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Collective magnetic fluctuations in Hubbard plaquettes captured by fluctuating local field method
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We establish a way to handle main collective fluctuations in correlated quantum systems based on a fluctuating
local field concept. This technique goes beyond standard mean-field approaches, such as Hartree-Fock and
dynamical mean-field theories (DMFT), as it includes a fluctuating classical field that acts on the leading
order parameter of the system. Effective model parameters of this theory are determined from the variational
principle, which allows one to resolve the Fierz ambiguity in decoupling of the local interaction term. In the
saddle-point approximation for the fluctuating field our method reproduces the mean-field result. The exact
numerical integration over this field allows one to consider nonlinear fluctuations of the global order parameter
of the system while local correlations can be accounted for by solving the DMFT impurity problem. We apply
our method to the magnetic susceptibility of finite Hubbard systems at half-filling and demonstrate that the
introduced technique leads to a superior improvement of results with respect to parental mean-field approaches,
without significant numerical complications. We show that the fluctuating local field method can be used in a
very broad range of temperatures substantially below the Néel temperature of DMFT, which remains a major
challenge for all existing theoretical approaches.

DOI: 10.1103/PhysRevB.102.224423

I. INTRODUCTION

The theoretical description of collective effects of interact-
ing fermionic systems is one of the main problems of modern
physics. In correlated materials, these collective electronic
fluctuations form effective bosonic modes, such as plasmons,
magnons, etc., that may possess a nonlinear behavior. The
origin of such behavior can be both the interaction between
different modes as well as the anharmonic fluctuation of the
single mode itself. At low temperatures, the presence of these
instability channels may result in a spontaneous symmetry
breaking associated with the formation of ordered phases in
the system. Strong collective fluctuations appear not only in
infinite crystal lattices, but also in other physical systems that
are not necessarily large and can be essentially finite. In this
regard, we mention vibrational modes in nuclei [1], breathing
modes [2] and short-range charge and spin correlations [3–6]
in systems of ultracold atoms trapped in optical lattices, and
collective spin modes in molecular magnets [7–9].

A large collection of theoretical approaches from sim-
ple mean-field theories [10–13] and rotationally invariant
path-integral schemes [14–21] to much more advanced meth-
ods [22] has been developed in order to describe these
collective effects. The simplest mean-field theory, namely the
Hartree-Fock (HF) method [23,24], is able to capture a spon-
taneous symmetry breaking in weakly interacting systems.
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For strong correlations, the preference is often given to a
polarized dynamical mean-field theory (DMFT) [25]. This
approach relies on the exact numerical solution of an effective
impurity problem, which provides an accurate approximation
for local observers [26]. Various diagrammatic extensions of
DMFT have been constructed to handle nonlocal correlations
underlying the formation of collective electron modes [22].
A particular subset of diagrams varies for different methods,
and may contain either simple GW -like diagrams [27–33]
including vertex corrections [34–37], or more complex lad-
der [38–45] and parquet [46] contributions, as well as all
possible diagrammatic terms up to a certain order of pertur-
bation expansion [47–49].

Diagrammatic techniques introduced on top of DMFT are
currently seen as the most advanced and promising tools for
description of collective fluctuations in correlated systems.
It should be mentioned, however, that applicability of these
computational scheme is limited, because it implicitly exploits
an assumption of a weak anharmonicity of collective modes.
Indeed, collective nonlocal effects in these approaches are
considered perturbatively, so that only (nearly) harmonic fluc-
tuations of the corresponding order parameter are taken into
account. This assumption works reasonably well at high tem-
peratures and/or in high dimensions [44,50–53]. However,
strong collective fluctuations that are supposed to break the
ordering at low temperatures are strongly nonlinear. It can
be expected that such physics is particularly important for
antiferromagnetic (AFM) fluctuations, since the AFM order
parameter obeys strong quantum zero-point fluctuations even
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for three-dimensional (3D) bulk materials, whereas in 2D the
ordering at finite temperatures is forbidden by the Mermin-
Wagner theorem [54]. We also believe that the nonlinearity
of collective fluctuations is a fundamental reason why all the
introduced above diagrammatic extensions of DMFT, as well
as exact diagrammatic Monte Carlo approaches [55–60], do
not allow for a quantitative description of the 2D Hubbard
model substantially below the DMFT Néel point [61]. In
this regard, the desired improvement of the theory for strong
collective fluctuations especially at low temperatures calls for
new ideas.

In this work we turn off the beaten path of doing a per-
turbative expansion around the mean-field result, and present
a method that is capable of describing nonlinear collective
fluctuations in finite systems at low temperatures. For the
sake of concreteness, we apply the formulated theory to small
Hubbard plaquettes. Among all mentioned systems that pos-
sess strong collective fluctuations, the considered model is
mostly close to molecular magnets. However, we would like to
point out that the present scheme is rather general and can be
constructed for any system where developed collective fluctu-
ations belong to the one or several leading collective modes.
In addition, the result for small Hubbard lattices at half-filling
can also be efficiently benchmarked, because quantum Monte
Carlo (QMC) simulations for such lattices do not suffer from
the sign problem [62] and therefore can provide reliable refer-
ence data.

We note that the correct description of the AFM suscepti-
bility of these small systems, which we aim to address in this
paper, is already a challenging problem. For example, our cal-
culations show that for a 4×4 square plaquette with periodic
boundary conditions applicability of the best local mean-field
approximation, namely DMFT, is limited to a temperature
of about U/8, where U is the on-site Coulomb potential.
At a twice smaller temperature, this approach that neglects
nonlocal correlations shows an unphysical Néel transition. At
the same time, a spatial pattern of AFM fluctuations on finite
plaquettes is expected to be rather simple. In this case, the
small number of lattice sites results in a coarse grid for the
Brillouin zone. Then, already a single AFM mode, which is
associated with the Q = {π, π} momentum, should capture
the most important physics of spin fluctuations in the system.
Fluctuations with other wave vectors in small systems are not
important, because the AFM correlation length is larger than
the system size.

Consequently, one can introduce a Landau free energy
F (m), where magnetization of the AFM sublattices m serves
as a “global” order parameter. According to Landau phe-
nomenology, at low temperatures the second derivative of the
free energy ∂2

mF (m)|m=0 becomes negative, and F (m) takes
the form of a Mexican hat potential (see Fig. 1). As men-
tioned above, diagrammatic schemes built on top of DMFT
partly take collective electronic effects into account, intro-
ducing a renormalization for a corresponding two-particle
fluctuation. However, consideration of a leading subset of
diagrams implies that a small nonlinearity of fluctuations is
assumed. Taking strong nonlinearity into account formally
requires to sum over all diagrams, as done, for example, in
diagrammatic QMC calculations [55–60]. Note is that this
exact perturbation expansion does not converge at low temper-

FIG. 1. Sketch of spin fluctuations (red arrows) in a Hubbard
plaquette near the antiferromgnetic state, which is described by an
effective Mexican hat potential (blue).

atures, and a renormalization procedure is required to achieve
physically interesting regimes [63]. Thus we conclude that
diagrammatic schemes on the basis of DMFT are justified
until a Mexican hat potential is formed [61]. At the same time,
their applicability at lower temperatures, where fluctuations
of the order parameter become essentially unharmonic, is
questionable. In addition, we find diagrammatic extensions of
DMFT technically too complicated for the rather simple sys-
tem under investigation. Instead, here we propose a solution of
the problem introducing an effective local field that mediates
nonlinear fluctuations of the order parameter we are interested
in. To this aim we build a fluctuating local field (FLF) ap-
proach on the basis of two mean-field schemes starting from
Hartree-Fock and DMFT solutions of the problem. Previously,
a similar approach was invented for classical lattices [64]. The
introduced FLF method is numerically inexpensive and does
not bring a sufficient complication to its parental mean-field
theory. In particular, the FLF scheme built on top of DMFT
does not involve any calculation of two-particle vertices of
the impurity problem, or similar quantities. At the same time,
nonlinear collective AFM fluctuations are explicitly included
in this scheme and accounted exactly. Thus, the theory unper-
turbatively accounts for both local correlations and collective
fluctuations by solving the DMFT impurity problem and in-
tegrating over the fluctuating field. We compare our results
to the QMC reference data for 4×4, 6×6, and 8×8 square
plaquettes, and demonstrate that the introduced FLF technique
leads to an impressive improvement of mean-field results.

II. THEORY

A. Definitions

Our goal is to address spin fluctuations of small correlated
lattices. Whereas the following consideration can be applied
to quite wide class of systems, we stick to a particular case
of a half-filled Hubbard model on a square lattice with the
following action:

S[c†, c] = −c†
1G−1

12 c2 + U
(
n jτ↑ − 1

2

)(
n jτ↓ − 1

2

)
. (1)

Here, c(†) are Grassmann variables corresponding to the an-
nihilation (creation) of electrons. Subscripts “1” and “2” are
combined indices of the lattice site j (or momentum k),
imaginary time τ (or Matsubara frequency ω = π (2p + 1)/β,
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p ∈ Z), and spin projection σ = {↑,↓}. njτσ = c†
jτσ c jτσ de-

scribes the electron density and β is the inverse temperature.
Throughout the paper, tensor notation is used, so that the
summation is taken over repeated indices. The bare Green’s
function reads

G−1 = iω − ε + hl	l
Q, (2)

where the dispersion εk = −2t (cos kx + cos ky) is the Fourier
transform of the nearest-neighbor hopping amplitude t . Note
that here we additionally account for an external AFM field h.
The tensor 	Q describes the coupling of the field h to fermion
degrees of freedom. Its explicit structure can be seen from the
following expression:

c†
1G−1

12 c2 = c†
kωσ

(iω − εk )ckωσ + c†
kωσσ l

σσ ′hlck+Q,ω,σ ′ , (3)

where Q = {π, π} is the AFM wave vector and σ l is the
l = {x, y, z} component of the vector of Pauli matrices.
The field h is then coupled to the AFM-ordered variable
Ml

Q = c†
1	

l
12c2 that describes polarization of electrons. Then,

the average m = 1
βN 〈M〉 is the AFM order parameter of the

system. While constructing the formalism, it is convenient to
keep h finite. A paramagnetic solution can be obtained taking
the limit h → 0 afterwards.

B. Resolution of Fierz ambiguity

The goal of the FLF approach is to identify the leading
instability in the system, which is to be accounted for ex-
actly, neglecting other less important modes. The procedure
has to be performed carefully, because it may lead to hidden
problems such as Fierz ambiguity [65–67]. To illustrate this
point, let us consider the initial problem (1) in a mean-field
approximation. For this aim we rewrite the on-site Coulomb
potential in terms of spin densities as

U
(
n jτ↑ − 1

2

)(
n jτ↓ − 1

2

) = − 1
2 sl

jτUll ′s
l ′
jτ , (4)

where sl = c†
σ σ l

σσ ′cσ ′ is the l projection of the spin den-
sity, and U is an arbitrary symmetric 3×3 matrix with the
constrained trace TrU = U . In what follows we assume for
simplicity that U has an inverse. In special cases when this
is not the true, one can consider some approximation or a
particular block of U that is invertible. This decoupling of the
local Coulomb interaction can also be done with inclusion of
charge degrees of freedom. However, the latter are not of the
interest for the current work, because they do not represent the
main instability of the considered system.

The mean-field description of spin degrees of freedom
can be performed introducing an effective vector field ϕ

via Hubbard-Stratonovich transformation of the interaction
term (4). The partition function of the problem can now be
rewritten as Z = ∫

D[ϕ]D[c†, c] e−S[c†, c, ϕ], where

S[c†, c, ϕ] = −c†
1G−1

12 c2 − ϕl
jτ sl

jτ + 1
2ϕl

jτU−1
ll ′ ϕl ′

jτ . (5)

The mean-field value ϕMF can be obtained from the saddle-
point approximation for the integral over the vector field ϕ,
which can be expressed in the following condition:

δS[ϕMF] = 0. (6)

Here, the action for Hubbard-Stratonovich fields

S[ϕ] = − ln det
[
G−1 + ϕl	l

Q

] + 1
2ϕl

τ jU−1
ll ′ ϕl ′

τ j (7)

can be obtained after integrating out fermion degrees of free-
dom in Eq. (5) leading to Z = ∫

D[ϕ]e−S[ϕ]. This results in
ϕl

MF = 1
2Ull ′ 〈sl ′ 〉, and we get a mean-field approximation for

the action (5),

SMF[c†, c] = −c†
1G−1

12 c2 − ϕl
MFMl

Q, (8)

that describes noninteracting fermions in the presence of an
effective field:

hl
eff = hl + 1

2Ull ′m
l ′
MF. (9)

Here, mMF is the average AFM magnetization of the mean-
field problem (8). Now, it becomes clear that the obtained
result crucially depends on a particular choice of the matrix
U leading to Fierz ambiguity in decoupling of the interaction
term. Indeed, considering the spin polarization along the z
axis, we get ϕz

sp = 1
2Uzzmz, where Uzz in the isotropic decou-

pling form Uxx = Uyy = Uzz = U/3 is three times smaller than
in the Ising form, where only the z component of the spin is
considered: Uzz = U , Uxx = Uyy = 0.

Remarkably, not only simple mean-field theories suffer
from the Fierz ambiguity. This issue is also present in more
elaborate methods like the GW +EDMFT approach [27–33]
and the triply irreducible local expansion (TRILEX) [34–36]
that have been introduced to solve strongly interacting elec-
tronic problems. A physical reason for Fierz ambiguity is
that Hubbard-Stratonovich fields ϕ exhibit strong fluctua-
tions, which make the saddle-point approximation for the
integral inaccurate. All theories that treat the interaction in
a mean-field form effectively perform an expansion around
the saddle-point approximation. Different decouplings of the
on-site Coulomb potential (4) produce different fluctuation
patterns and different mean-field solutions for the same initial
problem, and it is not a priori clear which form of the interac-
tion should be chosen. In principle, the Fierz ambiguity can be
avoided if the interaction is taken in the form that provides the
most accurate result for some quantity that can be calculated
exactly. Recently, this idea has been exploited for the deriva-
tion of the interaction for the DMFT-based dual TRILEX
(D-TRILEX) method, by approximating the exact renormal-
ized local fermion-fermion interaction [37]. Importantly, it
was argued that the most accurate form of the effective inter-
action Ull ′ cannot be obtained by any decoupling of the on-site
Coulomb potential. Here, we show that the Fierz ambiguity
can also be cured by a renormalization of parameters of an
effective theory.

Let us consider the problem (8) as a trial action, where an
effective field ϕeff plays a role of a free parameter that may
differ from the saddle-point value ϕMF. This parameter can be
chosen, for example, using the Peierls-Feynman-Bogoliubov
variational principle [68–70] for the functional

F (ϕeff ) = FMF(ϕeff ) + (βN )−1〈S[c†, c] − SMF[c†, c]〉MF.

(10)

Here, S[c†, c] is the initial action (1), FMF(ϕeff ) is the free
energy of the mean-field action (8), and 〈· · · 〉MF denotes aver-
aging with respect to the mean-field partition function ZMF.
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An optimal value of ϕeff can be found minimizing the en-
ergy ∂ϕeffF (ϕeff ) = 0. This consideration gives a well-known
Hartree-Fock result

hl
eff = hl + 1

2Uml
MF (11)

that does not depend on the form of the decoupling (4).
Importantly, this variational solution of the problem is not
only unambiguous, but also known to provide a quantitatively
correct result at least for weakly correlated systems in high
dimensions.

The above consideration may look rather trivial, but it
serves as a very instructive starting point for construction of
the fluctuation local field method. Indeed, the optimal value
of the effective field ϕeff obtained via the Peierls-Feynman-
Bogoliubov variational principle does not depend on the
decoupling. This means that the same result (11) can also be
obtained in the saddle-point approximation (9), but only for
one particular decoupling (4), which in our case corresponds
to the Ising form discussed above. The saddle-point approxi-
mation of an integral is convenient from many points of view.
Therefore, instead of finding a particular decoupling form of
the on-site Coulomb potential (4), we propose to consider
the following renormalization procedure that improves the
saddle-point approximation. From a mathematical point of
view, this can be performed taking into account a matrix of
second derivatives (curvature) of the field ϕ at the ϕMF point.
Formally this means that the action that enters the extremum
condition (6) should be changed to S[ϕ] + S ′[ϕ]. Instead of
the explicit calculation of S ′[ϕ], we assume that it can be
accounted for by a proper renormalization of the “stiffness”
U−1 in Eq. (7) calculated at the saddle point. Practically, we
adjust U to get a saddle-point approximation (6) coinciding
with the HF result (11). For example, for the isotropic decou-
pling this condition gives Uxx = Uyy = Uzz = U . We note that
such a renormalized interaction Ull is not trace constrained
anymore and thus cannot be obtained by decoupling the local
Coulomb interaction (4). In this sense, the presented idea is
consistent with the result of the D-TRILEX method [37]. The
use of the renormalized low-energy interaction for Hubbard-
Stratonovich fields is one of the key ingredients of the FLF
approach presented below.

C. FLF on top of Hartree-Fock method

There are two assumptions underlying the HF theory.
First, the interaction U should be small enough to neglect
higher-order corrections to an effective field (11). Second,
even a weakly interacting system can exhibit strong collective
fluctuations that are neglected in the HF scheme. Thus, an
improvement of the HF theory would naturally require one
to account for these collective fluctuations. Following the
pathway proposed in Ref. [64] this can be done replacing the
constant effective HF field ϕeff (11) by a fluctuating vector
field V , introducing an ensemble of effective Gaussian actions

SFLF[c†, c,V ] = −c†
1G−1

12 c2 − V lMl
Q + 1

2

βN

JQ
V2. (12)

Importantly, this action is different from the exact one (5)
that represents the initial theory. Here, unlike quantum
Hubbard-Stratonovich fields ϕ jτ , we deal with a classical

three-component vector field V that describes only the lead-
ing magnetic mode with the zero bosonic frequency � = 0
and AFM momentum Q = (π, π ). Other fluctuations, as well
as quantum fluctuations of the isolated AFM mode, are ne-
glected, since the field V does not depend on j and τ . One
can expect that our approach is particularly relevant for small
lattices, where only one discrete q-mode softens and becomes
essentially unharmonic at low temperatures. However, the role
of quantum fluctuations described by � 	= 0 is a priori not
clear and will be addressed further. It is important that no
assumption is made about the magnitude of AFM fluctuations
or whether they are harmonic or not.

We have shown previously that simply neglecting fluctu-
ations in high-energy modes may lead to incorrect results.
Following the receipt obtained in Sec. II B, this issue is solved
by introducing a renormalization of the interaction via a “stiff-
ness” parameter JQ. The former can be chosen in different and,
generally speaking, nonequivalent ways. First, let us assume
for a moment that the integral over V in the partition function

ZFLF =
∫

D[c†, c] d3V e−SFLF[c†,c,V ] =
∫

d3V e−SFLF[V ]

(13)

is estimated from the saddle-point approximation (6), where

SFLF[V ] = − ln det
[
G−1 + V l	l

Q

] + 1

2

βN

JQ
V2. (14)

Straightforwardly, one gets

V l
MF = JQ ml . (15)

Physically, the saddle-point approximation means that fluctu-
ations of the field V are neglected. It is worth mentioning that
the average magnetization ml contains an effect of an external
field h via the bare Green’s function (2). Noting that VMF also
acts as a polarized AFM field, it is reasonable to demand
that for any value of the external field h the saddle point
approximation should reproduce the HF result (11), which
also does not account for fluctuations of the order parameter.
This immediately results in the JQ = U/2 value of a stiffness
constant. Now, when all parameters of the FLF action (12) are
identified, the integral over the field V can be taken numeri-
cally exactly after integrating out fermion degrees of freedom.

It is worth noting that the self-consistent Hartree-Fock
result (11) and, consequently, VMF change dramatically upon
lowering the temperature. Whereas at high temperatures an
effective field heff is proportional to the external field h, below
the HF Néel point the average magnetization m is finite even
for an infinitesimal h. Nevertheless, our saddle-point analysis
results in the same constant value JQ = U/2 within the entire
temperature range.

There exists another possibility of how the stiffness param-
eter JQ can be chosen. Instead of finding the value of JQ that
reproduces the Hartree-Fock result (11), which is obtained via
the Peierls-Feynman-Bogoliubov variational principle (10),
one can directly use JQ as a variational parameter for the
mapping of the original model (1) onto a trial action (12). For
this aim, the FLF V in Eq. (12) can be integrated out directly,
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FIG. 2. The value of βNF (V ) for the FLF-HF theory plotted as
a function of the field V . Upper (blue) and lower (green) curves are
obtained for regions below (β = 2) and above (β = 6) the HF Néel
point βN ≈ 3.8, respectively.

which results in the following trial action:

S∗
FLF[c†, c] = −c†

1G−1
12 c2 − 1

2

JQ

βN
Ml

QMl
Q. (16)

Using the same variational principle for the functional (10),
where the mean-field action SMF[c†, c] is now replaced by
the trial action S∗

FLF[c†, c], one analytically gets JQ � U/2. In
addition, we also performed a direct numerical minimization
of the functional, which gave JQ � U/2 as well. A detailed
derivation of this result can be found in the Supplemental
Material (SM) [71].

To get further insight into the method and obtain an
additional justification of our choice of JQ, it is in-
structive to see how the Landau free energy F (V ) =
(βN )−1S (V ) behaves at h = 0. The value of F ′(V ) =
−(βN )−1 ln det [G−1 + V l	l

Q]
−1

decreases with an increase
of V . For small V , the system responses linearly, so that
F ′(V → 0) = F ′(0) − 1

2χ0V 2, where χ0 is the bare static sus-
ceptibility of the lattice. Therefore, F (V ) exhibits a minimum
(maximum) at V = 0 if χ0 is smaller (larger) than J−1

Q . It
can be shown that for JQ = U/2 the transition between two
regimes occurs at the HF Néel temperature. For large V , the
spin polarization saturates at some mmax, so that F ′(V →
∞) = −V mmax. Therefore, the term 1

2 J−1
Q V 2 dominates at

large V , which guarantees a convergence of the integral in
ZFLF. This qualitative behavior of F (V ) resembles what one
would expect for the Landau free energy of a phenomeno-
logical theory for a critical phenomenon. However, there are
important differences. First, in our consideration F (V ) is not
a function of the order parameter m but of an effective field
V that acts on the order parameter. Second, F (V ) is different
from the common 2-4 form of the double-well potential. In
particular, it shows ∝V 2 behavior at large V .

Now let us discuss the role of fluctuations using a specific
example. Figure 2 shows behavior of the Landau free energy
for the 4×4 plaquette for U = 2t . We plot βNF (V ) for two
inverse temperatures β = 6 and β = 2 below and above the
HF transition point, respectively. For high temperature the
curve shows a single minimum at V = 0. Below the HF tran-
sition point the system reveals phase (Goldstone) fluctuations
originating from a degeneracy of the minimum of the Mexican
hat potential. The amplitude of fluctuations can be estimated

from regions where βNF (V ) deviates from its minimal value
by ∼1. This deviation corresponds to an exponential change
of the energy defined by the partition function Z . As one can
see, these regions are remarkably broad, although both values
β = 2 and β = 6 are not very close to the HF Néel point
β ≈ 3.8. Thus, it can be concluded that small Hubbard lattices
indeed exhibit strong non-Gaussian fluctuations of the order
parameter within a broad temperature interval.

D. FLF on top of the DMFT approach

For U larger than several hopping amplitudes t , the Hub-
bard model exhibits strong correlations. They are manifested
in a local moment formation and appearance of Hubbard
subbands in a single-particle spectrum. This physics is not
captured by the Hartree-Fock method. In this regime dynam-
ical mean-field theory is more suited to address this problem.
Within the DMFT, local correlations are taken into account
exactly and unperturbatively with the help of an auxiliary local
system

S ( j)
imp[c†, c] = − c†

jωσ

(
iω − �σσ ′

jω

)
c jωσ ′

+ U
(
n jτ↑ − 1

2

)(
n jτ↓ − 1

2

)
. (17)

Here, the introduced hybridization function � is local in
space, which allows one to solve this single-site impurity
problem exactly and obtain the local Green’s function Gimp.
The DMFT partition function then reads (see Ref. [72], and
also SM [71] for a different derivation)

ZDMFT = Zimp det Gimp det G−1
DMFT

= Zimp det
[
1 + Gimp

(
� − ε + hl	l

Q

)]
, (18)

where Zimp is the partition function of the impurity prob-
lem (17), and GDMFT is the DMFT Green’s function that can
be found from the relation

G−1
DMFT = G−1

imp + � − ε + hl	l
Q. (19)

The hybridization function � is obtained using the self-
consistency condition that the local part of the DMFT Green’s
function is equal to the impurity Green’s function.

The important physics that can be captured by DMFT is
primarily related with a formation of a local magnetic mo-
ment at each lattice site. Inclusion of the frequency-dependent
hybridization function �ω allows one to account for a for-
mation of the local moment, which is important for the Mott
physics. However, in the paramagnetic regime local moments
at different lattice sites are not correlated, and these collec-
tive fluctuations are missing at the DMFT level. To get an
inspiration how the DMFT can be improved, it is instruc-
tive to consider a finite Hubbard lattice at low temperatures.
According to the Mermin-Wagner theorem this system is
paramagnetic. Therefore, at h = 0 one should formally deal
with a nonpolarized DMFT solution associated with a spin-
independent hybridization function �0 and Green’s function
G0

imp. However, this approximation turns out to be unsat-
isfactory, because G0

imp does not contain information about
the local magnetic moment of the impurity problem, which
exhibits strong fluctuations around its zero average value.
Moreover, these fluctuations are characterized by a much
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smaller timescale than a single-particle dynamics described
by a single-electron Green’s function. Thus, it would be
physically correct to replace G0

imp in (19) by an ensemble of
polarized Green’s functions that provide different realizations
of the local spin moment. For this aim we introduce the FLF-
DMFT approach described below.

Following the strategy we have used to improve the
Hartree-Fock theory, we assume that magnetic fluctuations in
the system are represented by a classical AFM vector field V ,
so that the fluctuating Green’s function of the auxiliary system
equals G0

imp − V lLl
Q. Here LQ is a tensor quantity similar to

	Q in Eq. (2) that additionally carries an ω frequency depen-
dence. Then, the FLF-DMFT partition function can be written
as ZFLF = Zimp

∫
d3Ve−SFLF[V ] with

SFLF[V ] = − ln det
[
1 + (

G0
imp − V lLl

Q

)(
�0 − ε + hl ′	l ′

Q

)]
+ 1

2

βN

JQ
V2 (20)

where the FLF-DMFT Green’s function is (see SM [71])

GFLF =
〈

1(
G0

imp − V lLl
Q

)−1 + �0 − ε + hl ′	l ′
Q

〉
FLF

. (21)

It is important to compare expressions for FLF-HF (14)
and FLF-DMFT (20). They are essentially different in the
way how the FLF is introduced. In FLF-HF fluctuations are
associated with an effective field (9), which is, in fact, the
only adjustable parameter of the HF theory. In contrast, as can
be seen from Eq. (19), there are two quantities that appear in
DMFT: hybridization function � and Green’s function Gimp.
One could introduce a theory where fluctuations are associ-
ated with the hybridization function. In this case, the theory
will be similar to the FLF-HF approach, where the saddle-
point approximation for the FLF reproduces the polarized
local self-energy (see SM [71]). However, a physical picture
of a fluctuating local moment suggests a different approach
expressed by Eq. (20), where fluctuations of the local Green’s
function are considered. Nevertheless, in the former case a di-
rect connection between the FLF-HF and FLF-DMFT theories
can still be established. As we show in SM [71], this form
of the FLF-DMFT approach can be seen as FLF-HF theory
introduced for effective fermion variables in a dual space.

The saddle-point estimation for the Green’s function (21)
is

GMF −1
FLF = (

Gimp
0 − V l

MFLl
Q

)−1 + �0 − ε + hl ′	l ′
Q, (22)

where VMF can be found from the saddle-point equation

J−1
Q V2

MF = Tr
−V l

MFLl
Q(

�0 − ε + hl ′	l ′
Q

)−1 + G0
imp − V l ′′Ll ′′

Q

. (23)

In analogy with the previous consideration, we determine
V l

MFLl
Q from the observation that GMF

FLF corresponds to a po-
larized theory, where nonlocal fluctuations are neglected.
Therefore, it should coincide with a known mean-field result.
Whereas the saddle-point value of the FLF (15) within the
FLF-HF scheme was determined from the polarized HF result,
here we require that (22) reproduces the polarized DMFT

solution (19). This results in the following relation:

V l
MFLl

Q = G0
imp � G0

imp, (24)

where �
−1 = δ�−1

imp + G0
imp, and δ�imp is the difference be-

tween the non-polarized and polarized self-energies of DMFT.
This relation defines the frequency-dependent profile of the
tensor quantity LQω.

From the very beginning, the FLF V and function LQ are
introduced as a scalar product. This gives us the freedom to
choose both quantities separately up to a rescaling parameter.
For numerical calculations it is convenient to use the nor-
malized value of the FLF imposing that ||V2

MF|| = 1. Then,
substituting the result of Eq. (24) to Eq. (23), one immediately
finds an effective stiffness constant JQ. Note that, the proposed
choice for the saddle-point value of the FLF (24) is not unique.
In principle, one can find other physical arguments to fix
VMF. One more possibility that determines the saddle point is
discussed in SM [71]. However, we find that it does not lead to
a noticeable change of the result of the introduced FLF-DMFT
theory.

III. NUMERICAL RESULTS

In this section we present numerical results for the Curie
constant C = β−1∂h〈s〉 for Hubbard plaquettes with periodic
boundary conditions. Two regimes, a moderate (U = 2t) and a
strongly (U = 8t) correlated system, are considered. Results
for the FLF-HF and FLF-DMFT calculations are compared
to their parental approximations and to the reference lattice
quantum Monte Carlo (QMC) data. At h = 0 the susceptibil-
ity tensor ∂hm is isotropic. Its diagonal component is equal
to 1

3∂hl hl lnZ , where the factor 1/3 compensates for the sum-
mation over the index l . The explicit relation for the FLF-HF
theory can be found using the corresponding partition function
ZFLF (13). The second derivative of the partition function then
reads

∂2ZFLF

∂hl∂hl
=

∫ ([
∂SFLF[V ]

∂hl

]2

− ∂2SFLF[V ]

∂hl∂hl

)
e−SFLF[V ] V 2dV.

(25)

Derivatives at the right-hand side of this equation are obtained
numerically. Note that in the absence of the external field
h, the problem becomes isotropic, and the integral over the
vector field V reduces to a single-variable integral over the
absolute value of V . FLF-DMFT calculations start with ob-
taining self-energies for a polarized and nonpolarized DMFT
solution. For this aim we use the exact diagonalization solver
and apply h = 0.005t as a small polarizing field. This allows
us to obtain JQ and LQ quantities according to the above
described procedure. Further calculations are performed in the
same way as for the FLF-HF theory.

Let us turn to a comparison of obtained numerical results
for all mentioned theories against a benchmark QMC result.
Figure 3 shows an effective AFM Curie constant C as a
function of an inverse temperature β for a 4×4 plaquette for
U = 2t (top panels) and U = 8t (bottom panels). The left col-
umn corresponds to the HF case, and the right column shows
the result obtained within DMFT scheme. The QMC data
demonstrate that when lowering the temperature the Curie
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FIG. 3. Curie constant C(β ) as a function of the inverse temperature β calculated for 4×4 Hubbard plaquettes with periodic boundary
conditions for U = 2t (top panels) and U = 8t (bottom panels). Results are obtained within HF (left column) and DMFT (right column)
schemes. QMC reference data are depicted by purple dots, mean-field (HF and DMFT) results are shown by black pluses, and the FLF
approach corresponds to the solid green line. The vertical dashed line indicates the mean-field Néel transition.

constant first increases. This corresponds to the formation and
softening of a collective AFM mode. At a certain point C(β )
saturates, which is clearly visible in a strongly interacting
regime. For very low temperatures that are not shown in the
figure, C(β ) is expected to decay as β−1χgs with χgs being the
ground state susceptibility of the system.

We observe that the HF result agrees with the reference
data only for a very high temperature. Lowering the tem-
perature, the HF drastically overestimates the Curie constant
and shows an unphysical (artificial) phase transition. The HF
Néel point is indicated in Fig. 3 by a vertical dashed line.
We note that a significant overestimation is seen already for
temperatures far above the Néel point. Thus, we find that the
applicability of the HF approximation is very limited even for
a moderately correlated case, U = 2t . Compared to the HF
method, DMFT leads to a quantitatively much better result
for the Curie constant. In particular, the Néel temperature
predicted by DMFT in a strongly correlated regime, U = 8t ,
is several times lower than the one of the HF. However the
qualitative behavior of C(β ) at low temperatures remains the
same.

The FLF extension dramatically improves the result of both
mean-field approaches. For instance, a precise account for
AFM fluctuations allows to prevent a spontaneous symmetry
breaking associated with the AFM ordering. It is impor-
tant to point out that, although the FLF calculations use the
mean-field data as a starting point, resulting FLF curves for
C(β ) remain smooth at Néel temperatures predicted by bare

mean-field theories. We find that FLF theories are in a good
agreement with benchmark QMC data, especially for the FLF-
DMFT calculations. Thus, the high-temperature region, where
the FLF-DMFT approximation reproduces QMC points, is
remarkably larger compared to the bare DMFT case. At lower
temperatures, we observe a uniform discrepancy of about 20%
between the FLF-DMFT and QMC results.

As a next step, let us demonstrate how the FLF-DMFT
theory performs for larger plaquettes containing 6×6 and 8×8
lattice sites, and for a wider range of temperatures including
the region way below the DMFT Néel point. Corresponding
results are shown in Fig. 4. Here, we limit ourselves to a
moderately interacting case of U = 2t , mostly because in this
regime the reference QMC data can to obtained without heavy
numerical efforts. At the same time, we stress that correlation
effects at U = 2t are by no means weak. This can be con-
cluded from the fact that the Néel temperature predicted by
DMFT is more than two times lower than the one of the HF
theory (see Fig. 3). More elaborate studies also confirm that
electron correlations become important at U = 2t [61,73].
Indeed, although in this case the on-site Coulomb potential
U is much smaller than the bandwidth W = 8t , the value of
U should rather be compared to the width of a much narrower
peak formed at the Fermi level in the electronic density of
states.

As can be seen from the reference QMC data presented
in Fig. 4, the change in the plaquette size results in two
effects. First, the initial increase of the the Curie constant upon
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FIG. 4. Curie constant C(β ) obtained for U = 2t for 4×4
(black), 6×6 (green), and 8×8 (blue) plaquettes as a function of the
inverse temperature β. The results are compared for different QMC
(dots), FLF-DMFT (solid line), and DMFT (crosses) approaches.
The vertical dashed lines depict the DMFT Néel point, which de-
pends on the size of plaquettes.

decreasing the temperature is slower for larger lattices. This
trend is especially visible for a temperature range 4 � β � 8
and is related to the local density of electronic states. Bare
DMFT calculations qualitatively capture this effect. The same
mechanism is responsible for a decrease of the DMFT Néel
temperature upon increasing the plaquette size. The second
effect is a significant increase of the Curie constant with the
plaquette size below the DMFT Néel temperatures. However,
this temperature range lies beyond the limit of applicability
of DMFT. We emphasise that the DMFT Néel point or a
slightly lower temperature is also a practical limitation for
diagrammatic schemes constructed around DMFT [61].

Before switching to FLF-DMFT results, let us discuss what
kind of change in the FLF data can be expected upon increas-
ing the plaquette size. First, for larger plaquettes the AFM
mode, which is associated with the wave vector Q = (π, π ),
affects more lattice sites and thus becomes “more classical.”
The fact that the FLF considers only classical fluctuations
of the order parameter makes this method more appropriate
for plaquettes that are not too small. However, for very large
plaquettes other spatial fluctuations of the order parameter
associated with q 	= Q become important. This argument is
confirmed by the QMC result for the imaginary time de-
pendence of the magnetic susceptibility χq(τ ). In Fig. 5 the
AFM component of the susceptibility obtained for q = Q
(solid line) is compared to the local susceptibility summed
over all wave vectors Nχloc(τ ) = ∑

q χq(τ ) (dotted line).
The result is presented for β = 20, which is well below the
DMFT Néel point. The FLF-DMFT predictions are indicated
by dashed horizontal lines. First of all we observe that, ex-
cept for a high-energy tails seen near τ = 0 and τ = β, the
AFM susceptibility indeed shows a weak τ dependence for
all considered lattices. Also, we find that at τ = β/2 the value
of Nχloc is very close to χQ. This proves that the low-energy
collective fluctuations are dominated by a single AMF mode
associated with the Q = (π, π ) and � = 0 channel, which
justifies the main idea of the FLF approach. It can be seen that
deviation of Nχloc(τ ) from χQ(τ ) grows with the lattice size,
indicating that contributions of other q 	= Q fluctuations be-

FIG. 5. Magnetic susceptibility χ (τ ) calculated for 4×4 (black),
6×6 (green), and 8×8 (blue) plaquettes as a function of the imag-
inary time τ . Local (dots) and AFM (solid lines) susceptibilities
are exact QMC results. Horizontal dashed lines correspond to the
FLF-DMFT approximation.

come more important. This analysis suggests that FLF-DMFT
approach is best suited for medium plaquettes.

Figure 4 confirms the above reasoning. Indeed, among all
plaquettes the best numerical accuracy of the FLF-DMFT
is observed for the 6×6 system. For the 4×4 plaquette, the
biggest deviation from the benchmark result is observed near
the DMFT Néel point, where a Mexican hat potential starts
to form. It can be concluded that quantum fluctuations of
the order parameter are particularly important in this regime.
On the other hand, the biggest overestimation of the Curie
constant for the 8×8 plaquette is observed at low tempera-
tures. As we have discussed above, such an overestimation
is associated with neglecting uncorrelated spatial fluctuations
of the order parameter. It can be seen that the FLF-DMFT
method in its present form reduces to bare DMFT in the limit
of an infinite lattice, because the saddle-point estimation of
the integral over the FLF becomes exact. Since the DMFT
predicts a divergence in the Curie constant, the FLF-DMFT
is expected to show a larger overestimation of C for bigger
plaquettes.

Nevertheless, the overall performance of the FLF-DMFT
approach and its agreement with the reference data are found
to be quite satisfactory. In fact, below the DMFT Néel point
T DMFT

N the discrepancy between the FLF-DMFT and reference
QMC data does not exceed 20% for all considered plaquettes.
Moreover, this difference remains almost unchanged even
for very low temperatures T � 0.5 T DMFT

N . Note that this
regime of temperatures is known to be extremely difficult
for numerical calculations, because even the most advanced
theoretical approaches are not able to provide reasonable
results below T � 0.75 T DMFT

N [61]. In this regard, we can
qualitatively compare the result of the FLF-DMFT theory
for the 8×8 plaquette with the results of existing theories
obtained for the infinite lattice. One finds that, enlarging the
lattice size from 8×8 to infinity, the DMFT Néel tempera-
ture decreases from T = 0.10t to T = 0.08t . Then, for the
same value of the on-site Coulomb potential U = 2t consid-
ered in our work, we observe that the exact diagrammatic
Monte Carlo (DiagMC) methods [55,74] do not converge
below T = 0.83 T DMFT

N . The dual fermion [38,75–77] and

224423-8



COLLECTIVE MAGNETIC FLUCTUATIONS IN HUBBARD … PHYSICAL REVIEW B 102, 224423 (2020)

the dual boson [41–45] approaches quantitatively agree with
the DiagMC result for magnetic susceptibility, but are lim-
ited to the temperature range T � 0.78 T DMFT

N (see Fig. 13
of Ref. [61]). Diagrammatic extensions of DMFT such as
the dynamical vertex approximation (D�A) [39,40] and the
TRILEX theory [34–36] can perform calculations for lower
temperatures T � 0.75 T DMFT

N and T � 0.63 T DMFT
N , respec-

tively. However, at the DMFT Néel point both theories deviate
from the exact result already by 10–15%, and this accuracy
rapidly decays to 30–50% when lowering the temperature.
In contrast, the FLF-DMFT result for the 8×8 plaquette
presented in Fig. 4 shows a uniform discrepancy of about
10–15% down to the lowest considered temperature, that is
T = 0.5 T DMFT

N . This illustrates a conceptual advantage of the
FLF method that exactly accounts for strong AFM fluctu-
ations, which cause problems for all existing diagrammatic
extensions of DMFT.

IV. CONCLUSIONS AND OUTLOOK

We have demonstrated that an accurate account for fluctua-
tions of soft collective modes is crucially important for a cor-
rect description of a low-temperature behavior of correlated
electronic systems. For this reason we have introduced and
tested a fluctuating local field technique, which is capable of
handling these collective modes in a wide temperature range,
including a strongly nonlinear regime of fluctuations. Com-
pared to an exact QMC solution for half-filled Hubbard pla-
quettes, the FLF-DMFT scheme shows a quantitatively good
result for the Curie constant. The reason is that FLF-DMFT
explicitly considers collective AFM fluctuations in addition to
local correlations accounted for by a bare DMFT approach.

In the present paper we have benchmarked the FLF theory
for a half-filled Hubbard plaquettes with emerging classical
fluctuations of a single collective AFM mode. This system has
been chosen because of its conceptual simplicity, availability
of the numerically exact reference data, and, simultaneously,
a clear lack of existing approximations that can provide a
satisfactory solution at low temperature. The FLF-DMFT ap-
proach shows an accuracy of about 20% or better for all
considered regimes including the temperature twice lower
than the DMFT Néel point. We consider these results rather
promising, bearing in mind that the introduced computational
scheme does not require significant numerical efforts beyond
DMFT calculations.

In its present form the FLF method can be straightfor-
wardly applied to a wide range of finite correlated systems
that exhibit strong collective (charge, spin, etc.) fluctuations
with dominant single or few collective modes. In particular,
molecular magnets can be seen as attractive candidates for
the first realistic application of the FLF theory. Technically,
leading collective modes can be determined from the instabil-
ities and/or multiple solutions that arise from the mean-field
consideration. For example, one can propose a single-stripe
solution for the Lx × Ly Hubbard plaquette away from the
half-filling by imposing fluctuations in the (π − 2π/Lx, π )
channel. Of course, a quantitative accuracy of this scheme
requires an additional consideration. On the other hand, mod-
eling of large 2D lattices would require an extension of
the theory towards an inclusion of other than AFM spatial

fluctuating modes. This problem can be addressed, for exam-
ple, by modeling the infinite lattice within a cluster scheme,
and using the FLF method as a cluster solver. However, this
would require an additional study of whether the FLF can
produce sufficiently accurate data for the Green’s function.
A possible improvement of the numerical accuracy of the
FLF-DMFT method can be achieved by using a better ref-
erence system. Here, we can benefit from the fact that the
introduced scheme is based on the dual fermion ideology and
thus is not restricted only to the single-site impurity problem
of DMFT [77]. Then, the use of a small, e.g., 2×2 cluster as
the reference system will allow to us consider short-range cor-
relations exactly, whereas the collective AFM fluctuations can
be accounted for by the fluctuating field. Importantly, the FLF
method can be formulated for all possible cluster schemes,
such as a free-standing cluster or a cluster with periodic
boundary conditions [72,78]. For this purpose, the impurity
Green’s function and hybridization in the FLF-DMFT equa-
tions should be simply replaced by corresponding quantities
of the cluster scheme.

In a broader context, it is worthwhile to relate our method
to other known approaches that handle strong fluctuations
in quantum systems. Whenever leading fluctuating degrees
of freedom can be clearly isolated, constrained calculations
are widely used. For example, the analysis of molecular con-
formations in quantum chemistry is essentially based on the
estimation of the electronic energy for a constrained atomic
configuration [79]. However, there is no good way to in-
troduce a constraint for collective degrees of freedom, for
instance, to keep the total magnetization fixed while allowing
for single-electron excitations. Instead, in our work we have
introduced an additional variable, namely the fluctuating field
V , that affects the average value of the order parameter. It
resembles a seminal approach by Wheeler et al. known as the
generator coordinate method [80,81]. It is widely used in the
field of nuclear physics, and also has proved its efficiency in
a number of developments including quantum chemistry [82].
This variational approach works with a set of configurations
that differ by the value of the field acting on the system.
In practice, only a few configurations are considered, other-
wise the method becomes computationally expensive. This
is the most obvious difference from the FLF theory, where
the integral is taken over a continuously varied fluctuating
field, which in particular allows us to respect the spin-rotation
symmetry. Another prominent link can be established to the
contemporary field theories based on the functional renormal-
ization group (fRG) [83]. This method relies on the generating
functional W (V ) = ln

∫
D[φ] exp{−S[φ] + V φ}, where the

action S[φ] describes the nonlinear bosonic field theory. Thus,
the FLF-HF can be seen as a generalization of the previously
known methods [80–83]. On the other hand, the unique advan-
tage of the FLF-DMFT scheme over other known approaches
is that it allows for a simultaneous unperturbative treatment
of the on-site correlations together with spatial fluctuations of
the “global” order parameter.
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