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Micromagnetic simulations of magnetization reversal in kagome artificial spin ice
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This work reports micromagnetic simulations used to study magnetization reversal in kagome artificial spin
ice, taking into account the actual edge imperfections presented by the magnetic nanoislands as a source
of disorder. An important advantage of the micromagnetic approach is to discretize a magnetic element in
nanometric domains, allowing access to the sample magnetic moments distribution in detail. The limit case
of zero disorder is accessed considering a system composed of perfect magnetic islands. The main result is
the prediction of a critical angle between the applied magnetic field and the direction of one of the sublattices,
above which Dirac strings emerge. For lower values, the reversal occurs through a bidimensional fashion, being
smooth or abrupt depending on whether or not roughness is present, respectively. Finally, our simulations open
the question of how the contour imperfections really influence the magnetic response of artificial spin ice.
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I. INTRODUCTION

Artificial spin ice (ASI) is a magnetic metamaterial com-
posed of ferromagnetic monodomain nanoislands, also called
macrospins, arranged in a bidimensional (2D) lattice [1,2].
The kagome configuration [3] is one of the most studied
cases because it gives rise to geometrical frustration, although
several new arrangements have been considered more re-
cently [1], ranging from brickwork [4] and Shakti [5] to
pinwheel [6] and quasiperiodic [7] lattices. Since many of
the ASI properties are strongly related to their geometries,
they present a considerable variety of interesting phenomena,
among which one could mention highly degenerate ground
states [2,8], emergent magnetic monopoles (MPs) [3,9],
frustration-induced dimensional reduction [3,10], phase tran-
sitions [11–13], and programmable spin-wave spectra [14,15].
From the experimental point of view, the fabrication of ASI
usually involves lithography techniques to develop the pattern
for deposition, with permalloy (Py) the most commonly used
magnetic material. Moreover, magnetic microscopy methods,
such as photoemission electron microscopy (PEEM) with
magnetic contrast [3] or magnetic force microscopy [2,9],
are particularly interesting for characterization because they
give access to the magnetic orientation of each island of
the lattice. Thus, it is possible to construct the hysteresis
loop from the images, knowing the magnetic state at each
point [3,16,17].

In the early realizations of ASIs, the systems were ther-
mally inactive [18,19], i.e., the macrospins did not exhibit
stochastic thermal fluctuations, although such thermal activity
has been achieved in more recent samples [20–22]. Thus,
several works have addressed field-driven processes in order
to induce dynamics [19,23]. For instance, the magnetization
reversal of kagome ASI has been experimentally observed to
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occur through 1D avalanches of flipped macrospins, referred
to as Dirac strings (DSs) [3,9]. This mechanism is usually
described by the creation and separation of emergent magnetic
MPs of opposite charges, ±�Q, located at the ends of the
string. They are calculated based on the so-called dumbbell
model [24], where each macrospin of length d is treated as an
Ising magnetic moment m and is replaced by a dumbbell of
opposite magnetic charges, ±q = ±m/d . Each vertex of the
lattice has a total charge Q = ∑

i=1,2,3 qi, which is always an
integer multiple of q and where i indexes the three charges that
meet at that position. In the initial saturated state, for exam-
ple, Q0 = +q or Q0 = −q depending on whether the vertex
has two macrospins pointing into and one out of the vertex
(two-in/one-out) or vice versa (one-in/two-out), respectively.
These two-in/one-out and one-in/two-out configurations are
known as the ice rules, which also dictate the ground state of
the kagome lattice in the absence of a magnetic field [3,11].
During the reversal, the total charge of the vertices change
from Q0 to some value Q as the magnetization of the islands
flip, so that the MP charge is defined as the charge variation
�Q = Q − Q0.

Simulations based on that Ising-like description generally
need to assume a switching field distribution of the islands
in order to simulate the magnetization reversal [3,9,10,25,26].
Moreover, it is known that this kind of disorder affects several
other quasistatic properties of ASI, such as the demagne-
tization final energy [27], global magnetic coercivity [28],
and vertex dynamics induced by a magnetic field [29] or
temperature [30]. Commonly, the physical origin of the dis-
tribution is attributed to imperfections at the islands surface,
remaining from the lithographic process, for example. In-
deed, Bryan et al. experimentally verified, for Py elongated
nanostructures, a coercive field variation of more than 100%
as the peak-to-peak edge roughness increased from 27 to
72.5 nm [31]. In that same work, the authors did not verify ap-
preciable roughness on the top surface for samples presenting
peak-to-peak edge roughness below 85 nm and, for nominally
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FIG. 1. (a) Single perfect, roughness-free, stadiumlike-shaped island, with length l = 470 nm, width w = 160 nm, and thickness t =
20 nm. (b) Hysteresis curve for an isolated perfect island, where Mx/Ms is the normalized x component Mx of the islands’ total magnetization,
whose coercive field is μ0Hc = 34.4 mT (the field was applied along a direction deviated by 0.001◦ from the x direction). (c) Simulated
kagome array composed of 2536 perfect islands, with lattice parameter 500 nm and total area of 26 × 24 μm. (d) The 20 imperfect islands,
with different edge roughness, used as building blocks for the imperfect islands lattice. (e) Hysteresis curve of one of the imperfect islands,
with coercive field μ0Hc = 31.2 mT, which is different from the perfect island’s one (field applied along a direction deviated by 0.001◦ of the
x direction). (f) Simulated kagome array composed of 2536 imperfect islands, with lattice parameter of 500 nm and total area of 26 × 24 μm.

identical nanostructures, a spread of 20 Oe in coercivity was
observed, suggesting the detailed edge shape of roughness
could also affect the switching field. Nevertheless, Liou et al.
verified a more stable magnetic configuration for elongated
Py nanostructures with lower aspect ratios (approximately
3:1), evidencing more resistance against edge roughness ef-
fects [32]. Nominally identical islands with relatively low
aspect ratios are exactly the case of the ASIs considered in
this work.

Despite reproducing the magnetic properties mentioned in
the last paragraph, Ising-based simulations do not take into ac-
count the spatial extent of the islands. Thus, they are not able
to model the island’s shape and miss the exact magnetization
distribution inside them. Moving to a micromagnetic frame,
however, both features are naturally embedded, opening the
possibility to understand how shape imperfections directly
influence those properties. For instance, Kohli et al. used
micromagnetic simulations (MMSs) to study edge roughness
as a source of disorder in a square ASI and concluded that
“roughness in the island edges plays a hitherto unrecognized
but essential role in the collective behavior of these sys-
tems” [28].

Some other works have also addressed further aspects re-
lated to the magnetization properties of ASI using MMSs. For

example, field-driven processes in pinwheel arrays [33], the
influence of nearest neighbors on the magnetization reversal
of a given island [34], and the extent that dimensions of
the islands induce chiral MPs whose chirality dictates their
directional motion [35] have been studied. However, the main
disadvantage of MMSs is that they are more computationally
demanding compared to Ising-island simulations. They have
been considering only relatively small arrays with dozens of
islands at most, so that MMSs of lattices as large as those
simulated by Ising-island methods (up to thousands of islands)
have not been reported yet [36].

In this work, we report the use of MMSs to study large-size
ASIs. The magnetization reversal of a kagome array is simu-
lated, taking into account the intrinsic roughness at the edge
of the islands. The main result is the existence of a critical
angle θc between the applied field and the direction of one
of the sublattices, which separates different reversal mech-
anisms. For angles above θc, the reversal happens through
1D avalanches and reproduces the emergence of magnetic
MPs and DSs. For angles below θc, a different kind of re-
versal is predicted, which takes place via 2D expansion of the
macrospin’s domains. Furthermore, the reversal happens more
smoothly or abruptly depending on the presence or absence of
roughness, respectively.
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FIG. 2. (a) A single island with uniform magnetization M = Msû with two opposite charges ±q′ = ±q on its ends. (b) A kagome vertex
with total charge Q = +q. (c) Two neighboring vertices at remanence, with total charges Q0 = +q and Q0 = +q (ground-state configuration
obeying ice rules). (d) A single Dirac string (DS) with size lDS = 5 and its monopole-antimonopole pair (red and blue circles, respectively).
(e) Example of two DSs (with lDS(A) = 5 and lDS(A) = 1) merging to form a new DS with size lDS(merge) = 9.

II. MICROMAGNETIC SIMULATIONS

MMSs of the magnetization reversal of ASI were per-
formed using the MUMAX3 open package [37] assisted by
an Nvidia GPU Titan X. We simulated a rectangular patch
composed of 2536 magnetic islands made of Py, arranged
in the kagome lattice with a lattice parameter of 500 nm
[insets of Figs. 1(c) and 1(f)]. The simulations were done in
a mesh of 6506 × 6020 × 1 cells (maximum mesh memory
allocation allowed by the GPU) of sides lx = ly = 4 nm and
lz = 20 nm. These parameters led us to a physical area of
26 × 24 μm, which is around 25% of the experimental one
(50 × 50 μm) studied by Mengotti et al. [3]. As standard
micromagnetic Py parameters, we used the saturation mag-
netization Ms = 8.0 × 105 A/m and exchange stiffness A =
1.3 × 10−11 J/m, which leads to an exchange length lexc =√

2A/μ0M2
s ≈ 5.0 nm. We notice that lz > lexc, but because

Py has no crystalline anisotropy, the magnetization remains
practically restricted to the xy plane and does not vary along
the z direction due to the shape anisotropy. The field step was
μ0�H = 5 mT, while the state was close to saturation and at
a maximum of μ0�H = 1 mT during the part of the reversal
with more activity. Further details can be found in the codes
and text available in the Supplemental Material [38].

We considered two different kagome lattices as the objects
of study: a perfect, roughness-free lattice and an imperfect
lattice composed of islands with roughness on their edge
surface. The perfect lattice was built from the replication of
one perfect island with a smooth stadiumlike shape, with
length l = 470 nm, width w = 160 nm, and thickness t =
20 nm [Figs. 1(a)–1(c)]. As the islands are exactly the same,
this arrangement does not exhibit a coercive field distribution.

The imperfect lattice was constructed with islands with
similar dimensions, but with roughness on their edges.
We acquired the exact contour from the scanning electron
microscopy image shown in Ref. [3], using an artificial high-
contrast image boundary recognition [Figs. 1(d)–1(f)]. This
procedure gave us a set of five different islands, highlighted
in red in Fig. 1(d). In order to expand this set, we performed
three symmetry operations on each of these five islands: x re-
flection, y reflection, and x reflection followed by y reflection.
These operations are illustrated in detail in the Supplemental
Material [38]. The result is a total of 20 distinct elements
[Fig. 1(d)]. This new set has a coercive field distribution
with mean value μ0Hc = 30.6 mT and standard deviation
σc = 0.3 mT [39]. Finally, for each site of the kagome lat-
tice, we randomly chose one of the 20 imperfect islands to
occupy it.
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FIG. 3. Left: Hysteresis curves for the perfect identical islands system, where Mx/Ms is the normalized x component Mx of the lattice’s
total magnetization, for a magnetic field applied with angles θ = 0.03◦ (red), θ = 2◦ (green), and θ = 7◦ (blue) with respect to the x axis.
Right: Magnetization states of the system for representative points of the ascending branch of the hysteresis for (a)–(d) θ = 0.03◦, (e)–(h)
θ = 2◦, and (i)–(l) θ = 7◦. The gray color map represents the x component mx of the local reduced magnetization m(x) = M(x)/Ms. Note that
one of the many Dirac strings is highlighted in yellow in inset (k).

In MMSs, the magnetization of each island is discretized,
having internal and detailed distributions, differently from the
dumbbell model. Therefore, we generalize the calculation of
the “dumbbell” charges, from ±q = ±m/d to more accurate
values ±q′, in order to account for situations where the av-
eraged island magnetization does not point exactly along its
long axis:

q′ = q

∫
S′ M(x′) · û dS′
∫

S′ |M(x′)| dS′ , (1)

where û is a unit vector along the island long-axis direction
[see Fig. 2(a)], M(x′) is the island magnetization distribution,
and S′ is the island surface. Thus, the vertex total charge Q =∑

i=1,2,3 q′
i and the MP charge �Q = Q − Q0 are allowed to

be noninteger multiples of q. Figures 2(a)–2(c) illustrate the
calculation of q′, Q, and �Q. It is worth noting that in this
work, the charge Q0 has been calculated in the remanence,
i.e., for H = 0, because it is when the islands are as similar
as possible to Ising macrospins—with uniform magnetization
along the long axis—obeying the ice rules [see Fig. 2(c)].
Finally, Figs. 2(d) and 2(e) show a DS and the merging of
two minor DSs of lengths lDS(A) and lDS(B) into a major DS
with length lDS(merge) > lDS(A) + lDS(B), where the DS length
is defined as the number of reverted islands connecting a
monopole-antimonopole pair.

III. RESULTS AND DISCUSSION

We divided our results into two parts: (i) perfect islands
lattice (Sec. III A) and (ii) imperfect islands lattice (Sec. III B).
Both results are for an ASI arranged in a kagome lattice,
where the difference between them lies in the system building
blocks. For case (i), we used identical magnetic islands, with
a perfectly smooth geometry (stadium shape). For case (ii),
we used islands with roughness, where the building blocks

are not the same (different roughness), which leads to a μ0Hc

distribution among the different islands. Finally, we discuss
the reversal mechanism by means of the DS nucleation and
propagation present in (ii).

A. Perfect islands lattice

We performed simulations of the magnetization reversal
process taking the angle θ between the applied magnetic
field and the x direction as a parameter. Figure 3 shows the
magnetization curves of the perfect islands lattice for angles
θ = 0.03◦, θ = 2◦, and θ = 7◦. It is worth noting that the case
for θ = 0◦ is not reported because the system remains trapped
in the initial saturated state, as opposed to an experimental
situation where the system is always driven away from the
metastability. For θ = 0.03◦, the magnetization reversal, as
can be seen in Figs. 3(a)–3(d), does not occur by DS creation
and propagation, as one could have expected. We first observe
a smooth rotation of the magnetization close to the islands’
ends [color gradient at the island extremities shown in the
insets of Figs. 3(a) and 3(b)]. This is followed by a huge
simultaneous magnetization inversion of almost 97% of the
islands [white and light-gray islands of Fig. 3(c)], correspond-
ing to a plateau region of the hysteresis. This inversion takes
place for μ0H = 38 mT, after a single magnetic field step
of μ0�H = 1.0 mT (∼20 000 simulation iterations). Finally,
the system approaches the positive saturation by reverting the
3% remaining islands, as shown in Fig. 3(d). For θ = 2◦, we
notice a similar magnetization reversal, with the absence of
DSs [see Figs. 3(e)–3(h)]. The smaller magnetization jump
just before the plateau indicates the magnetization reversion
of 93% of the islands for approximately the same field value
presented in the case of θ = 0.03◦. It is followed by the
reversion of the 7% remaining islands in a similar fashion as
before.
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FIG. 4. Left: Hysteresis curves for the imperfect nonidentical islands system, where Mx/Ms is the normalized x component Mx of the
lattice’s total magnetization, for a magnetic field applied with angles θ = 0.01◦ (black) and θ = 1.01◦ (red) with respect to the x axis. Right:
Magnetization states of the system for representative points of the ascending branch of the hysteresis with (a)–(d) θ = 0.01◦ and (e)–(h)
θ = 1.01◦. The gray color map represents the x component mx of the local reduced magnetization m(x) = M(x)/Ms.

Interestingly, the magnetization reversal occurs through a
different mechanism for θ = 7◦, as shown in Figs. 3(i)–3(l).
The system goes from negative to positive saturation, passing
through a highly ordered plateau state, shown in Fig. 3(k),
that persists within the field range of 38 < μ0H < 44 mT.
We identified this state to be established by the simultane-
ous and “infinitely” rapid propagation (within the field step
μ0�H = 1 mT) of various diagonally oriented DSs extending
all over the sample and parallel to each other. One of them
is highlighted in yellow in Fig. 3(k). The last minor step,
for μ0H = 44 mT, forces the overall magnetization to the
positive saturation.

Since the perfect islands of this system are physically iden-
tical, they all have the same coercive field (namely, μ0Hc =
34.4 mT), without distribution, mimicking a disorder-free sit-
uation not precisely considered in Ising-island models. As
a consequence, the magnetization reversal mechanism evi-
denced here for perfect identical islands was not previously
predicted. The persistence of finitely fast and nonsimulta-
neous 1D avalanches of DSs was always present, even for
systems with a low level of disorder [10].

B. Imperfect islands lattice

The actual case of imperfect, nonidentical islands is of
more practical interest because it presents DSs in the magnetic
reversal mechanism. Figure 4 shows the results for θ = 0.01◦

and θ = 1.01◦ and Fig. 5 for θ = 7◦. First, for θ = 0.01◦ and
θ = 1.01◦, similar behaviors are observed. The magnetization
reversal starts with few islands flipping their magnetization
[light-gray islands in Figs. 4(a) and 4(e)], subsequently giving
rise to few and sparse elongated DSs, as shown in Figs. 4(b)
and 4(f). However, further increase in the applied field leads
to a magnetization process mainly dominated by a 2D domain
mechanism, as can be seen in Figs. 4(c) and 4(d) for θ = 0.01◦

and in Figs. 4(g) and 4(h) for θ = 1.01◦. Differently from
the perfect islands situation, here the magnetization does not

present a huge jump for low angles. Instead, the reversal hap-
pens in a more gradual fashion, evidenced by the hysteresis
curve without any pronounced plateau. Note that the few DSs
observed are, in this case, just some isolated phenomena, not
being observed all over the sample during the entire process.
Thus, the reversal mechanism cannot be said to occur by
means of DSs.

Despite being taken from similar functional points at re-
spective hysteresis loops (almost the same magnetization
and magnetic field value in each small-angle situation), the
magnetization snapshots of Fig. 4 reveal different magnetic
structures for different θ values. This suggests a highly de-
generated macrospin configuration for each functional point
of the hysteresis curves for small applied field angles. This
behavior is similar to that presented by a thin magnetic film
with planar magnetic anisotropy, for an applied magnetic field
direction close enough to an easy magnetization axis [40].

Similarly to the perfect islands lattice case, θ = 7.0◦ repre-
sents an interesting different situation. The reversal is strongly
dominated by DS nucleation and propagation, as can be seen
in Fig. 5, whereas Fig. 6 shows the hysteresis loop. Increasing
the magnetic field from the negative saturation brings the
system to remanence at H = 0, evidenced in Fig. 5(a). Fur-
ther increase promotes few islands to flip the magnetization,
creating monopole-antimonopole pairs connected by DSs, as
can be seen in Fig. 5(b). One can appreciate mainly three
phenomena from Figs. 5(c)–5(e) as the reversal proceeds:
(i) monopole-antimonopole pair creation, (ii) DS propagation
(lDS increases), and (iii) DS merging. Finally, Fig. 5(f) shows
the positive saturation state, with the MPs and antimonopoles
ordered in the so-called NaCl state, where each nearest neigh-
bor of a MP is an antimonopole, and vice versa [11].

Each MP can be classified according to its mobility [3].
For instance, in the beginning of the reversal, most MPs can
move to neighboring vertices by expansion of their associated
DSs, so they are called mobile MPs. As the reversal proceeds,
a mobile MP eventually hits a DS and can no longer move
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FIG. 5. Simulated monopole-antimonopole pair creation and propagation of Dirac strings for an angle θ = 7.0◦ between the magnetic
applied field and the x direction. The gray color map represents the x component mx of the local reduced magnetization m(x) = M(x)/Ms.
The blue and red dots represent negative and positive monopole magnetic charges +�Q and −�Q, respectively (having possible noninteger
�Q/q values). The ground state (a) is used to calculate the initial reference charge Q0 for the monopole charge distribution �Q = Q − Q0,
where −2q � �Q � +2q. The snapshots correspond to the points highlighted in Fig. 6: H = 0 highlighted in green, and H = 0.94Hc, H =
0.96Hc, H = 1.00Hc, H = 1.03Hc, and H = 1.16Hc highlighted in purple, where μ0Hc(= 27.3 mT) refers to the coercive field of the lattice.

because all macrospins of that vertex have already flipped.
When this happens, the mobile MP becomes a trapped MP.
This information is made quantitative in Fig. 6, which shows
the fractions υm and υt of the mobile and trapped MPs, respec-
tively, as a function of the applied field. υm is high (close to
one) until H = Hc, where Hc is the coercive field of the lattice,

FIG. 6. The hysteresis curve (black) of the imperfect islands sys-
tem for a magnetic field applied with angle θ = 7◦ with respect to the
x direction, where Mx/Ms is the normalized x component Mx of the
lattice’s total magnetization. The fraction υm of mobile monopoles
(green) and the fraction υt of trapped monopoles (red). The green
circle is the remanence state shown in Fig. 5(a) and the purple circles
are the states shown in Figs. 5(b)–5(f).

because most MPs are mobile in the beginning. For H > Hc,
some MPs begin to hit DSs, so υt grows and υm falls. The final
stage corresponds to the system achieving positive saturation,
where υt = 1 and υm = 0, by flipping the last remaining is-
lands. At this point, it is said that the MPs condense because
they occupy all vertices in the positive saturation (NaCl state).

The MP mobility is linked with the DS phenomena since
the reversal mechanism occurs by means of DS nucleation,
growth, and merging, with the DS expansion due to the mobile
MPs at the DS free ends. The DSs are observed, as shown
in Fig. 5, by direct observation of the snapshots. However,
their change in the MP mobility is probed by the MP fractions
(green and red curves in Fig. 6). Then, as in the experimental
counterpart of this system, we observe a magnetic system
restricted to 2D space, which reverts its magnetization by 1D
structures, identified as the DS emergence.

We note that the emergence of MPs and DSs in this sim-
ulation is directly determined by the roughness of the islands
since this is the only modification from the previous case of
perfect identical islands. However, the experimental hysteresis
curve reported by Mengotti et al., constructed from PEEM
images, just smooths the plateau that appeared in the perfect
island case, whereas in our simulation the plateau is com-
pletely suppressed. In addition, other features presented by the
experimental curves of υm and υt are also absent in ours, such
as a plateau of υm in the beginning of the reversal and a slower
growth to the saturation value υm = 1 [3].

These deviations can be associated to four main issues.
First, border effects, whose presence can play an important
role in the magnetostatic behavior of coupled nanomag-
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FIG. 7. Probability distribution P(s) that a Dirac string will have
its length increased by �l = s within a field step μ0H = 0.1 mT
during the magnetization reversal of the imperfect islands lattice.
The data were taken from all field steps between H = 0.9Hc and
H = 1.04Hc of the ascending branch of the hysteresis shown in
Fig. 6. The error bar of a point P(s0) was calculated as 1/

√
N (s0),

where N (s0) is the frequency of avalanches with size s0.

nets [41], are less significant in the experimental results than
in our simulations. This is because the experimental sam-
ple has a total area of 50 × 50 μm, which is approximately
four times larger than our simulated lattice, of which just a
minor central region was considered for the construction of
the curves. Second, the experimental PEEM images do not
resolve the magnetization within the islands as detailed as
MMSs. Third, the curves measured by Mengotti et al. were
obtained with the sample at remanence, i.e., after turning off
the field at each point. And fourth, we considered just a limited
set of 20 distinct islands to construct the whole imperfect
islands lattice.

It is also interesting to look at the dimensional nature of
the magnetization reversal. The snapshots of Fig. 5 visually
suggest that it proceeds in a 1D fashion, as a result of the
nucleation and propagation of DS. In a broader context, the
inversion of spins belonging to a finite region of a magnetic
material is known as an avalanche [42,43]. The probability
distribution P(s) of finding an avalanche of size s can indicate
the dimension of the reversal mechanism. Namely, it obeys a
power law for 2D and 3D systems [42,43] and an exponential
law for 1D systems [3,10,44]. Figure 7 shows the probability
P(s) of a DS to increase its length by �l = s within a field
step of μ0�H = 0.1 mT, calculated from all field steps be-
tween H = 0.9Hc and H = 1.04Hc of the ascending branch
of the hysteresis of Fig. 6. It can be seen that P(s) decays
exponentially, in agreement with the reported experimental re-
sult [3], confirming the 1D fashion of the reversal. This feature
is referred to as dimensional reduction since the dimension
of the reversal mechanism (1D) is smaller than the dimen-
sion of the system where it takes place (2D) [3,10]. It is an
interesting property because typical magnetization reversals
occur by growth of domains that have the same dimension of

the material (2D in thin films and 3D in bulk materials, for
example).

C. Critical angle

We notice that the direction of the DS propagation, for both
perfect [Fig. 3(k)] and imperfect (Fig. 5) islands, primarily
follows the upward diagonal direction of the applied field. In
order to certify that, we simulated the symmetrical configu-
ration, θ = −7◦, and the strings appeared in the downward
diagonal direction for both systems. In fact, this diagonal
preference is also exhibited by experimental samples [3],
which was later argued as an indication of some angle offset
between the applied field and the long axis of the horizontal
islands [35]. The presence of an offset angle is also a requisite
for suitable reproduction by Ising-island models [3,10].

In addition, our results indicate that there is a critical angle
θc below which DSs do not occur. In other words, not only
is an offset angle θ between the applied field and the x axis
needed for DSs to appear in a kagome ASI, but θ must be
larger than θc.

The existence of a critical angle can be better under-
stood by comparing our results with standard features of
mixed anisotropic thin films. Our kagome ASI could be com-
pared with a structured film with mixed uniaxial magnetic
anisotropies, configured by two easy magnetization directions
separated by an angle of β = 60◦. In this comparison, the two
preferred magnetization axes are characterized by the island’s
long directions. When such systems are subjected to an ap-
plied magnetic field, the magnetization lies along one of the
easy axes, as long as the angle between the field and the axis
is kept sufficiently small. But, when the angle is increased, it
reaches a critical value at which the magnetization abruptly
jumps to the other easy axis, reproducing a spin-flopping-like
process [45].

Thus, it is reasonable to expect similar features in a kagome
ASI. In fact, a closer inspection of the plateau states of the
perfect islands system at the low-angle regime reveals that
these states gradually change, with less islands flipping simul-
taneously as θ increases [see Figs. 3(c) for θ = 0.03◦ and 3(g)
for θ = 2◦, for example].

The fact that our MMSs reproduce a more realistic 3D
characteristic of elementary magnetic islands allows us to
observe phenomena that are impossible to be reproduced in
models which consider each island to be a rigid two-level
magnetic moment. Such geometric characteristics cause the
magnetic islands to present thin-film features for certain ap-
plied field conditions. As an illustration, let us take the case
of magnetization reversal of our ASI for a magnetic field
direction almost parallel to the x direction. Under these condi-
tions, the inversion of the islands’ magnetization takes place
in an irreversible and noncoherent way (as shown in Figs. 3
and 4 for perfect and imperfect systems), exactly reproducing
the magnetization process presented by a thin magnetic film
under the same applied magnetic field conditions (nucleation
and propagation of magnetic domains, propagation of domain
walls, etc.), i.e., an applied magnetic field direction parallel to
an easy magnetization axis, as already discussed above.

Therefore, it is natural to expect that in the case of a
kagome ASI, when increasing the angle of application of the
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FIG. 8. Coercive field distribution of the 20 islands with edge
roughness used to construct the imperfect islands lattice. It has
a mean value of μ0Hc = 30.6 mT and standard deviation of σc =
0.3 mT.

magnetic field in relation to the x direction, we will find a
critical value for which the magnetization process abruptly
jumps to the imposed direction; in this case, not by the in-
trinsic magnetic anisotropy of the islands, but by that of the
kagome lattice geometry. In our case, for an applied magnetic
field direction angle that is greater than θ = 7◦, the inversion
of macrospins occurs preferably confined in the direction de-
fined by diagonal islands. The magnetization process direction
abruptly changes to a critical field, exactly reproducing the
described biaxial thin-film situation.

D. Coercive field distribution

In the MMSs of the imperfect islands lattice, an island’s
coercive field distribution naturally comes along by sim-
ply taking into account the more realistic description of the
island’s shape, which includes small edge roughness. By sim-
ulating the individual hysteresis of each of the 20 imperfect
islands used to construct the lattice, with the applied field
slightly deviated from the long axis by θ = 0.001◦ for the
same reasons explained in Sec. III A, we found the distribu-
tion of coercive fields shown in Fig. 8. It has a mean value
of μ0Hc = 30.6 mT and standard deviation of σc = 0.3 mT,
leading to a ratio σc/μ0Hc ≈ 0.01.

In reported Ising-island models, each island of the lattice
has a switching field Hs, defined as the value of the projection
of the local magnetic field along the island long axis above
which the island flips its magnetization. The distribution of
Hs is an input of the simulation, usually chosen to be Gaus-
sian, with adjustable standard deviation σs. The value of σs

is phenomenologically estimated to be the one that better fits
the experimental hysteresis and MP mobility curves. Previous
works have found this value to be σs/μ0Hs ≈ 0.13 [3,10].

Although Hc and Hs are, strictly speaking, different phys-
ical quantities, it is expected that they have at least the same
order of magnitude. We see, however, that σc/μ0Hc ≈ 0.01
is one order of magnitude below σs/μ0Hs ≈ 0.13. Therefore,
roughness with sizes suggested by Refs. [3,10] is not capable
alone of explaining such degree of Hs dispersion. Recog-
nizing that these morphological imperfections are probably
the main source for an Hc (and Hs) distribution, this result
opens the question of whether the phenomenological σs value
determined from Ising-island simulations really has a physical
meaning.

Furthermore, our distribution does not resemble a Gaussian
one. This might be associated with the small number of 20
islands—of which only 5 were truly independent—that were
sampled to obtain the distribution. However, it could also
indicate that an Hs Gaussian distribution hypothesis may not
be reasonable. It is known that arrays of interacting magnetic
nanostructures can have a log-normal switching field distribu-
tion, for example [46]. In any case, it would be interesting to
know the shape of all the islands of an experimental sample
so that this question could be properly resolved.

IV. CONCLUSIONS

MMSs were used to study interesting and important as-
pects of quasistatic magnetization reversal in a kagome ASI.
We conclude that the magnetization reversal mechanism
strongly depends on the angle θ between the external applied
field with respect to the direction of one of the sublattices
and on the edge roughness of real magnetic elements. The
critical angle θc determines the dimensionality of the reversal,
which is 2D if θ < θc or 1D if θ > θc. The presence or lack of
roughness indicates whether the process will be more smooth
or abrupt, respectively. This result suggests the existence of
a phaselike diagram of the reversal mechanism, taking into
account the mentioned parameters. Detailed simulations are
being performed with fine variation of those parameters and
will be presented in a future work. Finally, we observe that
the dispersion of the islands’ coercive field distribution of
our simulation is one order of magnitude below that esti-
mated by the indirect phenomenological approach of reported
Ising-island simulations. This opens the question of whether
the latter corresponds to the real physical situation, which
reinforces the importance of employing MMSs to investigate
quasistatic phenomena in ASIs at the expense of Ising-like
simulations.
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