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Zero-magnon sound in quantum Heisenberg ferromagnets
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Using a functional renormalization-group approach, we show that at low temperatures and in a certain range
of magnetic fields, the longitudinal dynamic structure factor of quantum Heisenberg ferromagnets in dimensions
D < 2 exhibits a well-defined quasiparticle peak with linear dispersion that we identify as zero-magnon sound.
In D > 2, the larger phase space available for the decay into transverse spin waves leads only to a broad hump
centered at zero frequency whose width scales linearly in momentum.
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I. INTRODUCTION

At low temperatures, the transverse spin dynamics of
ordered Heisenberg magnets can be explained in terms of
transverse spin waves (magnons) forming a weakly interacting
gas of quasiparticles [1]. Such a simple physical picture is
not available for the longitudinal spin dynamics, which is
a subject of ongoing research [2—4]. Perturbative spin-wave
theory based on an expansion in powers of the inverse spin
quantum number 1/§ fails in this case because the longi-
tudinal spin dynamics, encoded in the longitudinal dynamic
structure factor $%*(g, ), is dominated by emergent collective
modes such as diffusion or sound modes. Depending on the
timescale of interest, two regimes should be distinguished:
if the relevant timescale is large compared with the typical
time between collisions, we enter the collision-dominated &y-
drodynamic regime where the general form of $%(q, w) for
small momenta ¢ and frequencies w can be obtained from
hydrodynamic equations which follow from the continuity
equations of the conversed quantities [5—7]. On the other hand,
in the collisionless regime, the timescale of interest is short
compared to the typical collision time. The hydrodynamic
approach is then not valid and microscopic calculations are
necessary.

In spite of the long history of the problem, there is still no
general agreement on some aspects of the longitudinal spin
dynamics in Heisenberg ferromagnets, especially in reduced
dimensions. In the hydrodynamic regime, the dynamics of
the conserved quantities was obtained in the late 1960s by
several authors [5—7]. These studies found that at low temper-
atures and in the presence of a finite external magnetic field,
S$%(q, w) exhibits a diffusive peak at @ = 0 and a damped
propagating sound mode, called second magnon, in analogy
with the second-sound mode in phonon systems. When the
temperature is increased, Umklapp scattering overdamps this
mode and diffusive and propagating modes merge into a single
broad diffusive peak. A few years later, the problem was
reconsidered by Dewel [8,9], who concluded that the hydro-
dynamic description is only valid for external magnetic fields
H exceeding a threshold of the order of q2; for H — 0, the
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gapless nature of the transverse magnons induces singulari-
ties in the collision integrals of the kinetic equations, which
invalidate the assumptions of hydrodynamics and the system
enters the collisionless regime. More recently, Rodriguez-
Nieva et al. [4] analyzed the hydrodynamic equations in two
dimensions and concluded that for sufficiently strong mag-
netic fields, the longitudinal structure factor exhibits a weakly
damped second-magnon mode.

The literature on the collisionless regime is less consistent.
Early studies [10—13] focused on the question of whether the
longitudinal structure factor of a three-dimensional Heisen-
berg ferromagnet exhibits a zero-magnon mode which could
possibly be generated by coherent creation and annihilation
processes of transverse magnons. This zero magnon can also
be viewed as a collective fluctuation of the magnon den-
sity and is analogous to the zero-sound mode of interacting
fermions [14,15]. Original claims [10,11] of the existence of
a zero-magnon mode for momenta at the boundary of the
Brillouin zone were rejected as an artifact of an inaccurate
mapping of the Heisenberg model onto an effective bosonic
Holstein-Primakoff system [13]. Subsequently, a number of
works relying on various fermionic or bosonic representations
of the Heisenberg Hamiltonian calculated the longitudinal
spin susceptibility in two [12] and three dimensions [8,16—18]
within the random phase approximation (RPA). None of these
works found any evidence of a well-defined finite frequency
collective mode anywhere in the Brillouin zone. The problem
was picked up again by Izyumov et al. [19], who used a so-
phisticated diagrammatic approach for quantum spin systems
developed by Vaks et al. [20,21] to calculate the longitudinal
structure factor of a three-dimensional Heisenberg ferromag-
net within a generalized RPA. Unfortunately, the results for
the longitudinal structure factor are somewhat inconclusive:
While their spectral line shape reveals broad finite-frequency
maxima which scale linearly with |q|, it is equally plagued by
strange features whose origin can be traced back to the gapless
nature of the magnons in the limit H — 0 (cf. Ref. [9]).

In this work, we use the recent advances in the application
of the functional renormalization group (FRG) to (quantum)
spin systems [22-25] to settle the longstanding question of
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the existence of a zero-magnon mode in quantum Heisenberg
ferromagnets. Using an RPA truncation of the flow equations,
we show that a well-defined zero-magnon mode can exist in
a certain range of magnetic fields in dimensions D < 2 in the
collisionless regime.

II. SPIN FRG

The spin FRG approach [24,25] combines the advantages
of working with physical spin operators with the well-known
diagrammatic structure of the FRG vertex expansion [26-28],
thus avoiding the diagrammatic complexity inherent in the
spin-diagram technique [19-21,29]. Let us outline the main
features of the method for the specific case of an anisotropic
quantum Heisenberg ferromagnet with Hamiltonian

= —HZS Z [JiSt ST +T58is5], (D)

oty
ij

where i, j=1,...,N label the sites of a D-dimensional
hypercubic lattlce S = (§7,8),8%) = (S;-, S¢) are spin-S op-
erators, the external magnetic ﬁeld H is measured in units of
energy, and J; > 0 (where o = L, z) are ferromagnetic ex-
change couplings. Following Refs. [24] and [25], we replace
the exchange couplings Ji% in Eq. (1) by deformed couplings
J} ;; that depend on a contlnuous parameter A € [0, 1] such
that Jizy =Jf; and J{_, ;; is simple enough to allow for
a controlled solution of the model. In this work, we choose
Jy g = AJEand J5 = Jg, so that at the initial value A = 0,
the transverse exchange interaction is completely switched off
while the longitudinal interaction is not modified.

Given such a continuous deformation, it is possible to
derive a formally exact hierarchy of FRG flow equations for
the imaginary-time ordered spin correlation functions [24,25].
In the magnetically ordered phase, it is, however, more conve-
nient to consider the flow of the functional I", [m, ¢], which
depends on the transverse magnetization m and the fluctuat-
ing part ¢ of the longitudinal exchange field and generates
vertices which are irreducible with respect to cutting a single
transverse propagator line and a single longitudinal interac-
tion line. The explicit construction of this functional via a
subtracted Legendre transformation of the generating func-
tional of connected spin correlation functions, and the general
structure of the vertex expansion of [ plm, @], have been dis-
cussed in Ref. [25]. In accordance with the studies presented
in Sec. I, we assume in the following that the longitudinal spin
dynamics are dominated by multiple creation and annihilation
processes of transverse spin waves. Within this assumption, it
is then sufficient to use the following truncation:
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FIG. 1. Diagrammatic representation of FRG flow equations for
(a) the longitudinal two-point vertex, (b) the mixed three-point
vertex, and (c) the transverse four-point vertex appearing in the
truncated functional f’A[m,<p] in Eq. (2). In (c), we retain only
the zero-sound (ZS) channel and neglect the exchange (EX) and
particle-particle (PP) contributions. Solid arrows represent transverse
propagators, wavy legs represent the longitudinal exchange field ¢,
and the cross inside the loops means that each of the loop propagators
is successively replaced by the corresponding single-scale propaga-
tor [26].

lv\»—‘

Here, K = (k, iw) represents the momentum and bosonic
Matsubara frequency, [, = x = (BN)~ ! Zk » Where N is the
number of lattice sites and 8 = 1/T is the inverse temper-
ature, 6(K) = BNk 06,0, and m,f = (my + im';()/«/i are the
spherical Fourier components of the transverse magnetization.
The transverse two-point vertex '}~ (K) is related to the flow-
ing propagator of transverse magnons [25],

Ga(K) = 1/[T5(K) + Ji- — T4l ?3)

where J' is the Fourier transform of Ji%. The longitudinal two-
point vertex,

MY (K) = 1/J; = TIA(K), “

is related to the interaction-irreducible polarization I, (K)
[25], which in turn determines the flowing longitudinal spin
susceptibility [20,25],

XK (K) = TA(K)/[1 = J5  TTA(K)]. )

III. ZERO-SOUND TRUNCATION

We are only interested in the longitudinal two-point ver-
tex in the magnetically ordered regime for sufficiently low
temperatures and high frequencies, i.e., in the collisionless
regime. Therefore, we can neglect the flow of the mag-
netization and of the transverse two-point vertex. In this
approximation, we obtain

I (K)~T{ (K) =G, ' (iw) — I, (6)

where

Go(iw) = S/[H + J§S — iw)]. (7

Within our truncation, the three remaining vertices in Eq. (2)
then satisfy the flow equations shown diagrammatically in
Fig. 1. Explicit analytical expressions for the corresponding
flow equations can be found in Appendix A. Note that the
flow of the transverse four-point vertex in Fig. 1(c) is driven
by three different scattering channels, which we label ZS (zero
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sound), EX (exchange), and PP (particle-particle) [26,30]. To
understand the collective modes of the longitudinal structure
factor, we focus in this work on the ZS channel and neglect the
EX and PP channels. For interacting fermions, this approxi-
mation amounts to the RPA and can be formally justified if the
interaction is dominated by small momentum transfers. We
therefore expect that also in the present case, the ZS channel
dominates the renormalization of the effective interaction if J;
is enhanced for small k. We assume that this ZS truncation re-
mains at least qualitatively correct in the collisionless regime,
even for short-range interactions. In the region T < J§S, the
resulting system of truncated flow equations can be solved
analytically, which is shown explicitly in Appendix B. The
final result for the longitudinal spin susceptibility is [31]

Q) = P
T MR- PO P+
(®)
with the generalized polarization functions
$?P%(Q) = / L(K, Q), (9a)
K

2P Q) = $*P'(—Q) = /K L(K, 0)Gy (i), (9b)

s?P' Q) = /K L(K, Q)G, ' (iw)Gy ' (iw — iv).  (9¢)

Here, iv is the Matsubara frequency of the external label
0 = (g, iv), and the function L(K, Q) is defined by

LK, Q) =GK)G(K — Q) — Gy(iw)Gy(iw — iv). (10)
Here,
G(K) = S/[H + ¢, — iw] (11)

is the propagator of transverse magnons with dispersion € =
SUE—=Th).

To make progress analytically, we now assume an isotropic
exchange interaction J;- = J{ = Ji and focus on the regime
H < T < 1/(2ma®), where a is the lattice spacing and the
magnon mass m is defined via the small-momentum expan-
sion of the magnon dispersion, €; = k*/(2m). Note that at
low temperatures, the thermal momentum ky = /2mT <K
1/a acts as ultraviolet cutoff for all momentum integrals,
which justifies the small-momentum expansion of the magnon
dispersion. For ¢ < ky,, we may then expand the polarization
functions in Eq. (8) in powers of g. Neglecting terms of the
order of q3 and higher, we obtain

PY(q, io) = P(io/(vnq)), (12)

where vy, = kg /m is the thermal velocity and, for complex z,
the function P(z) is in D dimensions given by

_ Qpkna)® [ z\ ez
ro=Gowar |, oo iy 09

Here, Qp =2nP/?/T'(D/2) is the surface of the D-
dimensional unit sphere [with the Gamma-function I'(z)],
h = H/T is the dimensionless magnetic field, and the function

gp(2) is defined via the D-dimensional angular average [32],

2) = 1 /dQ cos ¥ (14)
gpix T Qp cosy —z’

where the angle ¢ is the latitude on the surface of the unit
sphere. Moreover, to leading order in ¢, the other polarization
functions in Eq. (8) are given by

PY(q, iw) = P(q, iw) = JyP®(q, iw) + p, (15a)
P'(q, iw) = J§P(q, i») + 2Jop, (15b)
where
1 1
P=3N > eHTe)/T _ | (16)

k

is the density of thermally excited magnons in units of the sat-
urated magnetization S. As described in detail in Appendix B,
our result (8) for the longitudinal susceptibility then reduces
to

x%(q, iw) = P(”iTw”) — (17)
(14 p)* +JoP(;2)

IV. ZERO-MAGNON SOUND

To investigate the existence of a collective zero-magnon
mode, we now consider the longitudinal dynamic structure
factor,

22 1 1 44 Nt
S (q,a)): 1+€“’/T——1 ;Imx (q,a)—HO ), (18)

which can be obtained by evaluating the integral defining
the function P(z) in Eq. (13) numerically. The explicit ex-
pressions for P(z) in D = 1,2, 3 can be found in Appendix
C and the resulting line shapes are shown in Fig. 2. In one
and two dimensions, we observe a finite-frequency peak at
position wg = voq. In D = 1, the peak is sharp as soon as the
magnetic field is only slightly smaller than the temperature,
such that for H < T, we can identify w, as the zero-magnon
mode. In the two-dimensional case, the peak broadens and a
similar well-defined mode is only obtained for significantly
smaller magnetic fields. In contrast, in D = 3, the longitudinal
structure factor exhibits only a broad hump centered at v = 0,
whose width is proportional to g. This indicates that there is
no zero-magnon mode in this case.

To understand the origin of these results, we note that
a well-defined zero-magnon peak in S¥(q, w) exists if the
susceptibility (17) has a pole close to the real axis in the
complex frequency plane. The dispersion of the zero-magnon
mode is then wy; = vog = Xovmq, wWhere the real number xj is
the positive root of the equation

(14 p)> + JoReP(xg + i0T) = 0. (19)

Expanding around x(, we obtain a Lorentzian line shape for
the longitudinal structure factor in the vicinity of the zero-
magnon mode,

S“(q,w>=[1+ ! }“"’ v 20)

e/T —1 270y (0 — wg)* +v2
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FIG. 2. Longitudinal dynamic structure factor S%(q, ) [Eq. (18)] of the D-dimensional Heisenberg ferromagnet in the regime H < T <

1/(ma?), for ¢ = ky,/4, temperature Tma®> = 1072, and § = 1/2.

The damping is y; = Yovmg, Wwhere yo=ImP(xo+
i0T)/ReP (xg +i0"). Numerical results for the root
X0 =vo/ve, of Eq. (19) and the relative damping

Vq/®q = Yo/Xo for D =1, 2 are shown in Fig. 3. We note, in
particular, that the mode is only well defined (y,;/w, < 1) if
the zero-sound velocity is significantly larger than the thermal
velocity, i.e., if xy >> 1. For D = 3, Eq. (19) has no solutions,
so that there is no well-defined zero-magnon mode in this
case.

To gain an analytical understanding of these observations,
let us anticipate that for D < 2, the integral defining the func-
tion P(z) in Eq. (13) is dominated by the regime /e < |z],
where we may approximate gp(z//€) ~ —e/(Dz?) (see Ap-
pendix C). This yields

(kna)”
ZCDT22

where Li;(z) is the polylogarithm. The dimensionless magnon
density (16) can likewise be written as

_ (ktha)D

Cp

D
2

Lig(e_h), cp=2Pn2, (1)

P(z) ~ —

Lip (e™M. (22)

From Eq. (19), we then obtain, for the dimensionless velocity
of the zero-magnon mode,

vo_/wwﬂM@@h)

wo= = (23)

Uth

2epT (1 + p)?

Tma* =103

Keeping in mind that the integral in Eq. (13) is cut for ¢ < 1,
we see that only for xo > 1, it is consistent to use the ap-
proximation (21). Since (kna)? oc TP/2, this is not satisfied
for D > 2 at low temperatures, so that there is no high-
frequency zero mode. In contrast, for D < 2 and at sufficiently
small magnetic fields, there is always a parametrically large
regime where xo > 1, as shown in Fig. 3. Note, however,
that our calculation is only applicable if the dimensionless
magnon density p is small compared with unity because we
have assumed that the magnetization is almost saturated. For
D < 2, this implies that our results are only valid for mag-
netic fields H > H, ~ 1/(2mé& 2), where & is the correlation
length for H = 0. Using a one-loop approximation [33,34],
we estimate H, &~ Te~27S/ma@’T) for D = 2, and H, ~ ma*T?
for D =1. In the region H, <« H < T, the dimensionless
magnon density p in Eq. (23) may thus be neglected and
a well-defined zero-magnon mode is obtained in D =2 if
In(T/H) > 4 /(ma*Jy). In addition, it should be pointed out
that our result is only applicable in the momentum regime
1/& < g < kg, where the system appears to be magnetically
ordered at the length scale 1/g and the expansion in powers of
q is valid.

For a Heisenberg ferromagnet with nearest-neighbor ex-
change J, we estimate that the maximal value of the
zero-magnon velocity (23) is vop x aJS for H = H, in D =
1, 2 (see Appendix C). It is interesting to compare this with the
velocity vy &~ a/2JTLiy(z)/Li;(z) of second-magnon sound

0
In(H/T)

In(H/T)

FIG. 3. Zero-magnon velocity xo = vy/vy, in (a) D = 1 and (b) D = 2 as a function of dimensionless magnetic field H/T for temperatures
Tma? =107",1072, 1073 (red, gray, blue). The dashed line corresponds to the approximate solution (23), while the full line is obtained
solving Eq. (19) numerically. For magnetic fields smaller than a certain upper limit (displayed as a full dot), Eq. (19) has two solutions [lower
(opaque) and upper (full) branch], where the larger one may be identified as the corresponding zero-magnon velocity. The shading indicates
the boundaries H = H,(T) and H = T where our calculation breaks down. In D = 2, the calculation remains valid for the whole range of
displayed magnetic fields. (c) Damping yy = y,/w, of the zero-magnon mode.
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in the hydrodynamic regime, where z = ¢~ is the magnon
fugacity [4]. Close to equilibrium, the magnon chemical
potential @ is small, so that Li,(z) &~ Li,(1) = w2 /6 and
Li;(z) = In(T /1), implying vy < vy <K vp.

V. CONCLUSIONS

In summary, we have uncovered the existence of a zero-
magnon sound mode in quantum Heisenberg ferromagnets in
dimensions D < 2, which should be observable in one- and
two-dimensional ferromagnets in the collisionless regime for
g€ > 1 and for magnetic fields in the range 1/(2mé?) <« H <
T < 1/(2ma*). The signature of the zero magnon should be
detectable with polarized neutron scattering [35] and in the
relaxation time of a spin qubit coupled to a ferromagnet, as
discussed in Ref. [4]. Finally, let us point out that our spin
FRG approach can also be used to calculate the longitudinal
spin dynamics of more general Heisenberg models, including
antiferro- and ferrimagnets [3,36].
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APPENDIX A: DERIVATION OF THE TRUNCATED SPIN
FRG FLOW EQUATIONS

The truncated spin FRG flow equations shown graphi-
cally in Fig. 1 can be derived within the spin FRG scheme
developed in Ref. [25]. The essential idea of this method
is the asymmetric treatment of longitudinal and transverse
fluctuations, a procedure tailored to investigate spin systems
in the ordered phase. Technically, this is implemented via a
hybrid generating functional I, [m, ¢] that depends on the
transverse magnetization m and on the fluctuations ¢ around
the longitudinal exchange field ¢ 5 . The latter can be identified
with the exchange correction to the external magnetic field.
For the detailed construction of I" [m, @] in terms of the gen-
erating functional G [h] of the time-ordered connected spin
correlation functions, we refer to Ref. [25]. Similar to G, [h],
the functional " A [m, @] satisfies an exact flow equation which
determines the evolution of the irreducible vertices as the
interaction is gradually deformed. The explicit derivation (see
Ref. [25]) yields

1
—Tr{[(l“” [m, o] + Ra) — J5 |0aRA}

where the matrix elements of f”[’\ [m, ¢] are given by

D _ 820 Alm, ¢]
, @ Ko ,K'a/ — 8@%8@%, )
with <I>IT< = (myg, mﬁ, ¢k ). The regulator matrix R, and the
longitudinal exchange matrix J§ are diagonal in the field

labels, with matrix elements

(' [m (A2)

[Ralix = [RAI ¢ = 8(K — KRy (k),  (A3a)

[RAIE o = 8(K — KR} (K), (A3b)

[ ])I?K = [Ji\])KVK =0, (A3c)
[JZ\]K,K/ 8(K — K')J} Ak (A3d)

where the longitudinal and transverse regulators are given by
Ry(k) = J- — Ty (Ada)

1 1
R% (k) = 7 e (Adb)

Here, J; , and J; , denote the Fourier transforms of the
exchange couphngs The specific deformation scheme is en-
coded in the A dependence of the interaction. In the present
work, we chose a simple scheme, where the transverse inter-
action

Tax = A (A5)

is continuously switched on with the help of a deformation
parameter A € [0, 1], while the longitudinal interaction is not
deformed at all, i.e.,

T = I (A6)

The hierarchy of flow equations for the vertices generated
by T'a[m, ¢] can now be derived by substituting the ansatz
defined in Eq. (2) into the exact flow equation (Al). The
resulting equations are given by a sum of different loop in-
tegrals, where each loop can be classified according to the
number of longitudinal propagators,

4
JA,k

Fo(K) = ,
A(K) 1 —Ji A (K)

(A7)
which should be regarded as an effective screened interaction
between the longitudinal spin fluctuations.

In this work, we retain only the lowest-order contributions.
This corresponds to a zeroth-order expansion in the inverse
interaction range [20,21], and, similar to the RPA treatment
of Fermi systems [14], is thus formally justified only if Jf\’k

0aTalm. ¢] = is enhanced for small k. Within this approximation, we obtain
5T a[m, ¢] the flow equations shown graphically in Fig. 1. The flow of
+ (0pan) / S(K )A— (A1) the longitudinal polarization is given by
I
J
IATF(Q) = —0ATIA(Q) = — / [GA(K)GA(K — QI'TL (K, K — 0, 0T (K — 0. K, —0), (A8a)
K
while the flow of the mixed three-point vertex reads

WMy (K +0,K, Q)= —/ [GA(K)GA(K + O’ Ty (K" + 0, K, QT (K + 0, K';K' + 0, K), (A8b)

X
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and, finally, the flow of the transverse four-point vertex satisfies

W (K +0.K — 0K, Ky) = — /[GA(K)GA(K —OI'T7(Ki+0.K — O;K, Ky)

x {777 (Ka — 0, KK — 0, K)).

Here, we introduced the abbreviation

[GA(K)GA(K — Q)]° =GA(K)GA(K — Q)

+GA(K)GA(K —Q),  (A9)

where the transverse propagator and the corresponding single-
scale propagator are defined as

1
GA(K) = (9aJ3 1)GA (K).

Ga(K) = (A10a)

(A10b)

Note that in deriving the flow equation (A8c) for the
transverse four-point vertex, we have neglected two further
contributions corresponding to the additional exchange- and
particle-particle diagrams, labeled by EX and PP in Fig. 1. In
order to close the system of flow equations (A8), we should, in
principle, consider the flow of the transverse two-point vertex
FX_(K ) as well. However, as explained in the main text, for
our deformation scheme, the associated self-energy correc-
tions may be neglected in the ordered regime for sufficiently
low temperatures, so that

I (K) ~ T§~(K), (A11)
which will be specified in Eq. (A12a) below. The correspond-
ing single-scale propagator may then be written as a scale
derivative G (K) = 92 G (K), which is equivalent to the so-
called Katanin substitution [37]. Eventually, we are thus left
with the closed set of Eqgs. (A8)—(A10), which constitute the
spin FRG analog of the Bethe-Salpeter equations derived and
analyzed by Izyumov et al. [19].

Initial conditions

In our deformation scheme, the transverse interaction is
initially switched off, while the longitudinal interaction is
not modified. The deformed model at A = 0 is then an Ising
model, and the correlation functions cannot be calculated ex-
actly. However, we are not interested in the critical regime, but
rather focus on the low-temperature regime 7' < J§S, so that
a perturbative calculation of the correlation functions is pos-
sible. In particular, we consider the effect of the longitudinal
exchange interaction only on a mean-field level (see Ref. [25]
for a formal justification of this approximation and the explicit
calculation of the initial connected correlation functions and
irreducible vertices). The resulting initial vertices are then
given by

Iy~ (K) = Gy '(iw) — I, (A12a)
FEK) = ()~ = Mo(w), (A12b)
MoT (K, Ka, K3) = 1 — Gy (iw3)Tp(w3),  (Al2¢)

(A8c¢)
[
MUY (K, Ko K, Ky)
= G, (iw3) + Gy ' (iws) — [Mp(w; — 3)
+ Mo(@1 — @)]Gy ' (i03)Gy ' (i), (A12d)

where the initial values of the inverse transverse propagator
and the longitudinal polarization are

H+MyJ: —i
Gy \(iw) = H + MoJg — 1w (A13a)
M
and
Mo(@) = 8,086 [B(H + MoJi) ] (A13b)

Here, J§ = J, ;=0v and the initial magnetization M is deter-
mined self-consistently from

My = b[B(H + MoJ§)]. (Al14)

where

bo) = 5+ 1) cotn | (54 Lot [2] (AlS
(y)-( —i—z)cot [( +§>y}—500t [5] (AI5)

is the spin-S Brillouin function and &'(y) = d,b(y) is its first
derivative. Using the relations (A10a) and (A12a), we obtain,
for the transverse propagator,

1 My

GA(K) = = , Al6
2 (K Ggl(K)—Jik H+epp—iw (A10)

with the A-dependent magnon dispersion
enk = Mo(J5 — T3 ) (A17)

APPENDIX B: GENERALIZED RPA SOLUTION OF THE
LONGITUDINAL DYNAMIC SPIN SUSCEPTIBILITY

In this Appendix, we derive the generalized RPA solution
given in Eq. (8), starting from the set of FRG flow equations
(A8). Given the structure of these equations, it is clear that
in order to find an explicit solution for the polarization, we
have to choose a suitable parametrization of the three- and
four-point vertices. In the following, we focus on the low-
temperature regime, 7 < J§S. The initial magnetization can
then be approximated by My ~ § and we can furthermore
neglect the exponentially small terms involving derivatives of
the Brillouin function. The initial vertices (A12) then simplify
to

My(w) =0, (Bla)
ST (K1, K2, K3) = 1, (B1b)
STt (Ki, K2 Ks, Ka) = Gy (i) + Gy (iws). - (Blc)
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Based on these initial conditions, we make the following
ansatz for the mixed three-point vertex:

ST (K1, Ka, K3) = v (K3) + yA(K3)Gy H(@2),  (B2)
and for the transverse four-point vertex,
ST (K, Kas Ka, Ky)
= U (K1 — K4)
+ UL Ky — K4)Gy ' (@4)
+ U (K — K)Gy (w3)
+ UL (K — K)Gy ' (@03)Gy N (@s). (B3)

This parametrization retains the initial frequency dependence
of the vertices, but promotes the corresponding coefficients
to A-dependent functions. Furthermore, the additional terms
YA(K), UX(K), and U\'(K) must necessarily be included
since they are generated by the respective flow equation. With
this ansatz, the flow equations (A8) may be rewritten in com-
pact matrix form as

INTIA(Q) = YL(QPA(Q)yA(—0), (B4a)
YA (Q) = =YL (QPA(QU A (Q), (B4b)
AU A(Q) = —U(QPA(QU A (Q). (B4c)
where we introduced the two-component vector
_ (v)©@
and the 2 x 2 matrices
_(up uy (Q))
: _ (P 1?21(Q>>

The four types of generalized differential polarization
functions P*¥(Q) are defined by

S2P0(0) = / LK, Q). B72)
K

S*PYN(Q) = / LK, 0)G; (io), (B7b)
K

S*PY(Q) = / L(K, 0)G; ' (io — iv), (B7¢)
K

S?P(Q) = / L(K, Q)G (iw)G, ' (iw — iv), (B7d)
K
with the function

L(K, Q) = [GA(K)GA(K — Q)]°.

The quadratic structure of Egs. (B4) allows us to construct a
formal solution for the seven functions IT,(Q), y; (Q), and
U,"(Q). In particular, we note that the flow equation (B4c)
involving the four functions U 1’\‘ "(Q) is a matrix Ricatti equa-
tion, whose formal solution is

UA(Q) = [1+Uo(QPA(Q)] 'Uo(Q).

(B8)

(B9)

Here, Uy(Q) = ((1) (1)) is determined via the initial conditions
(B1) and the coefficients of the matrix P (Q) are given by

A
(PA(O)" =PI (Q) = /0 dA' Py (Q). (B10)

Moreover, the structure of the flow equations (B4) allows us to
derive an explicit solution for y, (Q). Comparing Egs. (B4b)
and (B4c), we can identify the two independent solutions

_ (U
and
_(URW©)
Ya2(0) = (UA“(Q))' (B12)

However, only the latter is compatible with the initial con-
dition yﬁzO(Q) = (1, 0) and is thus chosen in the following.
Substituting the solution y, ,(Q) into Eq. (B4a) and using the
symmetries U (—Q) = UX(Q) and UY)'(—Q) = U,%(Q), it
is then straightforward to show that the flow of the polariza-
tion satisfies

INTIA(Q) = — 3,U, (Q).

Integrating both sides of Eq. (B13) from A =0 to A =1
and explicitly evaluating the 11-matrix element of the solution
(B9) then yields the polarization

Ma—1(Q) = —U,L,(Q)

(B13)

B PY(Q)
{1+ P[] + PYY(Q)] — PP(Q)P(Q)’
(B14)

with P*'(Q) =P\ (Q). Note that upon integrating
Eq. (B13), the initial terms do not contribute since
U (Q) = —T1o(Q) = 0 for v # 0. Substituting this result
into Eq. (5), we hence obtain the longitudinal susceptibility
given in Eq. (8),

P*(Q)

[+ PN QINPI(Q)] — PP + ;]
(B15)

xX“(Q) =

The four different types of polarizations P*"(Q) can be fur-
ther simplified by explicitly carrying out the A integration in
Eq. (B10). Since the transverse self-energy was neglected, this
is a trivial operation and we recover the generalized polariza-
tions defined in Egs. (9).

Approximation of the generalized polarizations

In the following, we collect the steps leading to the simpli-
fied susceptibility given in Eq. (17). We assume an isotropic
interaction Jkl = J,f = J; from now on, and furthermore focus
on the regime H < T « 1/(2ma*), where a is the lattice
spacing and the magnon mass m is defined via the small-
momentum expansion of the magnon dispersion,

k2

= (B16)

€k
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We start by carrying out the Matsubara sums in the general-
ized polarizations defined in Egs. (9). After partially shifting
the loop momentum k = k' + ¢/2 and renaming k' — k, we
obtain

1 ) _
PY(Q) = v Zk: (1800 + Clk, g, iv)], (B17a)

P"(Q) = P°(-Q)

1 ng — n .
- NZ[ KM L Ck, g, w)JH%], (B17b)
k

S

1 2] ,
P(Q) = v Z[ ; k1 Ck,q, zv)Jk+ngg:|. (B17¢)
k

Here, we introduced the auxiliary function

Mgy ? — Ny_g

Ck,q,ivy= ———=2— (B18)
€k—4 — €y TIV
where
= —l B19
e = HreolT — | (BI9)
is the Bose function. The initial terms ny = —no(np + 1)/T

and ny = [eW+SI0/T _ 1]71 are exponentially small in the
examined temperature range H < T and are therefore omit-
ted in the following. Analyzing the remaining momentum
sums, we note that at low temperatures, the thermal momen-
tum kg, = +/2mT < 1/a acts as an ultraviolet cutoff. In the
limit |q| < ky, we may thus expand the auxiliary function
C(k,q,iv)as

v .
Clh.q.iv) ~ clk, q,iv) = —np—< L (B20)
Vi -q—iv
Here, n;( = —Bni(ng + 1) and the magnon velocity is vy =

Viex. Moreover, to leading order in ¢, the ¢ dependence
arising from the factors Ji+,/2 in Eqs. (B17) can be neglected
because the longitudinal susceptibility (B15) depends only
on the sum P%'(Q) + P'°(Q) and the product P°'(Q)P'°(Q),
which are even functions of g. We therefore approximate

1
PRQ) = = ) elk, g, iv),

k

P(Q) =P"(Q)

1 ng )
= ﬁ ; I:? + C(k, q» lv)"kil?

(B21a)

(B21b)

1 2nyJ; .
P°Q) = v Xk:[ ; ky e, q, w)J,f]. (B21c)

Furthermore, in the given temperature range, the integrals
are dominated by small momenta, so that we can neglect
the momentum dependence of J; in the integrands of (B21).
Hence, we obtain

P(Q) = P*'(Q) = JoP®(Q) + p,
P'Y(Q) = J5P*(Q) + 2Jop,

(B22a)
(B22b)

for the generalized polarizations in Egs. (9), where
1
p= N_S ; Nk

is the density of thermally excited magnons, already defined in
Eq. (16). In order to simplify the numerical analysis, it is fur-
thermore convenient to rewrite the integrands of the functions
P%(Q) and p in dimensionless form. With the substitution
k = kna/€, we obtain

POO(q’ lCl)) — P(£>’
Uthq

where vy, = kg /m is the thermal velocity. The function P(z)
has already been defined in Eq. (8); i.e.,

(B23)

(B24)

Qp(kina)” / * 7\ €T et
P@) = 20U [ degp = ) =,
©=Gapar ), €\ &) o Z 1y

with the dimensionless magnetic field # = H/T and the an-
gular average gp(z) defined in Eq. (14). Applying the same
substitution as above, the magnon density p in Eq. (B23) can
be written as

(B25)

D
p = %F(D/Z)Li%(e‘h), (B26)
where the polylogarithm Li;(z) is defined by
Lis(z) = L /Oode i (B27)
() Jo e/z—1

with the I'-function I'(s). Substituting the approximations
(B22) and (B24) into Eq. (B15), we finally obtain the expres-
sion for the longitudinal susceptibility given in Eq. (17),

P(iy)

(14 p)? + JoP({2)

Uhq

xX“(g, iw) = (B28)
Note that in order to be consistent with the previous
low-momentum expansion, we neglected the higher-order q
dependence of J; in the denominator of Eq. (B15).

APPENDIX C: EVALUATION OF THE LONGITUDINAL
DYNAMICAL STRUCTURE FACTOR IN DIMENSIONS
D=1,2,3

The longitudinal dynamical structure factor

1 1
§%(g, @) =[1 + m};lmx“(q, ®+i0")

0+
1 1 [ P(2H00)

= —I . Cl1
l1—eTg (14 p)*+ JoP(—w+’O+)i| D

Uthq

may be obtained by evaluating the function P(z) numerically.
The zero-magnon velocity xo = wg/(vng) and the damping
¥q = YoUmg can then be obtained from

0=(1+p)*+ JoReP(xy +i0") (C2)
and

_ ImP(xo + i0™)

=0T C3
ReP'(xo + i0+) ©

Yo

224437-8



ZERO-MAGNON SOUND IN QUANTUM HEISENBERG ...

PHYSICAL REVIEW B 102, 224437 (2020)

To evaluate the integral (B25), we need the explicit expres-
sions of the function gp(z) in dimensions D = 1,2, 3; in
particular, the real and imaginary parts of the analytical con-
tinuation gp(x + i0™) with x € IR. The analytic properties of
this function for arbitrary D are summarized in Ref. [32]. We
obtain, in D = 1, 2, 3 for the real part,

: 0, x| =1

R 0%) = , C4

810+ 00) {lgz, el #1 ()
: 1, lxl <1
Regy(x +i07) = {1 — b x| ~1 (Cav)
Vxr-1’
1
Regs(x+i0%) = 1 — S 1n | %] (C4c)
2 I —x
Note that for x > 1, we may approximate
- 1
Regp(x+i0") ~ ——, (&%)
Dx
as used in Eq. (18). The imaginary part is given by
i
Img; (x +i07) = 7 KIS = x) 4+ 8(1 + )], (C6a)
X
Imgy(x +i0%) = ——0(1 — |x|), (C6b)
s Ji-2

Imgs(x + i0*) = %x@(l — k). (C60)

Substituting this into the definition (B25) yields, for the
real part of P(x + i01),

RePD=1 (X + l0+)

ktha 0 \/E eh+e
=— P d , C7
2nT ,/0 € (x2—¢) (ehte — 1)2 (C7a)
RePp_r(x + 10+)
_ (kna? | 1 * e X elte
T 4aT | et —1 0 Vil —€ (ehte — 1) |
(C7b)
RePp_3(x +i0™)
k 3
_ (kna) ﬂLil(e‘h)
4m?T | 2 2

[e9) h+e€
_)_‘/ detn| Ve e -1, (C7c)
2 Jo Ve —x|(erte — 1)

where P denotes the Cauchy principal value. The imaginary
part reads

kna  xet

ImPp_ 0") = ————, C8

mPp_;(x +i07) 2T [t _ 1] (C8a)
kna)? 2

ImPp_a(x + i07) = ij;)TxLi;(e-h—x ). (C8b)
k 3

ImPp_s(x +i0) = &8 X (C8c)

8nT et — 1’

The longitudinal structure factor (C1) and the correspond-
ing zero-magnon velocities (C2) and damping rates (C3) may
now be obtained by calculating the expressions (C7) and (C8)
for Re Pp(x + i0™) and Im Pp(x + i0") numerically.

Nearest-neighbor exchange

As emphasized above and in the main text, the zero-sound
truncation employed in the derivation of the flow equations
can formally only be justified for a long-range exchange inter-
action. It is nevertheless useful to extrapolate the result (B28)
to a Heisenberg ferromagnet with nearest-neighbor exchange
coupling J. In this case, we obtain in dimensions D for the
interaction J and the mass m,

Jo =2DJ,
m = 1/(2JSa*),

(C9a)
(C9b)

where a is the lattice spacing. The thermal momentum and
velocity are then given by

ki = a” ! T (C10a)
th = JS’
k
vh = 2 — 24J/TJS. (C10b)
m

Note that Jy = 2DJ =D/ (Sma®) has also been used to
generate Fig. 2.
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