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Finite-temperature dynamics and the role of disorder in nearly critical Ni(Cl1−xBrx)2 · 4SC(NH2)2
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Inelastic neutron scattering is used to investigate the temperature dependence of spin correlations in the
3-dimensional XY antiferromagnet Ni(Cl1−xBrx )2 · 4SC(NH2)2, x = 0.14(1), tuned close to the chemical-
composition-induced soft-mode transition. The local dynamic structure factor shows h̄ω/T scaling behavior
characteristic of a quantum-critical point. The deviation of the measured critical exponent from spin wave
theoretical expectations is attributed to disorder. Another effect of disorder is local excitations above the magnon
band. Their energy, structure factor, and temperature dependence are well explained by simple strong-bond
dimers associated with Br-impurity sites.
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I. INTRODUCTION

Magnetic insulators make excellent model systems for
studying quantum phase transitions. Not only do they often
host good realizations of numerous different quantum-critical
points (QCPs), but they are also particularly amenable to
quantitative experimental methods such as neutron spec-
troscopy. The most extensively studied are magnetic field
driven QCPs [1–3]. In rare cases a different class of QCP
is induced by hydrostatic pressure, where small distortions
of the crystal structure lead to a continuous modification
of magnetic superexchange interactions [4–9]. The need for
bulky pressure cells makes such transitions difficult to study
experimentally. One way around is similar phase transitions
induced by chemical substitution in solid solutions, which can
also be thought of as “chemical pressure” [10,11]. The latter
case is particularly interesting but also complicated, since
the necessary presence of chemical disorder may introduce
randomness into the spin Hamiltonian. This, in turn, may have
consequences for critical behavior.

The subject of the present study is the well-known
3-dimensional S = 1 system Ni(Cl1−xBrx )2 · 4SC(NH2)2

(DTNX for short) [12]. The parent x = 0 material has a singlet
ground state and a spin gap due to strong easy-plane magnetic
anisotropy [13–19]. Upon Br substitution on nonmagnetic Cl
sites, the spin gap is suppressed [12,20]. Beyond a certain
critical Br concentration the system exhibits long-range anti-
ferromagnetic order, while the excitation spectrum is gapless
with a linear dispersion [10,21]. Two key questions regard-
ing this chemical-composition-induced transition remain: (1)
Is this indeed a true QCP with quantum-critical fluctuation
dynamics subject to scaling laws? and (2) How important
are the inherent disorder and randomness in the magnetic
Hamiltonian for this transition? The two issues are closely
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connected. In Ni(Cl1−xBrx )2 · 4SC(NH2)2 the Harris criterion
[22] is violated, meaning disorder must be relevant. Moreover,
in a 2-dimensional Heisenberg model that is in many ways
similar to that for DTNX the QCP is not even expected to
survive disorder [23].

Below we report measurements on a nearly critical
Ni(Cl1−xBrx )2 · 4SC(NH2)2 sample using thermodynamic
and neutron scattering experiments in a wide range of temper-
atures. We find that at low temperatures the excitations remain
well described by the same random phase approximation
model as used to understand the parent compound. The linear
portion of the spectrum shows a finite-T scaling behavior over
at least one and a half decades in h̄ω/T . Disorder is not en-
tirely irrelevant though. It may be responsible for the observed
deviation of the scaling exponents from those expected for the
disorder-free QCP. In addition, it generates local excitations
at high energies [20]. We clarify the microscopic origin of
the latter through a measurement of their structure factor and
temperature dependence.

II. MATERIAL AND METHODS

DTNX shares many similarities with its parent compound
DTN. A detailed description of the structure and interactions
can be found, for example, in Ref. [21]. The material is
tetragonal body-centered, space group I4 [12]. Magnetism
originates from S = 1 Ni2+ ions that form chains along the
crystallographic c axis. Strong easy-(a, b)-plane single-ion
anisotropy produces a spin-singlet ground state with Sz =
0 and an energy gap � ∼ 0.3 meV to the lowest-energy
Sz = ±1 excitation doublet. Other relevant interactions are
the intrachain antiferromagnetic (AF) Heisenberg exchange
interaction Jc ∼ 0.17 meV and the weak interchain coupling
Ja ∼ 0.013 meV [18].

Br substitution does not appreciably alter the lattice param-
eters but affects the spin Hamiltonian and magnetic properties
[12]. As the concentration x in Ni(Cl1−xBrx )2 · 4SC(NH2)2 is
increased the gap decreases from � = 0.3 meV in DTN [24]
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to 0.2 meV for x = 0.06 [20]. The critical concentration at
which the spin gap closes was estimated to be around xc =
0.16 [10]. For x = 0.21 the system is well into the long-range-
ordered phase with a gapless linear spin wave spectrum [10].

For the present study, fully deuterated DTNX single
crystals were grown from aqueous solution. We aimed at
approaching the critical concentration as close as possible.
After numerous attempts the best sample was chosen with
a bromine content x = 0.14(1). The latter was confirmed in
single-crystal x-ray diffraction measurements on an APEX-II
Bruker instrument.

Thermodynamic data were collected using 1.0(5)-mg-size
single crystals on a commercial Quantum Design physical
properties measurement system (PPMS) with a dilution cryo-
stat insert and a 14 T superconducting magnet. The magnetic
field was in all cases applied along the crystallographic c axis.

Neutron scattering was performed at the high-resolution
cold-neutron TOF spectrometer LET at the ISIS Neutron fa-
cility. We employed two co-aligned samples of total mass
∼1.2 g. Sample mosaic was about 1.5◦ full width at half
height (FWHM). The sample was mounted with the (h, h, l )
reciprocal-space plane horizontal. Sample environment was
a 3He cryostat with a base temperature T = 300 mK. The
data were collected in several frames simultaneously with
incoming neutron energies Ei = 1.45, 2.20, and 3.71 meV,
respectively. The measured energy resolution at the elastic
position was 31 μeV, 55 μeV, and 111 μeV FWHM for the
three configurations, correspondingly. The data were collected
while rotating the sample in 1◦ steps around the vertical
(1,−1, 0) axis, covering a total angle of slightly over 50◦.
Typical counting time at each step was 15 min.

III. RESULTS AND DISCUSSION

A. Calorimetry

The proximity of our DTNX sample to the critical point
was quantified by thermodynamic measurements. Typical
heat capacity data collected as a function of temperature
and field are shown in Figs. 1(a) and 1(b), respectively. No
magnetic-ordering transition is observed in zero applied field,
suggesting that the sample is slightly “underdoped.” In fields
exceeding μ0H = 1 T there is a clear lambda anomaly in
the measured temperature dependencies, which we attribute
to the onset of long-range magnetic order. The transition
temperatures were determined by empirical power-law fits in
the vicinity of the peak [solid lines in Fig. 1(a)], similarly to
how it was done in Ref. [25]. At the lowest temperatures the
transition is associated with an inflection point in the C(H )
curve. The corresponding transition field was pinpointed by
empirical error function fits [solid lines in Fig. 1(b)]. The
phase boundary combined from both types of measurements
is shown in Fig 2. A linear extrapolation [19] to T = 0 pro-
vides an estimate of the residual gap energy: � = gμBHc =
0.059(5) meV assuming g = 2.26 [15]. The sample is thus
indeed close to the critical Br concentration at which the
gap closes in the absence of any external magnetic field.
We note however that the observed specific heat anomalies,
particularly those in field scans at a constant temperature,
are considerably less pronounced than in the parent DTN
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FIG. 1. Specific heat measured in DTNX, x = 0.14(1), in
magnetic fields applied along the crystallographic c axis using
constant-H (a) and constant-T (b) scans. Solid lines are empirical
fits to the data to pinpoint the transition, as described in the text.
For visibility, the scans are offset by 0.25 J/mol K2 relative to one
another.

compound [19,26]. This effect is undoubtedly due to the
halogen-site disorder in the sample, as had been observed in
several other systems such as H8C4SO2 · Cu2(Cl1−xBrx )4 [27]
and (C4H12N2)Cu2(Cl1−xBrx )6 [25].

B. Neutron spectroscopy

1. Magnon dispersion at base temperature

A false-color plot of the inelastic intensity measured at the
lowest temperature T = 300 mK is shown in Fig. 3. It rep-
resents a combination of cuts along different reciprocal-space
trajectories, as shown in the inset. The depth of each cut is
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FIG. 2. Magnetic phase diagram of DTNX, x = 0.14(1), in mag-
netic fields applied along the crystallographic c axis, as derived from
thermodynamic measurements. The solid line is a guide for the eye.
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FIG. 3. False-color plot of the neutron scattering intensity measured Ni(Cl1−xBrx )2 · 4SC(NH2)2, x = 0.14(1), at 300 mK. Several slices
along high-symmetry reciprocal space directions are shown. The depth of each slice is ±0.02 r.l.u. in the transverse reciprocal space directions.
The corresponding trajectories are shown in the inset. The data above the dotted divider line were collected using neutrons with Ei = 2.20 meV.
The low-energy data were measured with Ei = 1.45 meV.

±0.02 r.l.u. in both perpendicular reciprocal-space directions.
A constant background was estimated away from the obvious
magnon branch and subtracted. The magnetic scattering in-
tensity is directly proportional to the dynamic structure factor
S (q, ω), i.e., to the spatial and temporal Fourier transform
of the spin-spin correlation function [28]. S (q, ω) was ob-
tained by correcting the background-subtracted intensity for
the magnetic form factor of Ni2+ ions and for the neutron
polarization factor, assuming scattering to be purely magnetic
and polarized transverse to the magnetic easy axis [21]. The
data measured with two different incident neutron energies are
combined with relative scaling based on the intensity of the
quasielastic line. The spectrum appears qualitatively similar
to the one measured in Refs. [20,21] for underdoped and
overdoped samples, respectively.

A look at Fig. 3 suggests that the gap may actually be con-
siderably larger than estimated from thermodynamics. This,
however, is an illusion due to finite wave vector resolution.
The latter is in part instrumental and in part due to the chosen
binning in reciprocal space. Due to finite resolution, near the
sharp dispersion minima at the AF zone centers, the intensity
maximum will always be above the actual gap energy. For
DTN and strongly “underdoped” DTNX [20] the gap is larger,
the dispersion minimum less sharp, and the resolution effects
pose much less of a problem. In our case of a nearly critical
sample they are quite severe.

A way around the problem is to integrate over momentum
transfer and thus compute the local dynamic structure factor
S (ω). We performed such integration for the vicinity of the
AF zone center at (−0.5,−0.5,−1.5). The integration range
was −0.75 < h < −0.25, −1.75 < l < −1.25 in the (h, h, l )
plane and −0.25 < h < 0.25 along the vertical (h,−h, 0) di-
rection. The result is shown in Fig. 4 in solid symbols. The
background (Fig. 4, open symbols) was obtained near the
maximum of the c-axis dispersion, with the same integration
range in the (h, h, 0) and (h,−h, 0) directions and for −2 <

l < −1.75 and −1.25 < l < −1.

At low temperatures, magnetic excitations in DTNX have
been very successfully described using the generalized spin
wave theory/random phase approximation (GSWT/RPA)
[29–31] for all Br concentrations [21]. In that theory the
magnon intensity is inversely proportional to energy. Near the
AF zone center the dispersion has a “relativistic” form

(h̄ωq)2 = (
q2

a + q2
b

)
c2
⊥ + q2

c c2
‖ + �2, (1)

where the three components of the wave vector q are mea-
sured relative to the AF zone center, and c⊥ and c‖ are spin
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FIG. 4. Wave-vector-integrated intensity measured near the
magnon dispersion minimum (−0.5, −0.5, −1.5) in Ni(Cl1−xBrx )2 ·
4SC(NH2)2, x = 0.14(1), at T = 300 mK (solid symbols). The
wave vector integration range is −0.75 < h < −0.25, −1.75 < l <

−1.25 in the (h, h, l ) plane and −0.25 < h < 0.25 along the vertical
(h, −h, 0) direction. The background (open symbols) was measured
away from the AF zone center. The lines are fits as described in the
text. The data in shaded areas were excluded from the fit.
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FIG. 5. (a) Magnon dispersion in DTNX, x = 0.14(1), as ob-
tained from Voigt fits to constant-Q cuts through the inelastic neutron
data (see text). (b) The corresponding energy-integrated intensities.
Circles and triangles refer to measurements with Ei = 2.20 meV and
Ei = 1.45 meV, respectively. The square represents the magnon gap
as determined from the analysis of S(ω). Solid lines are fits to a
GSWT/RPA-based model, as described in the text.

wave velocities in the (a, b) plane and along the c axis, re-
spectively. The local dynamic structure factor is then obtained
by integrating out the momentum transfer:

S (ω) ∝
∫

d3q
δ(h̄ω − h̄ωq)

h̄ωq
∝ (h̄ω)2 − �2

h̄ω
. (2)

To estimate the spin gap in our sample, we first fitted the
background to an empirical sum of two Gaussians (thin line
in Fig. 4). We combined the fitted background with Eq. (2),
the latter convoluted with the measured energy resolution
of the instrument. The resulting function was used to ana-
lyze the measured integrated intensity (solid symbols) in the
range 0.05 meV < h̄ω < 0.25 meV. A least-squares fit of an
overall scale factor for Eq. (2) and the gap energy yields � =
0.06(1) meV, in excellent agreement with the thermodynamic
estimate. The fitted curve is shown in a solid line in Fig. 4.

Away from the zone center, resolution effects are less im-
portant and we can perform an analysis similar to that done
in Ref. [20]. The measured intensity data were binned into
constant-Q cuts lined up along the high-symmetry reciprocal
space trajectories shown in Fig. 3. The typical bin size was
0.05 × 0.05 × 0.05 r.l.u. along the (h, h, 0), (h,−h, 0), and
(0, 0, l ) directions, respectively. These “scans” were fitted
to Voigt functions. The peak position, Lorentzian width, an
intensity prefactor, and a constant background were the fitting
parameters. The Gaussian component was fixed to the calcu-
lated energy resolution of the instrument combined with an
additional broadening due to wave vector binning (estimated
from the bin size and dispersion slope). The fitted peak po-
sitions are plotted versus wave vector in Fig. 5(a); Fig. 5(b)
shows the corresponding intensities. The fitted intrinsic exci-
tation widths were in all cases smaller than 0.12 meV.

TABLE I. Fitted spin Hamiltonian parameters for DTNX, x =
0.14(1), in comparison with those for x = 0.06 [20]. All energies are
given in meV units.

x = 0.06 (Ref. [20]) x = 0.14 (present work)

D 0.807(2) 0.81(2)
Jc 0.150(1) 0.153(3)
Ja 0.0157(2) 0.0155(2)
Jd 0.0060(4) 0.0061(3)
Jc2 −0.0096(7) −0.018(1)
� 0.2 0.06(1)
D/Jc 5.38(3) 5.29(2)

The dispersion relation measured above 0.25 meV energy
transfer was analyzed using the same model Hamiltonian as
previously adopted for the x = 0.06 material [20]. The pa-
rameters of the model are the single-ion anisotropy D; the
nearest and next-nearest neighbor exchange constants along
the c axis Jc and Jc2; coupling along the crystallographic a axis
Ja, and a diagonal coupling connecting to nearest-neighbor
Ni2+ sites from the two intercollated Bravais lattices in the
body-centered structure of DTNX [18,20]. The dispersion was
calculated within the GSWT/RPA framework as in Ref. [20].
The parameters were at all times constrained to give the gap
energy as estimated from the local structure factor. Least-
squares Levenberg-Marquardt fitting with initial parameters
from Ref. [20] showed rapid and robust convergence. The
result of the fit is plotted in a solid line in Fig. 5(a). The
fitted parameter values and variances are tabulated in Table I.
Note that the relative variances are very small, on the level
of systematic inaccuracies such as the spectrometer calibra-
tion. From a direct comparison with parameters previously
determined for x = 0.06 it becomes obvious that the twofold
reduction of the spin gap results from a very subtle change
in the balance between single-ion anisotropy and c-axis ex-
change interactions, particularly the D/Jc ratio.

2. Temperature dependence

An important result of this work pertains to the temperature
dependence of magnetic excitations in DTNX. At a QCP and
inside the quantum-critical regime we expect the critical spin
fluctuations at low energies to obey scaling laws [3,32,33].
Temperature itself becomes the only relevant energy scale.
In particular, the local (momentum-integrated) dynamic struc-
ture factor S (ω) can be expressed through a scaling function
of h̄ω/kBT :

S (ω) ∝ (kBT )a�

(
h̄ω

kBT

)
, or (3)

S (ω) ∝ (h̄ω)aF
(

h̄ω

kBT

)
, (4)

with F (x) = x−a�(x). The exponent a depends on the uni-
versality class of the QCP. In the absence of disorder effects,
a 3-dimensional XY system with a linear spectrum (dynami-
cal exponent z = 1) is at the upper critical dimension. Apart
from possible logarithmic corrections, we expect mean-field
behavior, which also describes the GSWT. For the latter,
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FIG. 6. Neutron scattering intensity measured in Ni(Cl1−xBrx )2 · 4SC(NH2)2, x = 0.14(1), at several temperatures. The data were inte-
grated in the range −0.25 < h < 0.25 in the (h, −h, 0) direction. In the left panel of each graph an integration was also performed in the range
−1.75 < l < −1.25 along the (0, 0, l ) direction. Instead, the intensity in the right panels was integrated in the range −0.75 < h < −0.25
along (h, h, 0). The dashed line separates data collected with Ei = 2.20 meV and Ei = 1.45 meV, respectively.

at the point of gap closure the dispersion is indeed linear
near the zone center and the magnon intensity is propor-
tional to 1/ω, just like for conventional spin waves in the
ordered state. Integrating over wave vector yields a = 1 for
that model.

To see if this prediction applies to DTNX, we studied the
temperature dependence of scattering in our sample. Neutron
spectra collected at several temperatures are shown in Fig. 6.
Here the intensity has been integrated over a wide range in
momentum in two perpendicular directions. The integration
range is the same as for the gap estimation above. Integrating
over the third direction and subtracting the background deter-

mined at base temperature (see previous section) yields the
S (ω) plots shown in Fig. 7(a).

Any scaling behavior can be only expected for data
collected in a certain energy range and only at certain tempera-
tures. For a z = 1 QCP these should correspond to the width of
the approximately linear part of the spectrum. For DTNX this
consideration sets an upper bound of h̄ωmax ≈ 0.35 meV and
Tmax ≈ 4 K, limited by the bandwidth of magnon dispersion
along the “slowest” M-O reciprocal space direction (Fig. 5).
We chose an upper bound of 0.25 meV instead, to be entirely
on the safe side. Regarding temperature, we analyzed the
data collected up to 3 K (again on the safe side), and then
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FIG. 7. (a) Local dynamic structure factor measured in
Ni(Cl1−xBrx )2 · 4SC(NH2)2, x = 0.14(1), at different temperatures.
The background shown in Fig. 4 has been subtracted. Shaded areas
mark the boundaries of the region where scaling behavior can be
expected to occur. (b) Data between 0.1 and 0.25 meV plotted in
scaled variables using a scaling exponent as in GSWT (a = 1), one
that optimizes the collapse of all data up to T = 5 K [a = 1.4(1)]
and all data up to T = 3 K [a = 1.5(1)]. Note the logarithmic scale.
The plots have been shifted apart vertically for visibility.

separately up to 5 K. As a side note, the conditions are usually
more stringent in the case of z = 2 QCPs. There, one has to
look for the energy range where the dispersion is well approx-
imated as parabolic. In most cases this constitutes a smaller
fraction of the magnon bandwidth [34,35]. In particular, for
the field-induced z = 2 transition in DTN, where the magnon
bandwidth along the M-O line is under 0.2 meV ∼2 K [14],
numerical studies show that scaling can only be expected to
work for T � 0.5 K [36].

Since our sample is slightly off the critical concentration,
one should also avoid the lowest energies [3]. As a conserva-
tive choice, we took the lower cutoff at 0.1 meV, roughly twice
the gap energy. The energy limits are indicated by the shaded
areas in Fig. 7(a). Similar (and in some cases less stringent)

criteria regarding valid energy and temperature ranges have
previously been successfully applied to the study of scaling at
other z = 1 quantum-critical points [3,37–40].

The scaling plots for our DTNX data in the restricted en-
ergy range are shown in Fig. 7(b). There is no fitting involved
in the a = 1 plot which includes all data up to 5 K. The data
collapse for this expected value of the exponent is reasonable,
but not quite perfect. Following Ref. [41] we introduced a
measure of data collapse based on a 5th-order polynomial
fit to the scaled data. The best data collapse is found for
a = 1.4(1) for all data up to 5 K and a = 1.5(1) for data up
to 3 K. The resulting scaling plots are also shown in Fig. 7(b).
We have also performed a windowing analysis in energy by
fitting only the data within a progressively shrinking energy
window, analogously to the procedure outlined in Ref. [25].
The conclusion is that shrinking the fit interval produces no
statistically significant change in the fitted value of exponent
a compared to the value obtained for the full range, which
remains within the error bar for each fit.

Of course it can never be fully excluded that the observed
deviations from mean-field scaling are an artifact of the resid-
ual energy gap or the proximity of the nonlinear part of the
spectrum. Nevertheless, with this disclaimer, we can attribute
the unusual scaling exponent to the effects of disorder in the
system and a resulting redistribution of the density of states
at low energies. We hope that future theoretical work will
provide a more concrete interpretation of this result.

3. Local excitations

Previous measurements on the x = 0.06 compound have
revealed the presence of disorder-induced local excitations
in DTNX, which appear just above the magnon dispersion
maximum [20]. These local impurity states were also detected
by NMR [42]. Theory suggested that they may be viewed as
excitations in effectively isolated S = 1 dimers composed of
nearest-neighbor Ni2+ ions bound by superexchange interac-
tions substantially enhanced by the Br impurity between them
[43]. Being a local probe, NMR is unable to unambiguously
confirm the dimer model. Instead, to verify this simplistic in-
terpretation, we investigated the wave vector and temperature
dependence of these excitations in our neutron data.

Similarly to Fig. 7 in Ref. [20], Fig. 8(a) in the present
work shows a projection of the measured inelastic scatter-
ing intensity integrated in the directions transverse to the c
axis over all available data (Ei = 3.71 meV). The features at
h̄ω = 1.25 meV are clearly visible. Figure 8(b) shows the
corresponding constant-energy slice integrated in the range
±0.3 r.l.u. in the (h,−h, 0) direction and ±0.1 meV in en-
ergy. A periodic modulation of intensity of the impurity mode
along the c axis is unmistakable in both projections. The
apparent additional modulation along the (h, h, 0) direction is
actually due to scattering by strong phonons emanating from
the (−1,−1,−2) and (0, 0,−2) Bragg peaks. This phonon
background can be measured at slightly higher energy, h̄ω =
1.45 meV, with integration in the same range. A point-by-
point subtraction leaves the magnetic contribution plotted in
Fig. 8(c). There is clearly no modulation of intensity other
than that along the chain axis.
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FIG. 8. (a) False-color plot of the intensity measured in
Ni(Cl1−xBrx )2 · 4SC(NH2)2, x = 0.14(1), in projection onto the
crystallographic c axis. The integration is over all the avail-
able data in the transverse directions. (b) Constant-energy cut at
h̄ω = 1.25 meV integrated in the range ±0.1 meV in energy and
±0.3 r.l.u. in the (h, −h, 0) direction. (c) Same as (b), with a back-
ground measured at h̄ω = 1.45 meV and subtracted. In all the cases,
T = 300 mK and Ei = 3.71 meV.
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FIG. 9. Symbols: Same data as in Fig. 8(c), integrated over the
(h, h, 0) direction. The solid line is a single-parameter dimer-model
fit, as described in the text. (b) Temperature dependence of the
intensity plotted in (a) for l = −2 (top) and l = −2.5 (bottom). The
solid lines are calculations based on the dimer model.

The c-axis intensity modulation is quantified by integrating
the data shown in Fig. 8(c) in the range ±0.75 r.l.u. along the
(h, h, 0) direction. It is plotted in solid symbols in Fig. 9(a).
The observed periodicity indeed corresponds to the spacing
between two nearest-neighbor spins along the c direction. The
somewhat puzzling observation is that the intensity is maxi-
mal at integer values of l . For a Heisenberg S = 1 dimer we
expect the intensity to vanish at that point and the maximum
to be located at half integer l instead. This mystery is solved
if we consider the role of the strong easy-plane anisotropy in
DTNX. With such anisotropy the total spin of the dimer is no
longer a good quantum number and only its projection Sz is
conserved. The original triplet of S = 1 excitation from the
S = 0 singlet ground state is split into longitudinal and trans-
verse components. These are still modulated so that intensity
is a maximum at half-integer values of l and vanishes at
integer positions. However, the originally forbidden transition
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to the Sz = ±1 members of the S = 2 quintuplet now becomes
allowed and is transverse-polarized. The corresponding struc-
ture factor has a maximum at integer l .

We consider the following toy model based on the Hamil-
tonian proposed in Ref. [43]:

Ĥ = D′(Ŝz
1

)2 + D
(
Ŝz

2

)2 + J ′Ŝ1Ŝ2. (5)

Each Br impurity (i) substantially increases the coupling con-
stant J ′ on the affected Ni-Br-Cl-Ni superexchange pathway
compared to Jc for unaffected Ni-Cl-Cl-Ni bonds, to the ex-
tent that the dimer can be considered as isolated (all other
exchange interactions are disregarded), and (ii) reduces the
anisotropy constant D′ on the adjacent Ni2+ spin, leaving the
other one intact. Reference [43] estimates D′ = 0.28 meV
and J ′ = 0.46 meV, respectively. Apart from these two largest
parameters, other interactions are disregarded, resulting in
isolated dimers. The model is easily diagonalized numerically.
We calculate the two descendants of the triplet at 0.42 meV
and 1.01 meV, respectively, and the Sz = ±1 quintuplet de-
scendants at 1.46 meV. To match the latter to the observed
energy of the impurity mode precisely, we somewhat arbi-
trarily select a slightly smaller value of the impurity-affected
coupling constant, namely J ′ = 0.365 meV. With this choice
and only an overall scale factor as fitting parameter, the dimer
model reproduces the observed intensity modulation remark-
ably well [solid line in Fig. 9(a)]. The measured temperature
dependence of the impurity-state intensity at the maximum
and minimum, respectively, is plotted in Fig. 9(b). It is also
nicely reproduced by the dimer model without any additional
adjustable parameters (solid lines).

An additional consistency check comes from the analysis
of the local mode’s energy-integrated intensity. It can be prop-
erly normalized by comparing it to the intensity of the magnon
branch, as illustrated in Fig. 10 (circles). Here we show an
energy “scan” cut from the data at the (0,0,1) position. The
stronger and weaker peaks correspond to the magnon and
local mode, respectively. We use empirical Gaussian fits to
estimate their intensities (solid line). Comparing the measured
intensity ratio to that obtained from the GSWT/RPA and
direct diagonalization for the magnon and dimer model, re-
spectively, we conclude that there are 0.36(2) dimer spins for
every Ni2+ ion involved in the magnon branch. If we assume
that each Br center creates one dimer, this corresponds to a
x = 0.18(1) Br content, in very reasonable agreement with the
nominal composition of our sample. The local mode intensity
clearly scales with Br content. We performed a similar analy-
sis of the data in Ref. [20] for the nominally x = 0.06 sample.
The corresponding scan across the magnon and local mode is
also plotted in Fig. 10 (diamonds). Estimating the intensities
by Gaussian fits yields 0.16(2) dimer spins for every magnon
spin, which corresponds to a Br content of 0.09(1), also in
reasonable agreement with the nominal.

We can conclude that, at least as far as the 1.25 meV
excitation is concerned, the simplistic single-strong-bond-
dimer model works remarkably well. Of course, in other
aspects it is oversimplified, since it does not consider the
coupling of the strong-dimer to the rest of the Ni2+ chain.
The two descendants of the triplet mode in our model are

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0

0.05

0.1

0.15

0.2

0.25

(a
rb

. 
un

it
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FIG. 10. Constant-energy scans across the magnon (lower peak)
and local excitation (upper peak, indicated by the arrow) collected
at the (0,0,1) reciprocal-space point measured in DTNX at base
temperature. The intensity is integrated in the range ±0.1 r.l.u. in the
(h, h, 0), (h, −h, 0) and ±0.05 r.l.u. in the (0, 0, l ) directions. Circles
and diamonds correspond to nominal Br content of x = 0.14(1) and
x = 0.06. The latter data set is from the experiment described in
Ref. [20]. Solid lines are empirical Gaussian fits. The x = 0.14 data
set is offset for visibility.

calculated to be inside the magnon band, at 0.36 meV and
0.96 meV, respectively. There are, at best, only vague hints
of flat bands at these energies in our present data, although
such bands are better visible in the x = 0.06 material
(Fig. 7 of Ref. [20]). Let us consider the intensities of these
two calculated dimer excitations. The observation of the
c-axis-polarized 0.96 meV mode would be suppressed by
the polarization factor. For most of the data in Fig. 8 the
angle between the scattering vector and c axis is below 25◦,
which corresponds to a polarization factor of only 20%, while
the calculated structure factor of the 0.96 meV excitation is
comparable to that of the observed 1.25 meV mode. Such
an argument cannot be made for the 0.36 meV excitation. It
has the same polarization factor as the 1.25 meV transition
but is calculated to be almost 5 times stronger. That intensity
maximum is, however, located at half integer l , where the
excitation would overlap with a much stronger dispersive
magnon band and may be difficult to observe.

The more important factor may be that the local dimer ex-
citations lying inside the magnon band hybridize (scatter) with
the latter. This is only natural, considering that in the material
the dimer is certainly not isolated, but is incorporated into a
chain, albeit one with weaker coupling constants. In both our
x = 0.14 sample and the previously studied x = 0.06 material
there is a clear excess of magnon intensity near the magnon
dispersion saddle point (0,0,0.5), as compared to the overall
GSWT fit (see Fig. 5(b) above and Fig. 4(b) in Ref. [20]).
Here the magnon energy approximately matches that of the
would-be 0.36 meV dimer mode. From our model we estimate
the intensity of the latter to account for about a quarter of the
intensity “surplus” at the saddle point.
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IV. CONCLUSIONS

In summary, to within experimental energy resolution, the
spin excitations in DTNX near the critical Br content do show
finite-T scaling as appropriate for a true quantum-critical
point. The scaling exponent may, however, deviate from the
mean-field value expected in the absence of disorder.

The disorder-induced local excitations are to be associ-
ated with a specific transition in the strong-bond dimer that
forms around each Br impurity, in agreement with the model

of Ref. [43]. This interpretation accounts for the observed
energies, intensities, and wave vector and temperature depen-
dencies of the local mode remarkably well.
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