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Machine learning phases and criticalities without using real data for training
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We study the phase transitions of three-dimensional (3D) classical O(3) model and two-dimensional (2D)
classical XY model, as well as both the quantum phase transitions of 2D and 3D dimerized spin-1/2 antiferro-
magnets, using the technique of supervised neural network (NN). Moreover, unlike the conventional approaches
commonly used in the literature, the training sets employed in our investigation are neither the theoretical
nor the real configurations of the considered systems. Remarkably, with such an unconventional set up of the
training stage in conjunction with some semiexperimental finite-size scaling formulas, the associated critical
points determined by the NN method agree well with the established results in the literature. The outcomes
obtained here imply that certain unconventional training strategies, like the one used in this study, are not only
cost-effective in computation but are also applicable for a wide range of physical systems.
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I. INTRODUCTION

The applications of machine learning (ML) methods and
techniques to the studies of many-body systems have recently
inspired the communities of physics, applied physics and
physical chemistry. Moreover, many important and exciting
achievements have been obtained using the ML approach in
the last a few years [1–86]. Among these achievements, first
principles calculations of properties of materials and analyz-
ing the signals from colliders in high energy physics are two
such notable examples. Yet another significant accomplish-
ment is the success of investigating critical phenomena using
both the supervised and unsupervised neural networks (NN).

By employing the dedicated convolutional neural network
techniques (CNN) which can capture certain characteristics
of the studied models, it has been demonstrated that the phase
transitions associated with many classical and quantum sys-
tems, including the Ising model, the XY models, as well as
the Hubbard model have been studied with various extent of
satisfaction. Because of these numerous successful examples
mentioned, it is optimistically believed that with the ideas of
ML one may be able to uncover features of certain systems
that cannot be obtained by the conventional methods. Even
those days, seeking devoted ML techniques to surpass the suc-
cess that the traditional approaches can reach is still vigorous.

The standard procedure, i.e., the most considered scheme,
of investigating the phase transitions of physical models by
supervised NN consists of three steps [22,77,80], namely,
the training, the validation, and the testing stages. Among
these three stages, the training is the most flexible one and
various strategies have been used for this step [22,29,48,86].
Typically real configurations of the studied systems obtained
from certain numerical methods are employed as the training
sets. In addition, the training has been applied to various
chosen temperatures T (relevant parameter) across the tran-

*fjjiang@ntnu.edu.tw

sition temperature Tc (critical point). This indicates that in
principle Tc (or the critical point) should be known in advance
before one can employ the NN techniques. Such a training
approach has led to success in studying the critical phenom-
ena associated with several many-body systems such as the
Ising and the Hubbard models. Other schemes for which the
locations of the critical points are not required are introduced
as well [48,79,86,87]. For instance, the method of using the
theoretical ground-state configurations in the ordered phase
as the training sets are demonstrated to be valid for ferromag-
netic and antiferromagnetic Potts models. Although the details
of the confusion scheme outlined in Ref. [29] are different
from the method of using the theoretical ground states as the
training set, it is yet another approach which does not require
the knowledge of the critical points and needs fewer degree
of freedom to carry out the NN calculations. For the readers
who are interested in the details of these training processes,
see Refs. [22,29,48,77,80,86].

The strategy of considering the theoretical ground states
in the ordered phase as the training sets requires only one
training and the knowledge of the associated critical point(s)
is not needed. This approach has been applied to both the
ferromagnetic and the antiferromagnetic Potts models, and the
obtained outcomes show that the idea is effective [48,86]. In
particular, numerical evidence strongly suggests that with this
method, the computational demanding for the training stage is
tremendously reduced, and its applicability is broad.

Despite the NN results of estimating the critical points
associated with the Potts models, using the method of consid-
ering the ground-state configurations in the ordered phase as
the training sets, are impressive, an interesting question arises.
Specifically, is this approach applicable for studying the zero
temperature phase transitions of quantum spin systems, as
well as the phase transitions of models with continuous vari-
ables such as the classical O(3) model?

To answer the crucial question outlined in the previous
paragraph, here we study the phase transitions of three-
dimensional (3D) classical O(3) (Heisenberg) model and
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two-dimensional (2D) classical XY model, as well as the
quantum phase transitions of 2D and 3D dimerized spin-1/2
antiferromagnets, using the simplest deep learning neural net-
work, namely, the multilayer perceptron (MLP). In particular,
unlike the conventional or the unconventional training pro-
cedures introduced previously, in this investigation, we have
adopted an alternative strategy for the training. In particular,
the training sets employed here belong to neither the theoreti-
cal nor the real configurations of the considered systems.

The motivation for using the simplest deep learning NN in
the study is that whether a NN idea is valid or not should not
depend on the detailed infrastructure of the built NN. Hence,
a MLP made up of only three layers is employed here. One
can definitely consider a more complicated (and dedicated as
well) NN such as CNN for the associated investigations. This
will be left for future work.

Remarkably, even using the extraordinary training sets
mentioned above and some semiexperimental finite-size scal-
ing (which will be introduced later), the constructed MLP can
effectively detect the critical points of all the studied classical
and quantum physical systems. The intriguing outcomes ob-
tained here strongly suggest that the approach of investigating
the targeted physical systems before employing any objects
for the training, such as those done here and in Refs. [48,86],
is not only cost-effective in computation, but also leads to ac-
curate determination of the associated critical points. Finally,
it is amazing that the simple procedure described here is not
only valid for studying the phase transitions associated with
spontaneous symmetry breaking (SSB), but also works for
those related to topology.

This paper is organized as follows. In Sec. II, the studied
microscopic models and the employed NN are described. In
particular, the NN training sets and labels are introduced thor-
oughly. In Sec. III the resulting numerical results determined
by applying the NN techniques are presented. Finally, Sec. IV
concludes our investigation.

II. THE MICROSCOPIC MODELS AND OBSERVABLES

A. The 3D classical O(3) (Heisenberg) and 2D classical
XY model

The Hamiltonian HO(3) of the 3D classical O(3)
(Heisenberg) model on a cubical lattice considered in our
study is given by

βHO(3) = −β
∑
〈i j〉

�si · �s j, (1)

where β is the inverse temperature and 〈i j〉 stands for the
nearest neighboring sites i and j. In addition, in Eq. (1) �si is a
unit vector belonging to a 3D sphere S3 and is located at site
i.

Starting with an extremely low temperature, as T rises, the
classical O(3) system will undergo a phase transition from
an ordered phase, where majority of the unit vectors point
toward the same direction, to a disordered phase for which
these mentioned vectors are oriented randomly. Relevant ob-
servables used here to signal out the phenomenon of this phase
transition are the first and the second Binder ratios (Q1 and

FIG. 1. The studied dimerized quantum antiferromagnetic
Heisenberg models: 2D ladder (left) and 3D plaquette (right) models.
The bold and thin bonds shown in both sub-figures represent J ′ and
J couplings, respectively.

Q2) defined by

Q1 = 〈|m|〉2/〈m2〉, (2)

Q2 = 〈m2〉2/〈m4〉, (3)

where m = 1
L3

∑
i �si and L is the linear box size of the system

[88].
The Hamiltonian of the 2D classical XY model on the

square lattice has the same expression as HO(3), except that the
corresponding unit vector �si at site i belongs to a (2D) circle
instead of a 3D sphere.

B. The 2D and 3D dimerized quantum antiferromagnetic
Heisenberg models

The 2D and 3D dimerized quantum antiferromagnetic
Heisenberg model share a similar form of Hamiltonian given
as

H =
∑
〈i, j〉

Ji j �Si · �S j, (4)

where again 〈i, j〉 stands for the nearest neighboring sites i and
j, Ji j > 0 is the associated antiferromagnetic coupling (bond)
connecting i and j, and �Si is the spin-1/2 operator located
at i. The cartoon representation, in particular the spatial ar-
rangement of the antiferromagnetic couplings, of the studied
models are shown in Fig. 1 (In this study, these quantum spin
models will be called 2D ladder and 3D plaquette models if no
confusion arises). From the figure one sees that, as the ratios
J ′/J (of both models) being tuned, quantum phase transitions
from ordered to disordered states will take place in these
models when g := J ′/J exceed certain values gc. Relevant
observables considered in our investigation for studying the
quantum phase transitions are again the first and the second
Binder ratios described above. For the studied spin-1/2 sys-
tems, Q1 and Q2 have the following definitions:

Q1 = 〈|Ms|〉2/〈M2
s 〉, (5)

Q2 = 〈M2
s 〉2/〈M4

s 〉, (6)

Ms = 1

Ld

∑
i

(−1)i1+...+id Sz
i , (7)
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FIG. 2. The NN (MLP), which consists of one input layer, one hidden layer, and one output layer, used here and in Ref. [86]. In the figure d
is the dimensionality of the considered system. In addition, the objects in the input layer are made up of 200 copies of only two configurations
for all the studied models. Finally, there are 512 (or 1024) nodes in the hidden layer and each of these nodes is independently connected
to every object in the input layer. Before each training object is connected to the nodes in the hidden layer, the steps of one-hot encoding
and flatten are applied. The activation functions (ReLU and softmax) and where they are employed are demonstrated explicitly. For all the
considered systems, the output layers consist of two elements.

where d is the dimensionality of the studied models.
These mentioned gc of the quantum spin systems, as well

as the Tc of the 3D classical O(3) and 2D classical XY models
introduced previously, have been calculated with high accu-
racy in the literature [89–93].

III. THE CONSTRUCTED SUPERVISED
NEURAL NETWORKS

In this section, we will review the supervised NN, namely,
the multilayer perceptron (MLP) used in our study. The em-
ployed training sets and the associated labels for the studied
models will be described as well.

A. The built multilayer perceptron (MLP)

The MLP used in our investigation is already detailed in
Ref. [86]. Specifically, using the NN library keras [94], we
construct a supervised NN which consists of only one input
layer, one hidden layer of 512 (or 1024) independent nodes,
and one output layer.

The pictorial representation of the constructed MLP, in-
cluding the steps of one-hot encoding (which is natural and
somehow essential for a NN with multi-component outputs)
and flatten is shown in Fig. 2. The motivation for such a
construction will be detailed later when the training strategies
for the studied four models are introduced. Here we would like
to point out that the output of the built NN is a two-component

vector. The norm R of such a vector �v, which is defined by

R(�v) =
√

v2
1 + v2

2, (8)

will be employed to investigate the considered phase transi-
tions. As we will demonstrate later, by studying the T (g)
dependence of R, the associated critical points Tc (gc) can be
estimated with high precision.

A typical NN investigation consists of three stages, namely,
the training, the validation, and the testing stages. Here we
will focus on describing the training procedures employed
in this study since the ideas behind the other two stages are
similar to that of the training stage.

First of all, 200 identical copies of two certain configura-
tions, which will be introduced later, are used as the training
set. Second of all, the steps of one-hot encoding and flatten
are performed. Figure 2 contains the details of how these two
steps are done. The main algorithm adopted in the NN calcu-
lations is the mini-batch. As a result, objects in the training set
are permuted randomly before the optimization procedure is
conducted. Therefore if one arbitrarily picks up two different
batches, it is unlikely that they are identical in all aspects.
Figure 3 is a cartoon representation of how the mini-batch
algorithm works in reality.

Each node in the hidden layer is connected independently
to very object resulting from the procedures of one-hot encod-
ing and flattern. Such connections are named weights. Every
node (of the hidden layer) is also linked to each element of
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1st batch 2nd batch last batch

1. Import one batch
at a time into the built
NN.

2. Calculate the losses from
the outputs of the inputted
batch.

3. Use the mean of the
losses associated with the
inputted batch to optimize
the neural network.

4. Repeat steps 1, 2 and 3
for every batch.

FIG. 3. The mini-batch algorithm employed in the NN
calculations.

the output layer, after being activated by the ReLU function
(see Figs. 2 and 4). These links are called weights as well.
Finally, the softmax function σ (σ (xi ) = exp(xi )/

∑
j exp(x j )

for i = 1, 2, 3, ...) is applied to the output layer so that every
output vector �v = (v1, v2) has the property of v1 + v2 = 1.

The Adam optimizer is employed to update the weights
so that the loss function (defined later) will reach a minimum.
The loss function used is the categorical crossentropy C which
is given by

−1

n

∑
x

2∑
j

y j ln a j, (9)

where n is the total number of objects contained in the input
set (for the training stage, n is the number of objects included
in each batch). a j are the outcomes obtained after applying all
the layers. Moreover, x and y appearing above are the train-
ing inputs and the corresponding designed outputs (labels),
respectively. One cycle of training all batches is called an
epoch. At least 800 epochs is used in our NN calculations.
Finally, in our study the learning rate η is the default one, and
L2 regularization is applied as well to avoid overfitting.

For the four studied models, results calculated using 10 sets
of random seeds are all taken into account when presenting
the final outcomes. Specifically, each NN calculation leads to
a value of R, and the R as well as its uncertainty quoted in this
study are obtained from these 10 results of R. The motivation
of considering 10 sets of random seeds is to examine whether
the initial weights as well as other elements employed in
the training stage have any nonnegligible influence on the
final outcomes. We would also like to point out that in the
testing stage, each of these 10 calculations uses the same set
of configurations produced from the Monte Carlo simulations.
Later we will come back to this and make a comment about it.

B. Training set and output labels for the 3D classical O(3) and
2D classical XY models

Regarding the training sets employed in the calculations,
instead of using real configurations obtained from simulations
or the theoretical ground states in the ordered phase of the
considered system, here we use a slightly different alternative.

input layer

x1

x2

xn

h1

h2

hm

h′
1

h′
2

h′
m

w11

w21

wn1

hidden layer

hj =
∑n

i=1 xiwij + bj ; h′
j =ReLU(hj)

FIG. 4. The activation function ReLU.

Specifically, to train the NN on a L by L by L cubical lattice
for the 3D classical O(3) model, the training set consists of
only two configurations. In addition, 0 is assigned to every
site of one configuration and the other configuration is made
up by giving each of its sites the value of 1. As a result, the
output labels are the vectors of (1,0) and (0,1). Configurations
and labels obtained using the same ideas as that of the 3D
O(3) model are employed for the 2D classical XY model. The
motivation for considering such training sets will be explained
in next subsection.

C. The expected output vectors for the 3D classical O(3) and 2D
classical XY models at various T

It should be pointed out that an O(3) configuration is spec-
ified completely by the associated two parameters, namely,
θ and ψ at each site of the underlying cubical lattice. At an
extremely low temperature T , all the unit vectors of a O(3)
configuration point toward a particular direction. Under such a
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circumstance, ψ mod π is either 0 or 1 for every unit vector [of
an O(3) configuration]. The employed training set described
in the previous subsection is motivated by this observation.
As a result, the magnitude R of the output vector for a ground
state O(3) configuration is 1. When the temperature rises, one
expects that R diminishes with T and for T � Tc, R takes its
possible minimum value 1/

√
2. Consequently, studying the

magnitude of the NN output vectors as a function of T can
reveal certain relevant information of Tc.

Here we would like to emphasize the fact that ψ rather than
θ is considered in our investigation. This is because for any
two given fixed values of ψ , their related arc length on the 3D
unit sphere is the same. For θ , this is not the case. Therefore,
with ψ one should arrive at more accurate outcomes.

The same scenario described above for the 3D classical
O(3) model applies to the 2D classical XY model as well.

D. Training set and output labels for the 2D and 3D quantum
spin models

For the 2D and 3D dimerized quantum antiferromagnetic
Heisenberg models investigated here, their associated clas-
sical ground-state configurations (in the ordered phase) are
adopted as the training sets. Specifically, the training set for
each of these two models consists of two configurations.
Moreover, the spin value of every lattice site is either 1 or
−1 and they are arranged alternatively. In other words, for a
site which has a spin value 1 (−1), the spin values for all of
its nearest neighbor sites are −1 (1). With such set up of the
training sets, the employed output vectors should be (1,0) and
(0,1) naturally.

We would like to emphasize the fact that the training sets
considered for the studied 2D and 3D quantum spin models
are not even among any of the possible ground-state configu-
rations of these two systems.

E. The expected output vectors for the 2D and 3D dimerized
quantum spin models at various g

Due to quantum fluctuations, it is not possible to assign
any definite spin configurations for these investigated quan-
tum spin models when g = 1 and g > gc. Therefore, how
the corresponding output vectors behave with respect to the
dimerization strength g will be treated classically here. Con-
sequently, R should be 1 and 1/

√
2 for g = 1 and g � gc,

respectively. As we will demonstrate shortly, the R (magni-
tude) of the outputs associated with the NN studies of these
quantum spin systems follow these rules (i.e., the values of
R are 1 and 1/

√
2 for g = 1 and g > gc, respectively) in a

satisfactory manner, hence lead to fairly good estimations of
the critical points.

IV. THE NUMERICAL RESULTS

The configurations associated with the considered systems,
namely, the 3D (classical) O(3), the 2D classical XY, the 3D
plaquette, as well as the 2D ladder models are generated by the
Wolff and the stochastic series expansion (SSE) algorithms
[92,95,96]. In addition, for each of the studied model, the cor-
responding configurations are recorded once in (at least) every
two thousand Monte Carlo sweeps after the thermalization,

FIG. 5. Q1 as functions of β for the 3D classical O(3) model.

and at least one thousand configurations are produced. These
spin compositions are then used for the calculations of NN.
A semiexperimental finite-size scaling, which is adopted to
estimate the critical points, will be introduced as well in this
section.

A. Results of 3D classical O(3) model

In Fig. 5, the observable first Binder ratio Q1 are considered
as functions of β for L = 8, 12, 16. As can be seen from the
figure, the curves corresponding to various L intersect at a
value of β close to the predicted critical point βc = 0.6929
[89,90].

For a O(3) configuration obtained from the simulation, all
the S3 vectors associated with it are converted to ψ mod π and
the resulting configuration is then fed into the trained NN, see
Fig. 6 for a cartoon representation of such a conversion.

Density plots for one x-y layer of two O(3) classical spin
states as well as their corresponding ψ mod π configura-
tions are shown in Figs. 7 and 8. The outcomes presented in
these figures are obtained at the inverse temperatures β = 5.0
(Fig. 7) and β = 0.05 (Fig. 8). Significant difference of ψ

ψ

ψ1

2

0

1

FIG. 6. Conversion of ψ associated with the O(3) model into the
used discrete variables 0 and 1.
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FIG. 7. Density plots of one x-y layer of one O(3) classical spin
state (top) as well as the corresponding ψ mod π configuration
(bottom). The results are obtained at β = 5.0.

mod π configurations as demonstrated in the figures implies
that a phase transition occurs at an inverse temperature be-
tween β = 5.0 and β = 0.05.

It should be pointed out that due to fluctuations, occasion-
ally configurations obtained at β = 5.0 will show the feature
that appears in Fig. 8.

R as functions of β for L = 8 and L = 20 are shown in
Fig. 9. While it is clear that both panels of Fig. 9 imply R
change rapidly close to βc = 0.6929, βc cannot be calculated
unambiguously when only the information of R is available.

If one assumes that R diminishes linearly with β in the
critical region, then βc can be approximately estimated by the
intersection of the curves of R and 1/

√
2 + 1 − R. Such an

idea has been used in Ref. [86] to calculate the Tc of the 3D
5-state ferromagnetic Potts model as well as the gc of the 3D
plaquette model (the latter will be studied in more detail here).
Here we adopt a more appropriate approach for the determina-
tion of the considered critical points by taking into account the

FIG. 8. Density plots of one x-y layer of one O(3) classical spin
state (top) as well as the corresponding ψ mod π configuration
(bottom). The results are obtained at β = 0.05.

deviation between the theoretical and the calculated R. Notice
that the designation of the training set is based on the ground-
state configurations of the considered models. In other words,
they are indeed related to the associated ground-state configu-
rations, but not directly. With such a set up, one would expect
that in the testing stage, the R corresponding to configurtaions
obtained at extremely low temperatures should reach the value
of 1. In reality, calculation done at a very low temperature
takes huge amount of computing resource. Hence, an overall
shift �, which is the difference between 1 and the R associated
with the largest β, is conducted [97]. With such a strategy
R + � at the simulated lowest temperature take the value of
1. It should be noted that the simulated lowest temperature
Tlow should has the property that the R closed to Tlow should
(almost) saturate to a constant. Although such a approach
will certainly introduce some systematic uncertainties to the
determination of Tc (gc), it turns out that the critical points
estimated by this approach are in good agreement with the
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FIG. 9. R as functions of β for the 3D classical O(3) model. The
top and bottom panels are for L = 8 and L = 20, respectively.

known outcomes in the literature. Later we will come back
to discuss the option of choosing a relevant temperature to
calculate �.

Figures 10 and 11 demonstrate the associated curves made
up of considering the data of R + � and 1/

√
2 + 1 − R − �

as functions of β for L = 4, 8, 12, 20, 24. As can be seen
from the figures, the intersections of these two curves for all
the L (except the one of L = 4) are in good agreement with
the theoretical prediction βc ∼ 0.693 (which are the vertical
dashed lines in these figures). While for large L, the estimated
values of β at which the mentioned two curves intersect are
slightly away from βc = 0.6929, the results shown in Figs. 10
and 11 indicate that the idea of estimating βc by consider-
ing the intersection of the curves associated with R + � and
1/

√
2 + 1 − R − � is an effective approach. In particular,

considering the simplicity of both the training procedure and
the semiexperimental method of calculating βc (for any finite
L) employed in this study, the achievement reaches here for
the determination of the Tc of the complicated 3D classical
O(3) model is remarkable.

The success of calculating the Tc of 3D classical O(3)
model through the idea of only considering ψ mod π indicates

FIG. 10. R + � and 1/
√

2 − � + 1 − R as functions of β for the
3D classical O(3) model. The top and bottom panels are for L = 4
and L = 8, respectively.

that partial information of the model is sufficient to estimate
its associated critical point accurately.

It is worthy to mention that an equivalent method of
calculating the critical point is to look for the temperature
T1 so that R + � takes the value of (1 + 1/

√
2)/2 at T1.

Then Tc is just T1. Figure 12 demonstrates the determina-
tion of Tc for the O(3) model using this idea. In Fig. 12
the vertical dashed and horizontal solid lines represent the
expected Tc and (1 + 1/

√
2)/2. Clearly the intersection of R

and (1 + 1/
√

2)/2 matches Tc very well. This indicates that
the described method indeed can be employed to determine Tc

with high accuracy.
To calculate the critical points of the studied models with

high precision using the intersections described above, one
may apply certain forms of finite-size scaling to those cross-
ing points. Based on the outcomes demonstrated in Figs. 10
and 11, it is clear that the R associated with the 3D classi-
cal O(3) model receives mild finite-size effect. Apart from
this, accurate determination of the crossing places in the
relevant parameter space, particularly high precision esti-
mated uncertainties for these crossing points, is needed to
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FIG. 11. R + � and 1/
√

2 − � + 1 − R as functions of β for the
3D classical O(3) model. The top, middle, and bottom panels are for
L = 12, L = 20, and L = 24, respectively.

carry out the fits. Hence, we postpone such an analysis to
a latter subsection where 2D three-state ferromagnetic Potts
model and 2D classical XY models on the square lattices are
discussed.

FIG. 12. R + � as functions of β for the 3D classical O(3)
model. The vertical dashed and horizontal solid lines represent the
expected Tc and (1 + 1/

√
2)/2.

B. Results of 2D quantum spin system

The first Binder ratio Q1 close to gc for the studied 2D
dimerized spin-1/2 antiferromagnet (2D ladder model) are
shown in Fig. 13. Similar to the case of 3D classical O(3)
model, various curves of large L tend to intersect at a value
of g around 1.9. The estimated intersection g ∼ 1.9 matches
nicely with the known result gc = 1.90948(5) in the literature
[92]. Of course, a better determination of gc requires the
performance of a dedicated finite-size scaling analysis.

For the 2D ladder model, the associated R as functions of
g for L = 24, 48 are shown in Fig. 14. Moreover, by using
the idea of estimating βc for the 3D classical O(3) model, the
curves resulting from treating R + � and 1/

√
2 + 1 − R − �

as functions of g are demonstrated in Fig. 15 (L = 24, 32)
and 16 (L = 48, 64). The vertical dashed lines in these figures
are the theoretical gc. Here � is the difference between the
theoretical and the calculated values of R at g = 1. As can
be seen from the figures, when box size L increases, the g

FIG. 13. Q1 (of L = 16, 24, 32) as functions of g for the 2D
dimerized quantum ladder model.
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FIG. 14. R as functions of g for the 2D dimerized quantum lad-
der model. The top and bottom panels are for L = 24 and L = 48,
respectively.

at which the mentioned two curves intersects gradually ap-
proaches the theoretical gc ∼ 1.9. One can apply certain kind
of finite-size scaling formula to fit the intersection points in
order to obtain an estimation of gc. Here we do not make such
an attempt. The validity of our approach for the determination
of the critical point associated with a quantum phase transition
will be confirmed in next subsection where the NN results of
the 3D plaquette model is presented.

C. Results of 3D quantum spin system

The gc of the 3D plaquette model studied in Ref. [93] can
be determined by considering the Néel temperatures TN of
various g close to gc. Specifically, if the logarithmic correction
is not taken into account, then close to gc, TN can be described
by TN ∼ A|g − gc|c + B|g − gc|2c, here A, B, and c are some
constants. As a result, gc can be calculated by fitting the
data of TN of various g to this form. The gc estimated by
this approach lies between 4.35 and 4.375; see Fig. 17. This
obtained gc will be used to examine the effectiveness of the
NN method for calculating the gc of the 3D plaquette model.

FIG. 15. R + � and 1/
√

2 − � + 1 − R as functions of g for the
2D dimerized quantum ladder model. The top and bottom panels are
for L = 24 and L = 32, respectively.

R as functions of g for L = 16 and 32 for the 3D plaquette
model are shown in Fig. 18. In addition, the curves resulting
from considering R + � and 1/

√
2 + 1 − R − � as functions

of g are demonstrated in Fig. 19 (L = 16, 32). The vertical
dashed lines in these figures are 4.35 which is the estimated
lower bound for gc discussed in the previous paragraph. Here
� is again the difference between the theoretical and the
calculated values of R at g = 1.

Remarkably, just like what we have found for the 2D quan-
tum ladder model, the results shown in the figure clearly reveal
the message that our NN method is valid for 3D quantum spin
model as well.

It is interesting to notice that the crossing points in both
panels of Fig. 19 are slightly below the critical point calcu-
lated from TN . We attribute this to the facts that the systematic
influence of some tunable parameters of NN as well as certain
corrections to the employed finite-size scaling method are not
taken into account here.

Nevertheless, based on the outcomes associated with both
the investigated 2D and 3D dimerized quantum antiferromag-
netic Heisenberg models, it is beyond doubt that the NN
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FIG. 16. R + � and 1/
√

2 − � + 1 − R as functions of g for the
2D dimerized quantum ladder model. The top and bottom panels are
for L = 48 and L = 64, respectively.

FIG. 17. TN as a function of g for the 3D dimerized quantum
plaquette model. The solid line shown in the figure is obtained by
using the results from a fit.

FIG. 18. R as functions of g for the 3D dimerized quantum pla-
quette model. The top and bottom panels are for L = 16 and L = 32,
respectively.

approach employed here can be used to estimate the critical
points of quantum phase transitions efficiently.

D. Verification of the semiexperimental finite-size scaling
formulas: 2D three-state ferromagnetic Potts model and 2D

classical XY model on the square lattices

1. 2D three-state ferromagnetic Potts model

In previous subsections, it is shown that the critical point
can be obtained by considering the intersection of two curves
made up of quantities associated with R. To obtain a high
precision estimation for the critical point using the crossing
points, one can apply certain expression of finite-size scaling
to fit the data (of the crossing points). Here we use the data
of the 2D three-state ferromagnetic Potts model on the square
lattice available in Ref. [48] to carry out such an investigation.
For each L, the data are obtained using a single set of relevant
NN parameters. As a result, the quoted errors are associated
with the Potts configurations themselves.

Figure 20 shows that data of R + � and 1/
√

3 + 1 − R −
� as functions of T for various L for the 2D three-state
ferromagnetic Potts model on the square lattice [48]. A fit
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FIG. 19. R + � and 1/
√

2 − � + 1 − R as functions of g for the
3D dimerized quantum plaquette model. The top and bottom panels
are for L = 16 and L = 32, respectively.

FIG. 20. R + � and 1/
√

3 + 1 − R − � as functions of T for
various L for the 2D three-state ferromagnetic Potts model on the
square lattice.

FIG. 21. Fit of the crossing points (of various finite L) to the
ansatz a + b/Lc. The data are associated with the three-state ferro-
magnetic Potts model on the square lattice [48] and the dashed line
in the figure is obtained by using the results of the fits.

of the form a + b/Lc, where a, b, and c are some to be
determined constants (a is exactly the desired Tc), is used
to fit the data of the crossing points obtained from L =
10, 20, 40, 80, 120, 240 (The data of L = 120 and 240 are not
presented in Fig. 20). When carrying out the fits, Gaussian
noises are considered to estimate the corresponding errors of
the constants a, b, and c.

The fits lead to a = 0.995(3) which matches quantitatively
with the theoretical prediction Tc ∼ 0.99497; see Fig. 21.
Moreover, it is anticipated that the exponent c of the ansatz
is given by 1/ν (ignore the subleading exponents), where ν

is the correlation length exponent. For three-state ferromag-
netic Potts model, ν ∼ 0.824 [98]. In our calculation, we find
c ∼ 1.29 which is in reasonably good agreement with the
expected 1/0.824 ∼ 1.21. All these results in turn confirm
the validity of calculating the critical points using the NN
approach presented in this study.

2. 2D classical XY model

The R + � and 1/
√

2 + 1 − R − � as functions of β for
several L of the 2D classical XY model are demonstrated in
Fig. 22. Similar to the analysis done for the 2D three-state
ferromagnetic Potts model, we would like to calculate the
crossing points for various L and use some kind of finite-size
scaling to fit the obtained data so that one can determine the
associated βc (or Tc). After obtaining coarse estimations of the
crossing points for various L from Fig. 22, more simulations
are carried out to reach a better precision for these crossing
points. These refined βc(L) are then fitted to the same formula
(i.e., a + b/Lc) as that used for the three-state Potts model.
We find that the obtained results are not satisfactory. This
can be expected since the topological characteristics of the
Kosterlitz-Thouless transition should reflect on R.

Motivated by the finite-size scaling formulas used in
Refs. [52,91,99] for the 2D classical XY model, we use a
ansatz of the form a1 + b1/[log(L)]2 (here a1 is the βc) to
fit the newly obtained data of crossing points. The outcome
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FIG. 22. R + � and 1/
√

2 + 1 − R − � as functions of β for
various L for the 2D classical XY model on the square lattice.

is good and we find the βc is given by βc = 1.119(7) (see
both panels of Fig. 23) which match very well with the known
result βc ∼ 1.1199 in the literature. It is intriguing that the
simple NN procedure used here works for the phase transi-
tion(s) associated with topology as well.

Before ending this subsection, we would like to point out
that in principle the supervised NN method is a optimization
procedure. As a result, to obtain a more accurate estimation
of the critical point in a (supervised) NN investigation, the
systematic impact associated with the tunable parameters of a
built NN, such as the number of epoch, batchsize, nodes in the
hidden layers and so on, should be examined.

V. DISCUSSIONS AND CONCLUSIONS

In this study we investigate the phase transitions of 3D
classical O(3) model and 2D classical XY model, as well as the
quantum phase transitions of both the 2D and the 3D dimer-
ized spin-1/2 antiferromagnetic Heisenberg models using the
simplest deep learning NN, namely, a MLP that is made up of
only one input layer, one hidden layer, as well as one output
layer.

In our investigation, the training set for each of the studied
models consists of only two objects. In particular, none of
the used training objects belongs to the theoretical or the real
configurations of the considered physical systems.

Remarkably, with such an unconventional approach of car-
rying out the training processes in conjunction with certain
semiexperimental finite-size scaling formulas, the resulting
outcomes from the built MLP lead to very good estimations
of the targeted critical points. The results reached here as well
as that shown in Refs. [48,86] provide convincing evidence
that the performance of some unconventional strategies, such
as employing the theoretical ground-state configurations as
the training sets, are impressive. Particularly, the simplicity
of these approaches make them cost-effective in computation.
It is amazing that the simple procedures used in Refs. [48,86]
and here are not only valid for phase transitions associated
with SSB, but also work for those related to topology.

FIG. 23. (Top) Estimation of the crossing point for L = 80. (Bot-
tom) Fit of βc(L) to the ansatz a1 + b1/[log(L)]2. The solid line is
obtained using the results from the fit.

We would like to point out that for the 3D classical O(3)
model, the training set used here consists of two configura-
tions (their elements are either all 1 or all 0). In principle, one
can consider training set made up of three, four, or even five
configurations following the same idea as that of two objects
training set. To examine whether using the training sets, which
constitute more than two objects, one can arrive at the same
level of success as that shown in the previous section, we have
performed three more NN calculations using n = 3, n = 4,
and n = 5 training sets. Here n denotes the number of objects
contained in the training set. Interestingly, the precision of
the estimated Tc of the 3D classical O(3) model obtained
from these additional calculations is becoming slightly less
satisfactory with n; see Fig. 24 for a outcome related to n = 4
and L = 20. Intuitively, this can be understood as follows.
Let us assume that initially all the unit vectors belong to
a category of the classification scheme implemented in the
training stage. Then any local fluctuation will have greater
impact on the resulting NN outputs if the training set contains
more types of objects. Despite this, it is beyond doubt that
the outcomes associated with training sets consisting of only
two configurations, including those from all the four studied
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FIG. 24. R + � and 1/
√

4 − � + 1 − R as functions of β for
the 3D classical O(3) model. The results are obtained from the
calculations which use four configurations as the training set.

models, strongly suggest the effectiveness of the approach
presented in this study.

The NN results related to all the models considered here are
obtained using 10 sets of random seeds with other parameters
of NN being fixed in the calculations. It turns out that the
influence on the NN outcomes due to the use of different
random seeds is very mild. Moreover, for several L of the
studied 3D O(3) and 2D ladder models, we have performed
analysis using only one of the 10 trained NNs. Some of the
resulting outcomes are shown in Figs. 25 and 26 (the errors
of the data shown in these new figures are associated with
the configurations determined from QMC simulations). These
new figures match nicely with that determined with 10 sets
of random seeds. Apart from this, we have also carried out
several calculations using various batchsize, epoch, and nodes
in the hidden layer. These new calculations lead to very good
agreement with that shown explicitly in this study as well,
see Fig. 27 for one result from these new calculations. The
additional investigations introduced in this paragraph imply
that the tunable parameters of NN have very mild effects on
the resulting outcomes of R for the considered models. Hence,
the obtained conclusion here should be reliable. Of course, as
already being pointed out before, considering other systematic
impacts are required if a highly accurate estimation of the
targeted critical point is desirable.

In the following, we would like to discuss a little bit
more about the option of choosing a relevant temperature
to calculate the overall shift � for R. We will consider the
O(3) model as a demonstration. Previously � was determined
by the difference between 1 and the R associated with the
lowest temperature. Due to the employed configurations in
the training stage, this approach is indeed natural. However,
considering the fact that simulations carried out at low tem-
peratures require more computing power, an alternative to
perform an overall shift of R (by �) can be conducted as
follows. First, one notices that R should obtain the value
of 1/

√
2 at extremely high temperatures and the associated

simulations are low-cost. Hence, instead of carrying out the

FIG. 25. R + � and 1/
√

2 − � + 1 − R as functions of β for the
3D classical O(3) model. The data are obtained using only one set of
random seeds. The top and bottom panels are for L = 4 and L = 24,
respectively.

FIG. 26. R + � and 1/
√

2 − � + 1 − R as a function of g for the
2D ladder model. The data are obtained using only one set of random
seeds.
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FIG. 27. R + � and 1/
√

2 − � + 1 − R as a function of g for
the 2D ladder model. The data are obtained using different NN
parameters from that shown in the previous subsection.

shift based on the result calculated at the lowest temperature,
one can execute such an operation at the highest temperature
Th. With this new strategy, R − � is 1/

√
2 at Th. In Fig. 28,

R − � and 1 + 1/
√

2 − R + � of the O(3) model are shown
as functions of β (Here � is the difference between 1/

√
2

and the R obtained at Th). The top and bottom panels in the
figure are for L = 12 and L = 24, respectively. Based on the
outcomes demonstrated in Fig. 28, the validity of this new
approach is beyond doubt. Since one can simulate very high
temperatures with ease, this new strategy of conducting the
shift of R is cost-effective.

Although in this study we have focused on studying the
phase transitions of several models, it is probable that simple
NN approaches, similar to the one(s) considered here, are
available for investigating other physical properties of many-
body systems. We would like to emphasize the motivations
for the series of our studies of applying the NN techniques to
investigate the phase transitions of several physical systems,
as shown in Refs. [48,86] and here. Conventionally, the appli-
cation of a supervised NN to explore the critical phenomenon
of a specific system has a caveat, namely, the knowledge of
the critical point is required in advance before one can employ
the methods of NN for the investigation. Hence, for systems
with unknown critical points, it may not be easy to apply
such standard NN procedures to the studies in a straightfor-
ward manner. The approaches considered in Refs. [48,86] and
here definitely can take care of this issue, hence promote the
use of NN methods in various fields of many-body systems.
In particular, these unconventional methods are adequate for
carrying out any NN investigations of examining whether cer-
tain proposed theories are relevant for a real and unexplored
physical system.

Finally, it will be interesting to examine the accuracy in
the determination of the critical points with the NN approach
versus the traditional methods.

The NN approach is in principle a variation method and
there are several adjustable parameters which can be tuned
to reach a optimized performance for NN. In the mean-

FIG. 28. R − � and 1/
√

2 + � + 1 − R as functions of β for the
3D classical O(3) model. The top and bottom panels are for L = 12
and L = 24, respectively. The vertical dashed line is the expected Tc.
The � used here is the difference between 1/

√
2 and the R associated

with the highest temperature.

time this feature of NN also introduce certain systematic
uncertainties to the determination of the critical points, as
being described previously. Apart from this, different opti-
mizers and truncation strategies could bring systematic errors
to the results as well. Traditional methods which involve
variation principle may encounter similar situations as that
of NN. From this point of view, Monte Carlo is an ex-
cellent approach for studying phase transitions if it does
not suffer limitation due to the nature of the investigated
systems.

Any theoretical methods eventually will confront the ex-
perimental data. Hence, considering the fact that uncertainties
always come with experimental results, the NN approach is
a good alternative to the traditional methods when study-
ing phases and criticalities is concerned. Particularly, NN
may well have the potential to surpass other approaches
since the research of improving the performance and ex-
panding the applicability of NN is vigorous and is on the
fly.
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