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Effect of dipolar interactions on cavity magnon polaritons
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The strong photon-magnon coupling between an electromagnetic cavity and two yttrium iron garnet (YIG)
spheres has been investigated in the context of a strong mutual dipolar interaction between the spheres. A
decrease in the coupling strength between the YIG spheres and the electromagnetic cavity is observed, along
with an increase of the total magnetic losses, as the distance between the spheres is decreased. A model of
inhomogeneous broadening of the ferromagnetic resonance linewidth, partly mitigated by the dipolar narrowing
effect, reproduces the reduction in the coupling strength observed experimentally. These findings have important
implications for the understanding of a strongly coupled photon-magnon system involving densely packed mag-
netic objects, such as ferromagnetic nanowire arrays, in which the total coupling strength with an electromagnetic
cavity might become limited due to mutual dipolar interactions.
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I. INTRODUCTION

Following recent works on the strong coupling between
a magnonic mode of a ferromagnetic sample and a photonic
mode of a microwave cavity [1,2], also called cavity magnon
polaritons [3,4], much interest emerged in the scientific com-
munity to exploit the phenomenon as a mean to develop
novel information transfer technologies [5–10]. Some inter-
esting propositions involve multiple yttrium iron garnet (YIG)
spheres placed inside an electromagnetic cavity, such as the
magnon gradient memory [11], the long distance modifica-
tion of spin currents [12], and the development of ultrahigh
sensitivity magnetometers [13].

As these new ideas are being elaborated [14], it is important
to correctly predict the behavior of photon-magnon systems
consisting of several ferromagnetic elements coupled to an
electromagnetic resonator. In this context, the effect of dipolar
interactions between the ferromagnetic objects on the strong
photon-magnon coupling is crucial and remains relatively un-
explored.

The strong coupling of photon-magnon systems is well
understood and has been recently reviewed [15]. Its extension
to multiple independent magnons is relatively straightfor-
ward [16]. For an ensemble of N independent and identical
ferromagnetic objects, the ideal coupling is expected to be
enhanced by a factor of

√
N as compared to the coupling

strength of a single object to the cavity. However, due to
dipolar interactions between the magnetic elements, some
detuning along with inhomogeneous broadening are expected
for coupled magnon systems. In this paper, we investigate the
coupling strength of a simplified system consisting of two
YIG spheres coupled to an adjustable microwave cavity. We
show experimentally that the coupling constant g decreases
as the spheres are brought closer. The results are explained
using a model based on the Landau-Lifshitz equation and the
Fourier expansion of the magnetization in order to include
the coupling of the photons with the uniform ferromagnetic
mode as well as with the long wavelength spin wave modes,

which are excited in the presence of a nonuniform magnetic
field.

II. EXPERIMENTAL PROCEDURE

A tunable waveguide cavity consisting of a shorted X -band
waveguide in which a metallic rod of 1.36 mm of diameter is
inserted in a slit located on one side of the waveguide [17] was
used, as shown in Fig. 1. Varying the position of the rod along
the slit and its length inside the waveguide allowed the tun-
ing of the volume, resonance frequency, and electromagnetic
losses of the cavity. For the experiments, the TE109 mode with
ωc/2π = 11.69 GHz (volume Vc = 32.37 cm3) was chosen
[18]. The cavity and the YIG spheres were excited by a vector
network analyzer, which was also used as a detector to obtain
the resonance spectra for different applied fields through the
S11 reflection coefficient. In order to observe the strong cou-
pling regime, the spheres were placed on the shorted end of the
waveguide resonator where the amplitude of the rf magnetic
field is maximum. The two spheres, which will be called YIG1

and YIG2 hereafter, have a radius R1 = 0.62 ± 0.01 mm and
R2 = 0.61 ± 0.01 mm, respectively. They were placed so that
the center line (or axis) generated by the two spheres was
parallel to the direction of the external DC magnetic field H0.
The center-to-center distance d of the spheres was varied from
1.41 to 3.58 mm.

The strong coupling regime is observed when the coupling
constant g exceeds both the cavity losses κc and the magnetic
losses κm [6]. This is illustrated in Fig. 2 for YIG1, where
the hybridization of the cavity photonic mode and the fer-
romagnetic uniform mode of resonance is observed. In this
work, the rod insertion was adjusted to have κc comparable to
κm in order to facilitate the observation of the coupling. The
coupling g is obtained by subtracting the resonance frequency
of both modes for the whole range of magnetic fields, whereas
the minimum value is equal to 2g. The value of the magnetic
field corresponding to this minimum will be called Hc.
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FIG. 1. Schematic representation of the tunable cavity used ex-
perimentally. The metallic rod allows the tuning of the resonance
frequency and the losses of the cavity. The direction of the field H0

and the rf magnetic field hx are also shown.

III. RESULTS

A coupling constant of g1/2π = 29.2 MHz and g2/2π =
28.5 MHz was independently extracted for YIG1 and YIG2,
respectively. This agrees well with the theoretical value given
by [5]

g = η

√
Vs

Vc

(ωMωc

2

)1/2
, (1)

where Vs is the volume of the sphere, ωM = μ0|γ |Ms with Ms

the saturation magnetization, γ the gyromagnetic ratio, and
η represents the spatial overlap between the cavity photonic
mode and the magnonic mode. The factor η is given by [19]

η =
∣∣∣∣ 1

hmaxmmaxVs

∫
sphere

(h · m)dV

∣∣∣∣, (2)

where h is the dynamic magnetic field of the cavity with
hmax being its maximum magnitude and m is the dynamic
magnetization of the sphere with mmax being its maximum
magnitude. The value of η is usually equal to 1 when h and m
are both uniform, which is the case for a small sample placed
at the maximum of the cavity field.

The input-output formalism [6] was used to extract the
losses of each component. The losses of the cavity κc/2π

were ≈8.65 MHz, similar to the losses κm1/2π = 8.44 MHz
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FIG. 2. Strong coupling spectra obtained for the sphere YIG1

with the setup described in Sec. II. The extracted coupling constant is
g1/2π = 29.2 MHz. The hybridization of the modes occurs at a field
Hc = 0.4137 T. When there is no coupling, the resonance frequency
of the cavity and the YIG sphere is represented by the red dashed line
and the blue dotted line, respectively.
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FIG. 3. Strong coupling between the microwave cavity and two
YIG spheres placed at a mutual distance of (a) d = 3.58 mm and
(b) d = 1.41 mm. The dipolar interaction between the spheres shifts
the value of Hc and decreases the total coupling constant g.

(YIG1) and κm2/2π = 12.63 MHz (YIG2) of the YIG
spheres. The mean magnetic losses of both spheres, equal to
10.54 MHz, will be referred to as κ̄m∞ hereafter.

With two spheres in the cavity, the hybridization of the
modes is still exhibited, but accompanied with a shift in the
value of Hc and a change in the coupling strength as the
spheres are brought closer. This is shown in Fig. 3 for two
values of d . Knowing that the dipolar field of a uniformly po-
larized sphere is rigorously equivalent to that of its equivalent
point dipole [20], the field shift, due to the dipolar interaction,
can be calculated by solving the coupled Landau-Lifshitz
equations of motion of the two spheres treated as macrospins:

∂

∂t

[
M1
M2

]
= −μ0|γ |

[
M1
M2

]
×

(
H + ¯̄N

[
M2
M1

])
, (3)

where

¯̄N = 1

3

(
R

d

)3
⎡
⎣−1 0 0

0 −1 0
0 0 2

⎤
⎦, (4)

H = H0ẑ + h, R is the mean radius of the spheres, considered
identical, and d is the distance between the macrospins. Using
a small signal approximation, the coupled equations yield the
resonance condition

ωres = ω0 +
(

R

d

)3

ωM, (5)

where ω0 = μ0|γ |H0. Because the hybridization of the modes
occurs for ωres = ωc, Eq. (5) shows that smaller distances d
lead to smaller values of Hc. This shift of Hc was used to
corroborate and correct the distances between the spheres,
which were initially measured manually with a digital mi-
crometer. A good agreement has been found between the two
methods. The field shift could be more accurately calculated
by considering the nonuniformity of the dipolar field over the
volume of the spheres, but this additional contribution was
calculated to be negligible.

The reduction of the coupling constant g, exhibited in Fig. 3
as the spheres are brought closer, is reported in greater detail
in Fig. 4 (closed circles). For large distances between the
spheres, one expects from the input-output formalism [21]
a total coupling strength of approximately

√
g2

1 + g2
2 (dotted

line), which is indeed observed. However, for smaller dis-
tances d , the coupling constant is observed to decrease sharply
from 40.5 MHz down to 20 MHz.
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FIG. 4. Effect of dipolar interactions on the total coupling
strength g obtained experimentally (closed circles). Pale-blue curve:
Expected decrease in the case of independent spins calculated with
Eq. (8). Dark-red curve: Expected decrease in the case of dipolar
narrowing calculated with Eq. (12). Dotted line: Coupling constant
when d → ∞.

Considering the two YIG spheres as a whole, the usual
expression of the S11 reflection coefficient, calculated from
the input-output formalism, was used to extract the magnetic
losses of the two spheres as a function of the distance be-
tween the spheres κ̄m(d ) (closed circles in Fig. 5). In contrast
with g, the magnetic losses increase sharply as the spheres
get closer. For a distance d = 1.41 mm (d/2R = 1.13), the
magnetic losses are just above 16 MHz, which is near the cou-
pling strength of 20 MHz. For shorter distances, the magnetic
losses would continue to increase while the coupling constant
would decrease, causing the system to exit the strong coupling
regime.

IV. DISCUSSION

In order to explain the reduction of the coupling constant,
let us consider the impact of the dipolar interaction on η.
The dipolar field can be separated into two components. A
dominant nonuniform static component is added to the applied
static field and tends to spread the local field on the spheres.
A weaker nonuniform dynamic field is further added to the
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FIG. 5. Magnetic losses κ̄m obtained experimentally as the
spheres get closer (closed circles). Pale-blue curve: Expected in-
crease in linewidth when considering independent spins extracted
from the susceptibility calculated with Eq. (8). Dark-red curve:
κ̄m∞ + �ω where �ω is calculated using Eq. (11). Dotted line:
Magnetic losses when d → ∞.

cavity pumping field, which could result in the excitation of
nonuniform resonance modes. Assuming that the rf magnetic
field of the unperturbed cavity is uniform, we can rewrite η

in terms of the uniform mode susceptibility using m = χh.
Since the real part of the susceptibility χ ′ ≈ 0 near resonance,
we keep only the imaginary part and rewrite Eq. (2) as

η = 1

χ ′′
maxVs

∫
sphere

χ ′′dV = 〈χ ′′〉
χ ′′

max

, (6)

where the brackets 〈·〉 represent the mean value over the vol-
ume of the sphere.

Further insights are provided by examining two limiting
cases. Case 1 corresponds to the macrospin approximation, in
which all spins in a sphere are strongly coupled and locked
parallel to each other’s, which was assumed earlier in Eq. (3).
Our calculations indicate that the dynamic part of both spheres
will be in phase, resulting in a constant factor η = 1 for
any distance d . In Fig. 4, the macrospin approximation cor-
responds to the dotted line and a value of g =

√
g2

1 + g2
2 .

Likewise, the macrospin approximation does not lead to an
increase in the linewidth observed in Fig. 5 but rather gives a
constant linewidth of κ̄m∞ (dotted line).

In contrast, case 2 assumes fully independent spins, that
is, no long-range dynamic dipolar interaction and each spin
constituent of the spheres is resonating at its own frequency
depending on the value of its local static magnetic field. This
nonuniform magnetic field, assumed to be along the ẑ direc-
tion, is given by Hz = H0 + Hdip., where

Hdip = R3[r2(3 cos2 ϑ − 1) + 4dr cos ϑ + 2d2]

3(r2 + 2dr cos ϑ + d2)5/2
Ms. (7)

Here, Hdip. is the static dipolar magnetic field and the variables
r and ϑ determine the position in a spherical coordinates
system centered on a sphere placed at a distance d from
the source dipole. One can then numerically compute the
probability density function f (Hdip. ) over the volume of the
sphere as a function of d to calculate the value of the mean
susceptibility of the independent spins ensemble at resonance
(ω = ωc). Assuming no magnetic anisotropy, we have

〈χ ′′〉 =
∫

Hz

κ̄m∞ωM

(μ0|γ |Hz − ωc)2 + κ̄2
m∞

f (Hz )dHz, (8)

which can be substituted in (6) and then (1) to calculate
the coupling. In this limiting case, a strong decrease in η

is predicted, even for spheres separated by a relatively large
distance d , as shown by the pale blue curve in Fig. 4. Fur-
thermore, the inhomogeneously broadened linewidth in the
independent spins approximation is given by the pale-blue
line in Fig. 5, which predicts a much broader linewidth than
observed experimentally.

In our two spheres experiment, we thus fall somewhere
between these two limits: macrospin and independent spins.
A more rigorous approach should include long-range dy-
namic dipolar interactions which are known to produce a
phenomenon called “dipolar narrowing” in the literature [22].
We consider the original approach used by Clogston [23] in
which the Landau-Lifshitz equation of motion is solved for a
nonuniform magnetic field expanded in Fourier components
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as

Hz =
∑

k

Hkeik·r. (9)

Assuming that the field inhomogeneity is low with respect
to the sample dimensions, we can neglect the terms related
to the exchange interaction in the equation of motion, but
consider the terms associated with dynamic dipolar fields.
Further expanding the magnetization in Fourier series and by
following a procedure similar to Ref. [23], we can derive an
analytical expression for the imaginary part of the suscepti-
bility of the uniform mode of resonance, accounting for the
coupling between the uniform mode and the long-wavelength
spin wave modes, a process called two-magnon scattering
[24]. With some simplifications, it can be written in the form

〈χ ′′〉 = (κ̄m∞ + �ω)ωM

(ω − ωc)2 + (κ̄m∞ + �ω)2
, (10)

where

�ω = π

2

Var(ωdip. )

ωM

[
1 + 1

2

(
ωM

3ωc − ωM

)]2

×
[

2

3
−

(
ωc

3ωc − ωM

)]−1/2

(11)

is an additional loss term directly related to the variance
of the static dipolar magnetic field through the quan-
tity ωdip. = μ0|γ |Hdip., which can be calculated analytically
(see Appendix). In the expression of �ω, the division by ωM

represents the dipolar narrowing effect. This additional loss
term is added to κ̄m∞, which yields a total loss term that can
be compared with the measured mean losses of the magnetic
system. As shown by the dark-red curve in Fig. 5, the general
trend of the data is reproduced relatively well.

Regarding the coupling constant g, the definition of η in
Eq. (6) is extended to account for the fact that spins, whose
resonance frequency μ0|γ |Hz is detuned from the resonance
frequency of the cavity ωc, can contribute to the coupling with
the cavity. This can be achieved by introducing a weight func-
tion in the definition of η so that the spins whose resonance
frequency is contained inside the coupling range (±g around
ωc), have a stronger contribution (high energy exchange) to
the total coupling than those whose resonance frequency falls
outside the coupling range (low energy exchange). In con-
trast, in Eq. (6), only the spins resonating at frequency ωc

contribute, whereas the remaining spins (detuned from the
cavity) do not contribute to the coupling. To include this
phenomenon, we use a weight function consisting in a Lorentz
distribution L(ωc, gmax) centered at ω = ωc and having a half-
width at half maximum of gmax =

√
g2

1 + g2
2 . We thus have

η =
∫ ∞

0
(κ̄m∞+�ω)ωML(ωc,gmax )

(ω−ωc )2+(κ̄m∞+�ω)2 dω∫ ∞
0

κ̄m∞ωML(ωc,gmax )
(ω−ωc )2+κ̄2

m∞
dω

, (12)

which equals unity if �ω = 0, in absence of dipolar broad-
ening. Equation (12) may be used with Eq. (1) to generate
the dark-red curve in Fig. 4. The excellent agreement with
the experimental data supports that the observed decrease in
the coupling rate between the system of magnetic spheres
and the cavity, as the spheres are brought closer together,

originates from the increasingly nonuniform dipolar static
magnetic field on each sphere. It also shows that the long-
range dynamic dipolar interaction within each sphere, which
gives rise to the dipolar narrowing effect, somewhat limits the
adverse effect of the nonuniform field distribution.

Similarly, the expression of η given in (12) implies that a
larger coupling gmax tends to smooth out the adverse effect
of a given dipolar broadening �ω in reducing the total cou-
pling strength. For the shortest distances between the spheres
(d/2R < 1.18), the model seems to systematically predict a
higher coupling constant for a fixed distance than what is
experimentally observed. This could be due to the underlying
assumptions made in the model, providing possible paths for
improvement.

V. CONCLUSION

We have demonstrated that the dipolar interaction between
two ferromagnetic objects can strongly affect their coupling
with a microwave cavity. As the distance between the spheres
is gradually reduced, dipolar interactions force the spins to
resonate at increasingly different frequencies. This results in
increased magnetic losses and decreased coupling strength g
of the system. A model based on inhomogeneous broadening
with dipolar narrowing reproduces the main features observed
on a system consisting of two YIG spheres in a tunable mi-
crowave cavity. While the reduction in the coupling strength
can be linked with the variance of applied field caused by
the dipolar interaction, this effect is attenuated by dipolar
narrowing and by strong coupling of each individual sphere
with the cavity.

Our results suggest that a number of N individual ferro-
magnetic objects inserted in an electromagnetic cavity will
eventually exhibit a reduced coupling as compared to the
expected g ∝ √

N behavior as the density is increased. Yet
the dipolar broadening will be mitigated by a compensating
dipolar narrowing effect. A trade-off must be found to deter-
mine the optimal density of ferromagnetic objects to be placed
in the cavity to reach a maximum coupling strength while
reducing the impact of dipolar interaction.

APPENDIX: ANALYTICAL EXPRESSION FOR Var(ωdip. )

Integrating by parts Eq. (7), we have

〈ωdip.〉 = a3

12
ωM, (A1)

where a = 2R/d (0 � a � 1). The integration by parts also
leads to an analytical expression for 〈ω2

dip.〉. The definition of
the variance, Var(ωdip. ) = 〈ω2

dip.〉 − 〈ωdip.〉2, then gives

Var(ωdip. )

ω2
M

= a3

4

{
a

3(4 − a2)3

[
5 + a2

2

(
1 + a2

8

)]

+ tanh−1(a/2)

24
− a

4

(
3

32
+ a2

9

)

− 3(4 − a2)

512
ln

(
2 + a

2 − a

)}
. (A2)
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