratio to �2/�1 = 5 [Fig. 3(b)] opens up the transport
channel for states between �1 and �2, and thus the Jc2 su-
pergap current component can contribute considerably to the
total supercurrent. Increasing the asymmetry further to �2/�1

= 10, Fig. 3(c) shows that the Jc2 contribution becomes even
greater. In general, as � → 0, the number of available states
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FIG. 3. Total critical supercurrent with its supergap Jc2,c3 and
subgap Jc1 components as a function of the Fermi level mismatch
ratio �. The labels show the different parameter values used for
the calculations. The junction thickness is set to kF dF = 5 and the
ferromagnetic exchange field is h/�1 = 15.

for supercurrent flow declines to zero. This also is true for
the other extreme case of mismatch with Jc = 0 as � → ∞.
For the continuum of states with energies exceeding �2, the
quasiparticles are no longer confined to the gap regions and
lose phase coherence, resulting in Jc3 being small relative the
other supercurrent components.

In Fig. 4, we illustrate how � affects the behavior of the
subgap (Jc1) and the supergap (Jc2, Jc3) critical current com-
ponents as functions of �2/�1. Figures 4(a)–4(e) correspond
to the nonmagnetic S1NS2 case (h = 0), while the right set
Figs. 4(f)–4(g) exhibits the critical current behavior for S1FS2

junctions with h/�1 = 15. Considering first the nonmagnetic
case, the left set of panels shows that for a given gap ratio
�2/�1, changing � modulates the critical current, consistent
with the findings shown in Fig. 3. When � = 3, the subgap
supercurrent is strongly suppressed and the supergap current
dominates the net behavior of the critical current throughout
the wide range of �2/�1 considered. Indeed, Andreev bound
states with energies less than �1 play little, if any role in
the establishment of a supercurrent. For � = 2, 4, the subgap
components all have the same trends, including the subgap
supercurrent Jc1, which exceeds the supergap currents for
�2/�1 � 5, after which it decays considerably. The super-
gap current Jc2 on the other hand, rapidly increases in the
region �2/�1 � 25, surpassing Jc1 at �2/�1 ≈ 10, before
eventually leveling out close to the total critical current curve.
Thus, for �2/�1 � 25, only energies that fall within �1 <

ε < �2 are needed when calculating the critical supercurrent
response, while the Andreev bound states with ε < �1 and
scattering states with ε > �2 can be neglected. It is evident

that there is an intricate and nontrivial relationship between
the Fermi level mismatch and the critical current. For situa-
tions where there is no mismatch � = 1, Fig. 4(d) shows that
the influence of Jc1 in this regime is significant and cannot be
neglected for most gap ratios. In particular, for �2/�1 � 50,
the Jc1 component exceeds all other components before slowly
decaying at higher values of �2/�1. In Fig. 4(e), where � =
0.5, the crossover point occurs at the much smaller �2/�1 ≈
6, indicating that both Jc1 and Jc2 must be accounted for, even
for moderate �2/�1 ratios. These results indicate that when
characterizing the supercurrent decomposition, the degree of
Fermi level mismatch and gap mismatch play an important
role in which quasiparticle energies contribute to the supercur-
rent response. Also, a notable feature in Figs. 4(a) and 4(b) is
that Jc2 sometimes exceeds the total supercurrent. This arises
mainly due to the subgap J1 and supergap J2 currents flowing
in opposite directions. This important point shall be discussed
further below.

Next, when the central layer possesses a uniform magne-
tization, the adjacent panels in Figs. 4(f)–4(j) reveal a clear
modification to all three components of the critical current.
For each of the four cases of Fermi level mismatch, the com-
ponent Jc1 has an extremely slow decay for gap ratios within
�2/�1 � 5. Thus within this regime, and for quasiparticle
energies with ε > 5�1, the critical current is insensitive to the
relative gap ratios characterizing the superconducting leads.
When �2/�1 = 1, corresponding to the commonly used sce-
nario of no asymmetry in the gaps, the supergap component
Jc2 vanishes. In Figs. 4(f) and 4(h), when � = 4 and � = 2,
respectively, the subgap component Jc1 dominates all other
critical current components for relatively small gap ratios
�2/�1 � 2. Both of the two components Jc1 and Jc2 con-
tribute equally to the critical current for �2/�1 ≈ 5, with Jc2

the largest contributor for larger gap asymmetry. The picture
changes considerably when � = 3, as Fig. 4(g) illustrates
that the conventional Andreev bound states characterized by
Jc1 play a minor role in the net supercurrent behavior when
�2/�1 � 2. When the Fermi levels are the same in each
segment of the junction [Fig. 4(i)], the subgap component be-
comes more influential with Jc1 and Jc2 crossing at �2/�1 ≈
4.5. Finally, in Fig. 4(j), we consider EFM < EF and � = 0.5.
In this regime, both the subgap and supergap components con-
tribute nearly equally for most gap ratios �2/�1 � 15, while
less asymmetry again has Jc1 the larger of the components. It
should be noted that the enhancement of each of the current
components against �2/�1 occurs within a smaller interval
compared to the S1NS2 junction.

In conventional S1FS2 junctions, the exchange field in-
duces damped oscillations in the pair potential and the
Josephson current exhibits oscillations as a function of the
ferromagnet exchange field [67]. To see how this picture
may change for asymmetric junctions, we present in Fig. 5
the behavior of the critical supercurrent and its components
versus the normalized exchange field h/�1. The study covers
the full range from nonmagnetic, h/�1 = 0, to half-metallic,
h/�1 ≈ 160, where only one spin band is available. Each
panel corresponds to one of the five different Fermi level
mismatch ratios � that are considered (as labeled). To further
clarify the importance of supergap and subgap supercurrents
when there is gap asymmetry, we have considered �2/�1 = 1
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FIG. 4. Critical supercurrent Jc with its subgap Jc1 and supergap Jc2, Jc3 components shown as functions of the superconducting gap ratio
�2/�1. The junction thickness is set at kF dF = 5 for various values of � = EFM/EF = 0.5, 1, 2, 3, 4. The magnetization is set to zero in
(a)–(e) while h/�1 = 15 in panels (f)–(j).

in Figs. 5(a)–5(e) and set �2/�1 = 5 in Figs. 5(f)–5(j). The
results in Figs. 5(a)–5(e) show that for symmetric junctions
(�2/�1 = 1), the subgap supercurrent Jc1 is the dominant
current component over the entire range of magnetization
strengths and Fermi level mismatches. The supergap con-
tribution Jc2 to the total critical current of course vanishes
entirely, while the Jc3 component arising from states in the
continuum is negligible. Hence, when the gap asymmetry
vanishes (�2/�1 = 1), the behavior of the total supercurrent
can be well captured through Jc1 only. It then suffices to
take only the subgap current components to accurately ac-
count for the general features of the supercurrent, including
its reversal in certain regions where it displays cusps for a
given � and h/�1 [see, e.g., h/�1 ≈ 30, 110 in Fig. 5(d)].
Examining Figs. 5(a)–5(e), it is clear that the critical current
is nonmonotonic with a modulation that strongly depends on
�. Interestingly, tuning the Fermi level mismatch to � =
3 creates a situation where increasing the exchange field
beyond the first cusp at h/�1 ≈ 90 results in a dramatic
rise in the supercurrent response. Indeed, Fig. 5(b) demon-
strates that compared to a nonmagnetic junction (h = 0),

using a half-metallic insert (h/�1 ≈ 160) causes Jc to nearly
double.

If gap asymmetry is now introduced into the system
(�2/�1 = 5), Figs. 5(f)–5(j) show the emergence of the Jc2

component, which can at times make sizable contributions to
the total supercurrent. It is evident that the cusps in Jc where
the current reverses can be ascribed to the cumulative effects
of Jc1 and Jc2, regardless of the Fermi level ratio �. Therefore,
when �2/�1 �= 1, the subgap current component alone is
unable to provide an accurate and complete picture of the total
supercurrent. Further details on the origins of both the sub-
gap and supergap supercurrent components in terms of their
discrete energy spectra and energy-resolved supercurrents is
given in Appendix B.

The study of the critical current dependence on the fer-
romagnet thickness in S1FS2 Josephson junctions has been
extensively investigated both theoretically [67] and experi-
mentally [6,11]. Proximity effects arising from the coupling
of the outer superconducting banks and ferromagnet leads to
oscillations of the pair amplitude in the ferromagnet. Under
certain conditions, these oscillations can cause the ground
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FIG. 5. Critical supercurrent with its supergap and subgap components as a function of uniform magnetization strength h/�1. In the left
column [panels (a)–(e)] the superconducting gap ratio is set to �2/�1 = 1 while in the right column [panels (f)–(j)] �2/�1 = 5.

state of the system to transition to a state with �ϕ = π .
During these transitions, the supercurrent reverses direction
and reveals itself as cusps near the minima of the critical
current. Unfortunately, the study of transport in clean fer-
romagnetic Josephson junctions with Fermi level mismatch
and gap asymmetry from a purely microscopic perspective is
lacking. Therefore, to address these deficiencies, we present in
Fig. 6 the critical current and its associated components as a
function of normalized junction thickness kF dF . The junction
possesses a gap asymmetry of �2/�1 = 5, and two differ-
ent values of the Fermi level mismatch parameter � = 1, 2
are considered. Since the damped oscillations in the ferro-
magnet are governed by the spin-split Fermi wave vectors
there, having EF vary across different segments of the Joseph-
son junction can modify the oscillatory period of the pair
amplitude. The spin splitting in the ferromagnet introduces
the length scale ξF set by the difference in the spin up and
spin down Fermi wave vectors, ξF ∝ (kF↑ − kF↓)−1. Accord-
ingly, the cusps are found to repeat in intervals of πξF ≈
πEF

√
�/h, which for h/�1 = 15 and � = 1, 2 corresponds

to πξF ≈ 32.9, 46.9, respectively. This is seen when compar-

ing Figs. 6(a) and 6(b). Note that the damped oscillations in
the critical current with thickness have also been observed in
the critical temperature for ballistic spin valves [45].

As seen in Fig. 6, for a given �, the supergap component
Jc2 contributes the most for small ferromagnet thicknesses.
To explore this further, Fig. 7 displays the critical current
and its components over a narrower range of thicknesses for
the S1FS2 configuration. To reveal how the oscillations and
magnitude of the supercurrent changes with variations in the
Fermi level ratios, a broad range of mismatch parameters �

is considered. As seen in Figs. 7(a)–7(e), the Jc3 component
is negligible, as scattering states again contribute little to the
supercurrent response. The total supercurrent oscillates as a
function of kF dF , but in contrast to Fig. 6, the oscillations
over the much smaller Fermi length scale are now discernible.
These small-scale oscillations are neglected in quasiclassi-
cal treatments where atomic scale features are eliminated.
Moreover, increasing � decreases the period of oscillations
in Figs. 3(a)–3(e), which is consistent with the correspond-
ing increases in the ratios of the Fermi wave vectors in the
ferromagnet and superconductor regions kFM/kF . For Fermi
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FIG. 6. Critical supercurrent with its subgap and supergap com-
ponents as a function of the normalized junction thickness kF dF for
an asymmetric S1FS2 junction. The gap asymmetry for both panels
(a) and (b) corresponds to �2/�1 = 5 and the normalized exchange
field is set to h/�1 = 15. In (a) the Fermi level mismatch is set to
� = 2, while in (b) the relative Fermi levels are the same (� = 1).

level ratios corresponding to � = 4 and � = 3, Figs. 3(a)
and 3(b) illustrate that while Jc2 has gradual variations as the
thickness changes, the subgap component Jc1 has pronounced
oscillations that periodically vanish (or nearly so) for thin
ferromagnets. Therefore certain thicknesses can be chosen
that result in maximal supercurrent flow that is almost entirely
comprised of supergap Jc2 states. As the difference between
Fermi levels lessens, Figs. 3(c) and 3(d) show that the oscil-
latory behavior dampens out for thicker ferromagnets. Finally
in Fig. 3(e), we find that the critical current mainly declines
rapidly as the normalized thickness increases and then levels
off to greatly diminished values.

We now present the current-phase-relations for the total
supercurrent and its components at specific parameter values
corresponding to points of interest found in earlier critical
supercurrent plots. In Figs. 8(a)–8(d), we have set the ex-
change field h to zero and consider a S1NS2 configuration with
varying degrees of gap asymmetry. As seen in Fig. 8(a), when
there is no gap asymmetry (�2/�1 = 1), the J3 component is
slightly discernible, as states in the continuum contribute little
to the supercurrent in short junctions. Also, the J2 supergap
component vanishes, as expected for the symmetric case. Thus
the current in this case is carried nearly entirely by bound
states. Examining Figs. 8(b)–8(d), it is evident that by increas-
ing the asymmetry through the superconducting gap ratio,
�2/�1, a supergap current J2 emerges and begins to play
a more impactful role in the total supercurrent response. In
contrast, the subgap current J1 accordingly becomes weaker,
as its contribution to at least 50% of the total supercurrent is
limited to relatively narrow phase differences, 130◦ � �ϕ �
160◦. Despite the significant changes to J1 and J2, the over-
all supercurrent, Jtot, increases but retains its overall profile.

FIG. 7. Critical supercurrent with its subgap and supergap com-
ponents as a function of junction thickness for differing chemical
potential ratios � = 0.5, 1, 2, 3, 4. The superconducting gap ratio
and exchange field strength are set to �2/�1 = 5 and h/�1 = 15,
respectively.

Increasing �2/�1 also is seen to enhance the supercurrent
overall, while shifting the supercurrent peaks to smaller �ϕ.
The enhancement of the supercurrent follows in part from the
broadening of the discrete energy states that occurs for larger
ratios �2/�1 [see Appendix B]. The microscopic numerical
results presented in Figs. 8(a)–8(d) are also consistent with
one-dimensional quasiclassical models [58]. In Appendix B,
Fig. 12 reveals the interplay between the bound and scattering
states related to Fig. 8 and are discussed in terms of the
energy-resolved and phase-resolved current density.

Next, upon incorporating a uniform magnetization of
h/�1 = 15, Figs. 8(e)–8(h) illustrate how this leads to a dras-
tic modification to the profiles of the current-phase relations.
For S1FS2 junctions, we find a slight drop to the overall net
supercurrent response for the whole range of gap asymmetries
considered. Increasing the gap asymmetry tends to enhance
the overall supercurrent, but the general current-phase profile
remains relatively unchanged, with minimal change in the
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FIG. 8. Supergap (J2,3) and subgap (J1) current components as a function of the superconducting phase difference �ϕ. (a)–(d) The
supercurrent profile for a S1NS2 junction. (e)–(h) The supercurrent profile for a S1FS2 junction with h/�1 = 15. The junction thickness is
set fixed to kF dF = 5, and the relative Fermi levels are equal (� = 1).

peak locations. One noticeable difference however occurs for
�2/�1 = 2, 5, where the supercurrent undergoes a current
reversal at ϕ ≈ 162◦. We find that similar to the symmetric
S1NS2 junction, Fig. 8(e) shows a small contribution from
J3 arising from scattering states (ε > �1) when there is gap
symmetry. For extreme gap asymmetry �2/�1 = 100, shown
in Fig. 8(h), the supergap component J2 is the main contributor
to the overall current, and we see that although J1 has broad-
ened compared to the nonmagnetic case, it never exceeds
approximately 40% of the total critical current.

To elaborate on the damped oscillations in the pairing
correlations that induce 0-π transitions responsible for su-
percurrent reversals and cusps in the critical current profile
of asymmetric junctions, we have studied the exchange field
dependence of the current-phase relations in Fig. 9. The total
supercurrent Jtot is shown alongside its constitutive compo-
nents J1,2,3. As a representative parameter set, we have chosen
the first crossover state in Fig. 5(i), which occurs around
h/�1 ≈ 32. Therefore, in Figs. 9(a)–9(e) we set �2/�1 = 5,
� = 1, and kF dF = 5 and vary the normalized magnetization
according to h/�1 = 26, 28, 31, 34, 36, respectively. As seen,
the overall profile and magnitude of the subgap supercurrent
component J1 is relatively unaffected as the exchange field
increases. The supergap current J2 however experiences a
transition in which it goes from entirely positive for h/�1 =
26 to negative for most phase differences �ϕ when h/�1 =
36. This results in an overall suppression of the total supercur-

rent, illustrating the influential control of the J2 component on
the total supercurrent. Therefore, adjacent to a 0-π crossover,
the supergap J2 and subgap J1 current components propagate
in opposite directions, creating a competing situation. Below,
we shall see that a similar occurrence takes place near the
0-π transition point in the diffusive regime. It should be
noted that the supercurrent in the ballistic regime involves the
superposition of quasiparticle trajectories undergoing normal
and Andreev reflections at the two superconductor interfaces.
Due to the microscopic method used, length scales as small
as the Fermi wavelength are included, permitting the cap-
ture of Friedel-like oscillations [68], which emerge as highly
oscillatory signatures in the supercurrent response for small
normalized layer thicknesses kF dF . The resonant modes are
also highly sensitive to the relevant geometrical and material
parameters such as the junction length, Fermi level, magneti-
zation strength, and superconducting gap ratio, all of which
intricately combine to give the observed small oscillations
in, e.g., Figs. 7 and 8. Nonetheless, the final conclusions and
central findings are clearly independent of these subfeatures.

B. Diffusive S1NS2 and S1FS2 Josephson junctions

We now consider the supercurrent response in asymmetric
diffusive Josephson junctions. To properly capture quasiparti-
cles with energies deemed relevant to the net supercurrent, we
have set an energy cutoff of εmax = 25�1 when performing
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FIG. 9. Total current-phase relation with its supergap and subgap
components for several key exchange-field values around a current
reversal point. The superconducting gap ratio is set to �2/�1 = 5,
the junction thickness is kF dF = 5, and there is no mismatch in Fermi
levels (� = 1).

the integration over quasiparticle energies. We have also used
representative values for the junction thickness and interface
opacity, with d = 0.8ξS and ζ = 4, respectively. The max-
imum supercurrent flow as a function of �2/�1 is shown
in Fig. 10. The maximum of critical supercurrent occurs
when the magnetization in the junction vanishes. As seen,
the critical supercurrent enhances by 50% when �2/�1 ≈ 10
and h = 0. Upon increasing the strength of the uniform ex-
change field h, the critical supercurrent becomes suppressed.
For weak ferromagnets with exchange energies corresponding
to h ∼ 2.6�1, the supercurrent undergoes a sign reversal as
the gap asymmetry �2/�1 is varied. By further increasing
h/�1 to 2.8, 3.0, 4.0, 4.5, the overall critical supercurrent is
enhanced and returns to its previous monotonic growth as
a function of �2/�1. In contrast to the other normalized
exchange field strengths, the case with h/�1 = 2.6 exhibits
a clear supercurrent suppression for �2/�1 � 7. Increasing
the exchange field to h/�1 = 2.8, 3.0 causes the supercur-
rent to have a short-lived enhancement, and a subsequent

FIG. 10. Critical supercurrent in a diffusive S1FS2 Josephson
junction as a function of �2/�1. The junction thickness is fixed at
d = 0.8ξS and various values of the normalized exchange field are
considered: h/�1 = 0, 0.4, 0.8, 1.2, 1.6, 2.6, 2.8, 3.0, 3.5, 4.0, 4.5.

cusp at �2/�1 ≈ 3, before slowly declining as the gap ra-
tio increases. To create a stable numerical scheme, we have
introduced a small imaginary part δ = 0.005 to the energy of
the quasiparticles ε. This imaginary part can act as a source
of inelastic scattering, which if increased, can wash out the
dominant and important parts of the curves, such as the overall
supercurrent response and associated 0-π transitions. For a
relatively small imaginary part, as is considered throughout
our numerical study, the algorithm can at times introduce
insignificant artifacts that show up as small oscillations in the
supercurrent.

To gain a comprehensive picture of the supercurrent in
a diffusive asymmetric Josephson junction, we have plot-
ted the components J1,2,3(�ϕ) and total supercurrent J (�ϕ)
in Fig. 11. Various levels of gap asymmetry are shown
corresponding to �2/�1 = 1.0, 1.5, 2.0, 2.6. The nonmag-
netic S1NS2 case is shown in Figs. 11(a)–11(d), whereas
Figs. 11(e)–11(h) correspond to a S1FS2 junction. As seen
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FIG. 11. The three components of supercurrent at four different values of the gap anisotropy ratio: �2/�1 = 1.0, 1.5, 2.0, and 2.6. In
(a)–(d), the exchange field h is set to zero, and in (e)–(h), we set to h = 2.6�1.

for both cases, when �2 = �1, the J2(�ϕ) component van-
ishes, as expected. Also, there is an overall reduction of the
supercurrent magnitudes in the magnetic case. Other than
their magnitudes, the current-phase relations of the J2(�ϕ)
components are similar for S1NS2 and S1FS2 junctions
with asymmetric superconducting gaps (albeit with different
signs). The subgap supercurrent J1(�ϕ) behaves slightly dif-
ferently for S1NS2 and S1FS2 junctions. In the latter case,
when �2 = �1, the supercurrent deviates strongly from the
usual sinusoidal relation. In contrast to the S1NS2 case, the
component J3(�ϕ) shows a ∼ sin 2�ϕ relation around �2 ≈
2�1 and changes sign for larger values. The competition
between these components results in the total supercurrents
shown in the far right panels. As is apparent, unlike the
strikingly different responses of J1,2,3(�ϕ) for �2 > �1, the
total supercurrent changes uniformly except when transition-
ing from �2 = �1 to �2 > �1 for the S1FS2 junction with
h = 2.6�1. This variation results in the form of the current-
phase relation changing from ∼ sin 2�ϕ to ∼ sin �ϕ. Note
that the total supercurrent response in Fig. 11(h) has the form
∼ sin 2�ϕ, which appears due to the competition between the
subgap supercurrent states comprising J1(�ϕ) and the scatter-
ing states which embody J3(�ϕ) ∼ sin �ϕ. The competition
originates from the opposite propagation directions of the
J1(�ϕ) and J3(�ϕ) current components. These findings thus
complement the ballistic results that found many instances
where supergap modes must be accounted for appropriately
to obtain accurate and reliable results. Further insight into the
supergap and subgap responses are presented in Appendix C,
where the energy-resolved and phase-resolved supercurrent
density is analyzed.

IV. CONCLUSIONS

By employing complementary numerical approaches in the
ballistic and diffusive regimes, we have performed a com-
prehensive study of supercurrent flow through asymmetric
S1NS2 and S1FS2 Josephson junctions where the supercon-

ducting gap in the S1,2 regions are unequal, i.e., �2 �= �1. In
the ballistic regime, we have directly solved the Bogoliubov
de-Gennes Hamiltonian that allows for exploring a parameter
space with a wide range of energy and length scales, whereas
when impurities and disorder are present, we make use of
the full proximity limit of the quasiclassical regime. Our
results found that for asymmetric junctions with �2/�1 ≈
25, 10, the critical supercurrent can be enhanced by more
than 100% and 50% in the ballistic and diffusive S1NS2

cases, respectively. Our results in the ballistic cases reveal
that when �2/�1 = 1, the subgap current is the main con-
tributor to total supercurrent. Introducing an imbalance to the
superconducting gap ratio �2/�1 >1, the supergap currents
were discovered to play key roles and for certain parameter
values were the main contributors to the total supercurrent.
Through our investigations of asymmetric junctions (with
�2/�1 >1), the current phase relations with their supergap
and subgap current components were explored around 0-π
current crossover points. We found that the emergence of
second harmonics in the current-phase relations of S1FS2

junctions is a direct consequence of the competition between
subgap and supergap current components with opposite flow
directions. It was shown in an earlier work [58] that supergap
currents are relatively insensitive to temperature compared to
the subgap component, as the former originates from evanes-
cent modes in the continuum, whereas the latter is carried
through resonant bound states. Therefore, the findings of this
paper should serve to stimulate experiments that pave the
way for designing new superconducting devices that utilize
robust supergap currents. The asymmetric S1NS2 and S1FS2

structures studied here can apply to Josephson configurations
where the amplitude of the superconducting gaps might fluc-
tuate independently when the system is subject to a strong
external magnetic field or high temperatures near the criti-
cal temperature. Furthermore, the enhancement of the critical
supercurrent due to �1 �= �2 can be beneficial in magnetic
Josephson junctions that suffer from weakened currents in the
presence of ferromagnetism.
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APPENDIX A: ALTERNATIVE WAVE-FUNCTION
APPROACH: BALLISTIC REGIME

The method outlined in Sec. II A provides an effective way
to solve Josephson junction systems with limited approxima-
tions in the ballistic regime. There also exists wave-function
approaches that can provide exact solutions, one of which we
outline below [35,56,57,61,62].

To simulate the low-energy physics of heterostructures in
the presence of a magnetization with arbitrary direction, h =
(hx, hy, hz ), one employs an effective single-particle Hamilto-
nian:

H = 1

2

∫
dp ψ̂†(p)

[
p2

2m
+ σ · h

]
ψ̂ (p), (A1)

where p = (px, py, pz ) is the momentum and m is the effective
mass of a charged particle. The associated field operator in
spin space is given by ψ̂ = (ψ↑, ψ↓)T and σ = (σx, σy, σz )
is a vector comprised of Pauli matrices. The spin-singlet su-
perconductivity in the BCS scenario can be described by the
following electron-electron amplitudes:

�〈ψ†
↑ψ

†
↓〉 + H.c. (A2)

Accounting for the electron-electron amplitudes in the BdG
formalism, the low-energy Hamiltonian in spin-Nambu space
reads:

H(p) =
(

H (p) − μ1̂ �̂

�̂† −H†(−p) + μ1̂

)
, (A3)

in which �̂ is the superconducting gap �̂ ≡ (�,−�)eiϕl,r ,
and μ is the chemical potential. The field operators
in the rotated spin-Nambu space are given by ψ̂ =
(ψ↑, ψ↓, ψ

†
↓,−ψ

†
↑ )T. The continuity equation for charged car-

riers is written:
∂ρc

∂t
= lim

r→r′

∑
στσ ′τ ′

1

i

[
ψ†

στ (r′)Hστσ ′τ ′ (r)ψσ ′τ ′ (r)

− ψ†
στ (r′)H†

στσ ′τ ′ (r′)ψσ ′τ ′ (r)
]
, (A4)

where Hστσ ′τ ′ is the component form of Eq. (A3) and σ, τ

indices label the spin and particle-hole degrees of freedom,
respectively. In a situation where no sink or source of charge is
present, the time variation of charge density vanishes: ∂tρc ≡
0. Accounting for the current conservation law, the charge
current density can be expressed by:

J =
∫

dr{ψ̂†(r)
−→H (r)ψ̂ (r) − ψ̂†(r)

←−H (r)ψ̂ (r)}, (A5)

where the real-space Hamiltonian H(r) is obtained by substi-
tuting p ≡ −im−1(∂x, ∂y, ∂z ) in Eq. (A3). The arrows indicate
the specific wave functions that the Hamiltonian operates on.
To obtain the supercurrent, one computes the current density
perpendicular to the interfaces, in our geometry shown in
Fig. 1, Jx, and integrates over the junction cross section in the
y and z directions: J (�ϕ) = J0

∫∫
dzdyJx(x, y, z,�ϕ). Here

J0 = 2e|�|, and e is the electron charge. Upon diagonalizing
H(p) in Eq. (A3), one obtains the electronic wave functions
ψ̂l,m,r (p) within the left (l), middle (m), and right (r) regions.
Next, the wave functions are matched at the left ψ̂l = ψ̂m|x=0

and the right boundaries ψ̂m = ψ̂r |x=d . The continuity con-
ditions must also be satisfied: (∂pHl )rψ̂l = (∂pHm)rψ̂m|x=0,
(∂pHm)rψ̂m = (∂pHr )rψ̂r |x=d . The index r indicates a switch
to real space after taking the derivatives in momentum space.
It is important to note that we apply no simplifying as-
sumptions and approximations to the wave functions in the
numerical calculations. This however results in highly com-
plicated and lengthy expressions for the wave functions and
supercurrent. We therefore are only able to evaluate them
numerically.

APPENDIX B: ENERGY DISPERSION AND
ENERGY-RESOLVED SUPERCURRENT DENSITY:

BALLISTIC REGIME

When calculating the supercurrent via Eq. (6), all positive
energy states within an energy cutoff εc are summed over,
with εc chosen sufficiently large so that including any addi-
tional states has no distinguishable effects on the results. It is
important to note that when summing the quantum states for
the supercurrent, the summation implicitly includes an inte-
gration over the continuum of states with transverse energy

FIG. 12. Total supercurrent density mappings as a function of phase difference �ϕ and energy ε for a S1NS2 Josephson junction with
varying levels of gap asymmetry: (a) �2/�1 = 1, (b) �2/�1 = 2, (c) �2/�1 = 5, and (d) �2/�1 = 100. The Fermi levels are equal
throughout the system (� = 1).

224504-13



MOHAMMAD ALIDOUST AND KLAUS HALTERMAN PHYSICAL REVIEW B 102, 224504 (2020)

FIG. 13. The energy-resolved supercurrent density Jε for an
S1FS2 junction with �2/�1 = 5 and Fermi level mismatch � = 3.
Three different values of the normalized exchange energy h/�1 are
considered: (a) h/�1 = 0, (b) h/�1 = 45, and (c) h/�1 = 90. The
macroscopic phase difference chosen in each case corresponds to
�ϕc, where �ϕc is the phase angle that leads to the largest magnitude
of the total supercurrent. In panels (a) and (b) �ϕc = 106◦, and for
(c) we have �ϕc = 125◦.

ε⊥ [see Eq. (2)]. To isolate the supercurrent contribution at
supergap and subgap energies, it is beneficial to extract the
supercurrent response as a function of the quasiparticle energy
ε. This procedure involves calculating the supercurrent for
each quasiparticle trajectory with associated energy ε⊥. All
trajectories are then summed over to arrive at the supercurrent
for a given energy.

This procedure gives the results shown in Fig. 12, where
the supercurrent is mapped out as a function of energy
and phase difference. For concreteness, we take the param-
eters used in Figs. 8(a)–8(d), where a broad range of gap
asymmetries were considered. Note the emergence of the J2

supercurrent in the current phase relations can be accounted
for in Figs. 12(b)–12(d) where the current carrying states get
shifted upwards into the supergap region and broaden with
increased �2/�1. This also leads to an amplification of the J2

component and in turn the total supercurrent.
The energy-resolved supercurrent for an asymmetric

Josephson junction at fixed phase is shown in Fig. 13. We
take a relative ratio of �2/�1 = 5 and mismatch in Fermi
levels corresponding to � = 3. Figure 13(a) corresponds
to a nonmagnetic junction while Figs. 13(b) and 13(c) de-
scribe a ferromagnetic junction with differing exchange field
strengths, as shown. For consistency, these system parameters
correlate with Fig. 5(g). To correlate with the critical current
components, from Fig. 5(g), it is seen that for h/�1 = 0
the supergap component J2 dominates, while for h/�1 = 90,
the subgap J1 component does. The intermediate case of

FIG. 14. Total supercurrent density mappings as a function of phase difference �ϕ and energy ε for an asymmetric Josephson junction
with �2/�1 = 5. The Fermi level mismatch parameter is set to � = 3. Panels (a)–(h) depict differing normalized exchange fields h/�1

corresponding to 0,45,70,90,110,130,140, and 160, respectively.
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FIG. 15. The discrete energy spectrum for an asymmetric Josephson junction with �2/�1 = 5 and Fermi level mismatch corresponding
to � = 3. The normalized exchange fields considered correlate with Fig. 14 above.

h/�1 = 45 has the subgap J1 and supergap J2 components
contributing nearly equally to the critical current. This be-
havior is accounted for in the energy dependence of the
supercurrent presented in Figs. 13(a)–13(c), where we take
�ϕ = �ϕc in each case to ensure that it gives the critical
current shown in Fig. 5(g). The shift in current carrying states
is evident as the exchange energy increases, until eventually
reversing direction for h/�1 = 90 where the subgap bound
states dominate.

To give a more comprehensive view of the energy-resolved
supercurrent, we present in Fig. 14 the normalized super-
current as a function of the normalized energy ε/�1 and

phase difference �ϕ. Eight different exchange fields are con-
sidered, and the system parameters again coincide with the
critical current study in Fig. 5(g). As seen in Figs. 14(a)–
14(h), the supercurrent profiles exhibit varying amounts of
mixtures between the subgap and supergap states. As the
exchange field increases, the supercurrent flow evolves to
contain states that have oppositely directed flow in both
the subgap (ε � �1) and supergap (�1 � ε � �2) regions.
Remarkably, increasing the exchange field can increase the
supercurrent, including the half-metallic limit [Fig. 14(h)],
where the supercurrent can exceed the supercurrent found in
Fig. 14(a) for the nonmagnetic case. This can have important

FIG. 16. Color map of the supercurrent density as a function of the normalized quasiparticle energy ε/�1 and superconducting phase
difference �ϕ in the diffusive regime. The junction parameter values are set in each panel to those of Fig. 11, except now we have (a) S1NS2:
h = 0, �2/�1 = 1, (b) S1NS2: h = 0, �2/�1 = 2.6, (c) S1FS2: h = 2.6�1, �2/�1 = 1, and (d) S1FS2: h = 2.6�1, �2/�1 = 2.6.
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consequences for devices that utilize the spin degree of free-
dom in Josephson junction systems. Note that the various
admixtures of subgap and supergap supercurrents exhibited
here can be directly correlated with the critical current signa-
tures found in Fig. 5(g).

To delve further into the phase dependence of the super-
current flow, we next present in Fig. 15 the quasiparticle
energy spectra εn for each of the cases shown in Fig. 14.
We consider the ε⊥ = 0 mode, noting that many of the other
transverse modes have similar behavior, and the cumulative
effect serves to only broaden the overall supercurrent profile.
From the diagrams, it is clear that the current vanishes at
�ϕ = 0◦ and �ϕ = 180◦, where ∂εn/∂ (�ϕ) = 0. The cusps
in the energy dispersion are consistent with Fig. 14, where
the current at certain energies becomes reversed. We also find
that as the exchange field h increases, the additional branches
of the energy dispersion which emerge increase in separation
before coalescing at high exchange fields. Thus, although
the supercurrent is a cumulation of quasiparticle amplitudes
and energies, the energy spectrum alone gives valuable in-
sight into the transport properties of asymmetric Josephson
junctions.

APPENDIX C: ENERGY-RESOLVED SUPERCURRENT
DENSITY: DIFFUSIVE REGIME

When impurity scattering dominates, we turn to the diffu-
sive regime. In Fig. 16, we show the supercurrent response as
a function of macroscopic phase difference �ϕ and normal-
ized energy ε/�1. In Figs. 16(a) and 16(b), a nonmagnetic
junction h = 0 is considered. In Fig. 16(a), the junction is
symmetric �2/�1 = 1, while in Fig. 16(b), an asymmet-
ric junction with �2/�1 = 2.6 is shown. The bottom set
of panels corresponds to a weak ferromagnet junction with
h/�1 = 2.6. For the nonmagnetic case, Figs. 16(a) and 16(b)
show how the supercurrent with energies above the gap �1

get shifted by an amount corresponding to the gap asymme-
try �2/�1 = 2.6. In the bottom set of panels, the exchange
field h = 2.6�1 introduces an additional energy scale that
redistributes the supercurrent response. In the symmetric case
Fig. 16(c) demonstrates how the presence of magnetism in-
duces a supercurrent reversal for energies centered around the
gap �1. When the junction becomes asymmetric, the mutual
effects of the exchange field and gap asymmetry lead to an
enhancement of the supercurrent density at larger energies
around �2 [Fig. 16(d)].
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