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Competing orders in a frustrated Heisenberg model on the Fisher lattice
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We investigate the Heisenberg model on a decorated square (Fisher) lattice in the presence of first-neighbor
J1, second-neighbor J2, and third-neighbor J3 exchange couplings, with antiferromagnetic J1. The classical
ground-state phase diagram obtained within a Luttinger-Tisza framework is spanned by two antiferromagnet-
ically ordered phases, and an infinitely degenerate antiferromagnetic chain phase. Employing classical Monte
Carlo simulations we show that thermal fluctuations fail to lift the degeneracy of the antiferromagnetic chain
phase. Interestingly, the spin-wave spectrum of the Néel state displays three Dirac nodal loops out of which
two are symmetry protected while for the antiferromagnetic chain phase we find symmetry-protected Dirac
lines. Furthermore, we investigate the spin S = 1

2 limit employing a bond operator formalism which captures
the singlet-triplet dynamics, and find a rich ground-state phase diagram host to a variety of valence bond solid
orders in addition to antiferromagnetically ordered phases.
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I. INTRODUCTION

In Mott-Hubbard insulators, a reasonable description of the
localized electron state at low temperatures is provided by
the Heisenberg spin Hamiltonian [1]. In the presence of frus-
trated interactions, which could be geometric or parametric in
origin, the determination of the ground state and low-energy
physics of the Heisenberg model poses itself as a highly non-
trivial problem. The principal motivation in the investigation
of frustrated spin systems lies in the lure of finding either
magnetically ordered ground states with intricate spin textures
or highly correlated nonmagnetic phases such as spin liquids
[2–6]. To this end, transition metal oxides have attracted much
attention as they are found in nature with a rich diversity of
geometrically frustrated lattice structures, displaying a wide
spectrum of magnetic behaviors [7,8]. In particular, in one
such family of manganese oxide compounds (MnO2) such as
K1.5(H3O)xMn8O16, Ba1.2Mn8O16, and α–MnO2 [9–11], the
Mn ions reside on the vertices of a geometrically frustrated
network, namely, the hollandite lattice [9,12,13]. Experimen-
tal studies on these systems have unveiled the presence of a
plethora of magnetic phases upon variation of temperature,
magnetic field, and doping, which include an antiferromag-
netic state [14], a ferromagnet, helimagnetic order [15,16],
and spin-glass behavior.

In order to understand the origin of this diversity in
magnetic behaviors it is helpful to disentangle the effects
of magnetic frustration from those arising due to the pres-
ence of impurities. Recently, theoretical studies employing an
Ising model on the hollandite lattice [17,18] successfully ex-
plained the origin of the antiferromagnetic ground state in the
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disorder-free system [19] as well as the doping-induced transi-
tion into a spin-glass state [20–22]. However, the Ising model
studied in Ref. [17] cannot account for helimagnetic (and in
general noncollinear) orders observed in K1.5(H3O)xMn8O16

and K0.15MnO2 at low temperatures [15,16]. Experimental in-
vestigations on manganese compounds [23–25] have provided
evidence that these systems have small magnetic anisotropies
and are thus well described by a Heisenberg model. The
zero-temperature (T = 0) classical magnetic phase diagram
of the Heisenberg model on the hollandite lattice allowing
for different signs and strengths of nearest-neighbor couplings
was studied in Ref. [26].

The hollandite lattice can be viewed either as coupled
two-dimensional triangular lattices stacked in the z direction
or as decorated square lattices (called Fisher lattice) stacked
in the y direction [26]. An understanding of the magnetic
Hamiltonian on a lattice which is a two-dimensional projec-
tion of the original three-dimensional lattice often provides
valuable insights into how magnetic order develops in the
original three-dimensional model, and helps flesh out the
structure of the (often intricate) spin configurations. In this
regard, investigation of the magnetic phases in the kagome
lattice as an insightful route towards understanding the com-
plex magnetism in the pyrochlore lattice is noteworthy [27].
Herein, we adopt the route of understanding the magnetism of
the hollandite lattice by viewing it as coupled Fisher lattices
since the nontrivial mechanism of magnetic order in α-MnO2

materials seems to arise due to the coupling in the y direction
[13,18,26,28]. In this work, we carry out a detailed analysis of
the magnetic phases present in the T = 0 classical phase di-
agram and investigate fluctuation effects beyond the classical
limit via a spin-wave analysis and a bond-operator formalism
for spin S = 1

2 .
We consider a minimal model on the Fisher lattice (see

Fig. 1) such that J1 couples the vertices of neighboring
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FIG. 1. (a) The Fisher lattice showing the three exchange cou-
plings J1 (blue) connecting sites on octagons, J2 (green) connecting
the sites of a square, and J3 (black) connecting the diagonals of a
square, of Eq. (1), with the four sites of the unit cell marked by 1,
2, 3, and 4. (b) The first Brillouin zone of the Fisher lattice with the
high-symmetry points marked.

squares, J2 defines the nearest-neighbor coupling within the
squares, and J3 is the second-nearest-neighbor (diagonal) cou-
pling within each square. The inclusion of a J3 coupling has
been motivated from recent studies [13,28] which suggest that
it might be necessary to describe the magnetism in hollandite
systems. At the classical level, a Luttinger-Tisza analysis [29]
of the (J1, J2, J3) parameter space reveals the presence of
different kinds of antiferromagnetically (AF) ordered states,
an infinitely degenerate uncorrelated antiferromagnetic chain
phase [30,31], as well as a unique Néel phase which fea-
tures magnonic Dirac nodal lines depending on the sign and
strength of the couplings. Furthermore, we investigate the role
of quantum and thermal fluctuations on these ground states
and find via (numerically) exact classical Monte Carlo simu-
lations that thermal fluctuations fail to lift the degeneracy of
the uncorrelated antiferromagnetic chain phase. We comple-
ment our study by going beyond the spin-wave approximation
and compute the relative stability of the semiclassical ground
state within a variational Ansatz by comparing the energies
of competing states and find that each of them is stable as
they feature a finite triplon excitation gap over suitable singlet
states.

Our paper is structured as follows. In Sec. II, we define
the model Hamiltonian and the Luttinger-Tisza framework
employed to obtain the classical T = 0 phase diagram. In
Sec. III A, we discuss the Luttinger-Tisza ground states and
study the effect of thermal fluctuations employing classical
Monte Carlo simulations. In Secs. IV and V, the impact of
quantum fluctuations to harmonic order on the ground states
is presented. In Sec. VI, we analyze our model Hamiltonian
for spin S = 1

2 within the scope of a bond-operator formalism
and show the existence of three different types of quantum
paramagnetic ground states, namely, a plaquette valence bond
solid (VBS), and two other dimer ordered states. Finally, we
summarize and discuss our results in Sec. VII.

II. MODEL AND METHODS

We consider a two-dimensional plane of the hollandite lat-
tice [see Fig. 1(a)], called the decorated square (Fisher) lattice,

which is characterized by a four-site geometrical unit cell.1

The interactions between the spins localized on the vertices of
this lattice are governed by a Heisenberg Hamiltonian

Ĥ = J1

∑
〈i, j〉1

Ŝi · Ŝ j + J2

∑
〈i, j〉2

Ŝi · Ŝ j + J3

∑
〈i, j〉3

Ŝi · Ŝ j, (1)

where the J1, J2, and J3 superexchange couplings are schemat-
ically illustrated in Fig. 1(a). It is worth noting that in earlier
studies [17,26] investigating the magnetism of the full three-
dimensional hollandite lattice, the consideration of in-plane
interactions was restricted to intersquare (J1) and nearest-
neighbor intrasquare (J2) couplings only,2 while the interplane
coupling was found to yield helimagnetic order. Recent exper-
imental studies [13,28] on hollandite compounds have pointed
to relatively more intricate ground states compared to those
found in Refs. [15–17,26]. In particular, in Ref. [28], the in-
plane magnetic ground state was found to possess a magnetic
unit cell which is a 4 × 4 expansion of the geometrical unit
cell. Although the materials in question potentially involve
more complex charge orderings which are likely to induce
further magnetic coupling between the Mn atoms, it is under-
stood that a simple model which accounts for only the above
two mentioned in-plane interactions [J1 and J2 in Fig. 1(a)]
is not sufficient to explain the formation of a magnetic order
with a 4 × 4 magnetic unit cell. The above fact motivates us
to explore a larger parameter space of exchange couplings,
and to this end, we propose the simplest extension by in-
troducing an additional second-nearest-neighbor (diagonal)
coupling within each square, i.e., J3 in Fig. 1(a). In our study
we consider all possible signs and strengths of the (J2, J3)
couplings with an antiferromagnetic J1.

Our analysis of the ground states of the classical version
of Eq. (1) employs the Luttinger-Tisza method. The corre-
sponding classical model is obtained by normalizing the spin
operators with respect to their angular momentum S and tak-
ing the limit S → ∞ [32,33]. Consequently, the spin operators
in Eq. (1) are replaced by ordinary vectors of unit length at
each lattice site i. For a generic spin interaction, we have the
following classical Hamiltonian that needs to be minimized:

H =
∑

i, j,α,β

Jαβ (Ri j )Si,α · S j,β , (2)

where i, j denotes the corresponding Bravais lattice sites sepa-
rated by lattice translation vectors Ri j and α, β indices denote
the sublattice sites. The underlying Bravais lattice of the
Fisher lattice is the square lattice. The Luttinger-Tisza method
[29] seeks to find a ground state of Eq. (2) by enforcing the
spin-length constraint at a global level, i.e.,

∑
i |S2

i | = S2N ,
where N is the total number of lattice sites, a condition termed
as the weak constraint. This constraint amounts to permitting

1In a hollandite lattice, the even and odd sublattices lie in different
planes, but for the purposes of this study, this fact is not important.

2In Refs. [17,26] the J1 and J2 couplings in this paper are labeled
as J2 and J3, respectively, while the interplane coupling is labeled
as J1. As we only deal with a given two-dimensional plane which is
perpendicular to the channel directions, J1 coupling of earlier studies
is absent in our present analysis.
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site-dependent average local moments which take us beyond
the classical limit by approximately incorporating some as-
pects of quantum fluctuations [34].

A solution of this relaxed problem is achieved by decom-
posing the spin configuration into its Fourier modes S̃α (k) on
the four sublattices of the Fisher lattice

Si,α = 1√
N/4

∑
k

S̃α (k)eık·ri,α . (3)

Inserting this expression into Eq. (2) results in

H =
∑

k

∑
α,β

J̃αβ (k)S̃α (k) · S̃β (−k), (4)

with the interaction matrix given by

J̃αβ (k) =
∑
i, j

Jαβ (Ri j )e
ık·Ri j . (5)

The modes which respect the weak constraint are given
by the wave vector k, for which the lowest eigenvalue of
Eq. (5) has its minimum. The eigenvector corresponding to
this eigenvalue gives the relative weight of the modes on
the sublattices [35], which means that these modes do not
fulfill the strong constraint (|S2

i | = S2, i.e., fixed spin-length
constraint on every site) if the components of the eigenvector
do not have the same magnitude. On the other hand, if this
condition is met, the true ground state of the classical model
is a coplanar spiral determined by the optimal Luttinger-Tisza
wave vector [36].

III. CLASSICAL GROUND STATES

A. Luttinger-Tisza analysis

The interaction matrix J̃αβ (k) for our model takes the form

⎛
⎜⎜⎝

0 J2eı(kx−ky )a J3eı2kxa + J1eıkxb J2eı(kx+ky )a

J2e−ı(kx−ky )a 0 J2eı(kx+ky )a J3eı2kxa + J1eıkxb

J3e−ı2kxa + J1e−ıkxb J2e−ı(kx+ky )a 0 J2eı(kx−ky )a

J2e−ı(kx+ky )a J3e−ı2kxa + J1e−ıkxb J2e−ı(kx−ky )a 0

⎞
⎟⎟⎠.

In the region of parameter space defined by J3 > |J2|, we
find that the minimal eigenvalue wave vector (kx, ky)0 is given
by

(kx, ky)0 = (2mπ/3, ky ) or

(kx, ky)0 = (kx, 2nπ/3), (6)

where m, n ∈ Z, hence, realizing long-range ordering in one
direction with an absence of relative ordering in the other
direction. Along the line J2 = J3, we find

(kx, ky)0 = (kx, ky), (7)

leading to a degenerate ground-state manifold. In the remain-
ing regions of parameter space we find

(kx, ky)0 = ((2n + 1)π/3, (2m + 1)π/3), (8)

which corresponds to long-range magnetic order with com-
mensurate ordering wave vectors. The absence of an incom-
mensurate ordering wave vector implies that the degree to
which mutual interactions between spins are satisfied is likely
to be determined locally and, hence, as a starting point it is
helpful to pursue an energy minimization of a local cluster of
spins. To this end, we employ a variational approach which
proceeds by first constructing spin configurations of a local
cluster of spins that minimize its energy and subsequently
attempt to construct a global spin configuration which also sat-
isfies the local minimum energy configuration of the cluster of
spins. We verify the accuracy of our global spin configurations
from classical Monte Carlo simulations.

To start with, we consider a cluster of four spins that con-
stitute a unit cell of the Fisher lattice. The spin configuration is
parametrized by observing that the lattice can be described as
a collection of horizontal and vertical connections which are
coupled via J2 bonds. Each horizontal and vertical string of
connections hosts two sublattices each. The relative orienta-
tion between the spins within both the sublattices is assigned

an angle γ , while the relative orientation between the spins
belonging to the same sublattice but in different chains is
assigned an angle α [see Fig. 2(b)]. This choice of Ansatz
gives an energy density

E/NS2 = 1
4 (J1[cos(γ − kx ) + cos(γ − ky)] + J2[2 cos α

+ cos(α + γ ) + cos(α − γ )] + 2J3 cos γ ). (9)

The above expression has four free parameters which need
to be determined to obtain the ground-state spin configuration.
We note that since the antiferromagnetic J1 bond is not frus-
trated by any other interaction, one may put forth an Ansatz
in which the spins connected by the J1 bonds are antiparallel,
i.e., kx − γ = ky − γ = π , with Eq. (9) simplifying to

E/NS2 = 1
2 [J2 cos α(1 − cos kx ) − J3 cos kx − J1]. (10)

Upon minimizing Eq. (10) with respect to kx and α we get
the following two sets of conditions for a spin configuration

FIG. 2. (a) Classical phase diagram of J1-J2-J3 Heisenberg model
on the Fisher lattice with the couplings as defined in Fig. 1(a) and
Eq. (1), (b) parametrization of a generic spin configuration with γ =
kx + π and kx = ky = k.
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FIG. 3. Spin configuration in (a) phase I (uncorrelated antifer-
romagnetic chain) with (k, α) = (0, α). The individual horizontal
or vertical chains have perfect antiferromagnetic order, the relative
orientations between them is not fixed. With respect to lower hori-
zontal chain, the orientations of the two vertical chains are α1 and α2,
respectively. Also, note that the orientation of upper horizontal chain
with respect to lower horizontal chain is α3, i.e., the system has an
infinite degeneracy, (b) phase II (Néel phase) with (k, α) = (π, π ),
and (c) phase III (sublattice Néel phase) with (k, α) = (π, 0).

to qualify as a ground state:

sin kx(J2 cos α + J3) = 0, (11)

sin α(1 − cos kx ) = 0. (12)

The solutions (kx, α) satisfying the conditions [Eqs. (11) and
(12)] corresponding to different phases are described below.

1. Antiferromagnetic chain phase

This phase is characterized by (k, α) = (0, α) where k =
kx = ky, and is stabilized for J3 � |J2|. It is depicted as phase
I (yellow region) in the phase diagram of Fig. 2(a). It features
perfect antiferromagnetic order along either the horizontal or
vertical chains, however, there is a complete absence of spin
correlations between any two of these ordered chains [see
Fig. 3(a)]. This implies that within any given four-site unit
cell, the spins coupled by J3 bonds are antiferromagnetically
correlated while there is no correlation between the spins
connected by J2. Hence, the angle α can take any value,
implying an infinite degeneracy of the ground-state manifold.
The ground-state energy is then independent of α:

E/NS2 = − 1
2 (J3 + J1). (13)

In the above expression, the independence of the energy on
α arises due to a cancellation of the contributions from two
bonds connected by J2 within a given square plaquette. The
existence of such a degeneracy within each square together
with long-range antiferromagnetic order along horizontal or
vertical chains poses itself as an interesting platform to in-
vestigate the order-by-disorder physics driven by thermal and
quantum fluctuations. This will be discussed in Secs. III B, IV,
and V.

2. Néel phase

For J3 < |J2|, we enter a region of parameter space where
the arbitrariness in the choice of the parameter α in the
uncorrelated antiferromagnetic chain phase gets lifted. In par-
ticular, for J2 > 0 and J3 < J2, we obtain a Néel ordered
phase [marked as phase II (blue region) in Fig. 2(a)]. This
phase is characterized by (k, α) = (π, π ) which signifies that

within any given unit cell (square) there is perfect antiferro-
magnetic order, and that the spins in neighboring unit cells
are aligned antiferromagnetically with respect to each other
[see Fig. 3(b)]. However, unlike the familiar Néel phase on the
square or honeycomb lattice, not all antiferromagnetic bonds
are satisfied when J3 > 0, as the spins connected by the J3

couplings remain frustrated. The ground-state energy of this
phase is given by

E/NS2 = − 1
2 (2J2 − J3 + J1). (14)

Upon entering the region J3 < 0, this phase is further
stabilized since the spins coupled via J3 bonds are ferromag-
netically aligned in this Néel phase.

3. Sublattice Néel phase

In the region J2 < 0, when J3 < |J2|, the free parame-
ter α characterizing phase I is determined to zero implying
that all spins within a given unit cell are ferromagnetically
aligned. Furthermore, these four-site unit cells form Néel or-
der throughout the lattice and, hence, each sublattice is Néel
ordered [see Fig. 3(c)], we henceforth refer to this phase as
a sublattice Néel ordered phase [marked as phase III (or-
ange region) in Fig. 2(a)]. This state is thus characterized
by (k, α) = (π, 0). The ground-state energy density can be
written as

E = − 1
2 (2|J2| − J3 + J1). (15)

When J3 < 0, the spin configuration satisfies all the couplings.

B. Classical Monte Carlo analysis

Since the Luttinger-Tisza approach is not a priori ex-
pected to give the exact ground-state spin configuration on
a non-Bravais lattice such as ours, and given the fact that
our approach is based on a variational Ansatz [Eq. (9)], we
perform classical Monte Carlo simulations to investigate the
accuracy of our analysis as well as to study the role of thermal
fluctuations. It is worth mentioning that a two-dimensional
system of Heisenberg spins with finite-range antiferromag-
netic or ferromagnetic interactions cannot feature long-range
order at any finite temperature by virtue of the Hohenberg-
Mermin-Wagner theorem [37]. Our discussion thus refers to
the behavior of order parameters (here spin orientations) at
short length scales, i.e., at distances r less than the correlation
radius ξ . We consider a system of 1600 (= 20 × 20 × 4)
spins, employ parallel tempering, and carry out simulations
at temperatures T/J1S2 = 0.001.3 We find that in phases II
and III both the angles (γ , α) [see Fig. 2(b)] lock into the
values (0, π ) and (0,0), respectively, as expected from the
Luttinger-Tisza result. In contrast, in phase I, the angle γ

settles into a value of π , while thermal order-by-disorder
mechanism fails to lift the degeneracy in the angles α1, α2,
and α3 [see Fig. 3(a)] which therefore continue to exhibit a

3All the simulations have been performed starting from a high
temperature of T ∼ J1 and reaching down until T ∼ 10−3J1 through
slow annealing. We have used 104 Monte Carlo steps for thermaliza-
tion, followed by 105 Monte Carlo steps during which measurements
are taken every 10 Monte Carlo steps to ensure uncorrelated results.
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FIG. 4. The static (equal-time) spin structure factor obtained from classical Monte Carlo simulations for the three different phases in the
classical phase diagram of Fig. 2(a) evaluated at T/J1S2 = 0.001 for a system of 1600 spins, (a) phase I at (J2/J1, J3/J1) = (1, 4), (b) phase II
at (J2/J1, J3/J1) = (4, 1), and (c) phase III (J2/J1, J3/J1) = (−4, 1).

fluctuating behavior with time evolution/Monte Carlo steps.4

Furthermore, as the temperature T → 0 the specific heat C
tends to a value less than one, pointing to the important
fact that the role of anharmonic fluctuation modes cannot be
neglected. Our analysis thus provides evidence for the stabi-
lization of an uncorrelated antiferromagnetic chain phase at
finite temperatures. This is also reflected in the finding that
within the region of parameter space occupied by phase I,
the ground-state energy obtained from classical Monte Carlo
simulations is independent of J2 indicating an absence of
spin correlations between the different horizontal and vertical
chains. Hence, the spin configurations determined from the
(numerically) exact classical Monte Carlo simulations are in
complete agreement with those determined from the varia-
tional Ansatz [Eq. (9)], validating the classical phase diagram
of Fig. 2(a).

Having discussed the classical ground states occupying
the (J1, J2, J3) parameter space, it is instructive to calculate
the magnetic structure factor which can be experimentally
measured in a neutron scattering experiment [38] to reveal
the signatures of the magnetic ground states. As discussed
above, we have found three different magnetic ground states,
namely, an uncorrelated antiferromagnetic chain phase, Néel
phase, and sublattice Néel phase, depending on the sign and
magnitude of the exchange parameters in the Hamiltonian.
Here, we calculate the static (equal-time) spin structure factor

S(k) = 1

N

∑
i, j

e−ık·Ri j 〈Si · S j〉 (16)

via classical Monte Carlo simulations for three different sets
of parameter values. Here, N is the total number of sites, i and
j run over all the sites of the lattice, and the nearest-neighbor

4We have verified the fluctuating behavior of the angles α1, α2, and
α3 down to temperatures T ∼ 10−5J1. At low temperatures, we also
perform a restricted Metropolis update: such an update proposes a
new spin at random in a conical region about the local field of the old
spin [85]. Adjusting the size of the conical region gives us control
over the acceptance rate of proposed spins which is small at lower
temperatures. In our simulation, the acceptance rate was around 50%.
We have also checked the robustness of our findings by starting from
an ordered state obtained by initializing the three angles to 0 and π

and observing their evolution with Monte Carlo steps. The results are
identical to those obtained by starting from a random configuration,
namely, that they exhibit fluctuating behavior.

distance between two sites is set to unity. This implies that
the distance between the neighboring unit cells is three units
which makes the periodicity of S(k) as 2π/3. In Fig. 4 we
show the structure factor of the different phases in Fig. 2(a).
We note that in phase I the horizontal and vertical chains
are uncorrelated, and thereby have no global ordering in any
direction, on average. The perfect antiferromagnetic order in
a given chain yields a vanishing contribution when summed
over all chains. Hence, we expect a featureless structure factor
with the presence of subdued peaks at the zone boundary
(corresponding to an ordering vector k which is zero upon
a statistical averaging) as can be seen in Fig. 4(a). For the
magnetic ground states given by phases II and III, we note that
a global antiferromagnetic (Néel) order should yield peaks
at k = (m π

3 , n π
3 ) where m, n are odd integers. However, the

peaks at the above-mentioned points are modulated due to the
form factor of the magnetic ordering in a given unit cell of
Néel phase (phase II) and subattice Néel phase (phase III).
These form factors lead to the appearance of blue lines along
the diagonal for the phase II making a crosslike contour and
for phase III a square pattern. The origin of such low intensity
contours can be understood by calculating the structure factor
for the Néel and the sublattice Néel phases analytically. An
exact expression of the static structure factor for the different
classical spin configurations obtained within a Luttinger-Tisza
formalism (see Sec. III A) can be determined by evaluating
Eq. (16) analytically. The static structure factor F = S2| f |2
(where S denotes the form factor of the magnetization in a
given unit cell and f arises due to global Néel ordering) thus
obtained is given by

f = (1 − eıNLkx )(1 − eıNLky )

(4N )2(1 + eıLkx )(1 + eıLky )
, L = 3a (17)

S(k) = 4(cos kx ∓ cos ky)2 (18)

for a lattice of N × N unit cells, and − (+) corresponds to the
form factor for the Néel (sublattice Néel) phase.

The form factor S is zero along the line kx = 2m′π ± ky

for phase II and kx = (2m′ + 1)π ± ky for phase III where
m′ is any integer including zero. Thus, the expected peaks at
k = (m π

3 , n π
3 ) will be modulated due to such lines of zero

intensity and it would remove some peaks in structure factor
which are expected due to global Néel ordering. Figure 4(b)
represents the structure factor for the Néel order (phase II).
We see that the peaks appear at k = (m π

3 , n π
3 ) with m �= n

due to the form factor modulation. On the other hand, such a
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destructive modulation is absent for the sublattice Néel phase
and the peaks appear at the expected locations k = (m π

3 , n π
3 )

with m and n being odd integers [see Fig. 4(c)]. In practice, a
particular material may not have the exact symmetry of the lat-
tice we have considered. For example, the unit cell may not be
a square as taken here and also the distances between different
sites of different neighbors connected by exchange couplings
would also be different, in which case the experimentally
obtained structure factor would be modified compared to that
shown in Fig. 4. However, the structure factor in that case
can be easily compared by evaluating Eq. (17) with modified
lattice parameters, mainly the different values of Ri j .

IV. SPIN-WAVE ANALYSIS

A. Antiferromagnetic chain phase

The T = 0 classical antiferromagnetic chain phase [phase
I in Fig. 2(a)] has an infinitely degenerate ground-state mani-
fold. In particular, on a lattice consisting of N horizontal and
M vertical lines [see Fig. 2(b)], there are N × M indepen-
dent α parameters, each of which can take on values ranging
from 0 to 2π . It is thus natural to ask the question whether
quantum fluctuations can lift this degeneracy via an order-by-
disorder mechanism [39,40] and select a unique configuration
parametrized by a certain value of α. To investigate the role of
quantum fluctuations, we carry out a linear spin-wave analy-
sis. To this effect, we rotate our coordinate system in such a
way that the z axis of the local coordinate system coincides
with the axis of the local spin orientation

Ŝα
i = Rx

(π

2

)
Rz(φi)Ŝ

α′
i , α = x, y, z. (19)

The Holstein-Primakoff transformation [41] can now be writ-
ten as

Ŝz′
i,m ≈ s − â†

i,mâi,m,

Ŝx′
i,m ≈

√
s

2
(â†

i,m + âi,m),

Ŝy′
i,m ≈ ı

√
s

2
(â†

i,m − âi,m). (20)

In the above m = 1, 2, 3, 4 denote the sublattice indices.
Within a quadratic approximation to the boson operators we
find that a uniform choice of α (when all N × M values
of α are the same) is energetically favorable compared to
disordered configurations of α (when all N × M values of α

are different), indicating an order-by-disorder mechanism at
work. This lifting of the degeneracy is only partial as α (which
is now the same for all N × M sites) can still take on any value
between 0 and 2π , yielding the same ground-state energy,
and hence there still remain an infinite number of degenerate
ground states. However, the magnon spectrum for each value
of α need not be the same and thus we investigate the α depen-
dence of the spin-wave spectrum. In Appendix A we provide
the expressions of the resulting Hamiltonian after implement-
ing the Holstein-Primakoff transformation corresponding to
Eqs. (19) and (20). As expected, the Hamiltonian is invariant
under PT symmetry which is defined as PT = σx ⊗ σ0K
(where K is the complex-conjugation operator). In phase I,
the magnetic and crystallographic unit cells are identical, as

a result of which we get a 8 × 8 Hamiltonian matrix [see
Eq. (A1)] in k space. As a consequence of PT symmetry
we obtain four doubly degenerate magnon branches shown in
Fig. 5 with the following dispersion relations:

ε(k)1,2 = 1

2

√
pk ± 1

2

√
Q(0) fk + gk (0) + hk, (21)

ε(k)3,4 = 1

2

√
pk ± 1

2

√
Q(α) fk + gk (α) + hk, (22)

where Q(α) = 2(J2 )2 cos2 α−(J3 )2

4 and

pk = J3

4
(2 − cos kx − cos ky), (23)

fk = [cos(kx + ky) + cos(kx − ky)], (24)

gk (α) = (J2)2 cos2 α(1 − cos kx − cos ky), (25)

hk = (J3)2[2 + cos(2kx ) + cos(2ky)]/8. (26)

From Eq. (21) we see that there are two modes which are
independent of α, and Eq. (22) shows that the other two modes
are α dependent. For any given value of α there are two
Goldstone modes originating from the spontaneously broken
U(1) symmetry, and we observe the presence of zero-energy
modes along the segments 
X and 
Y . The presence of zero-
energy modes can be understood from Eqs. (21) and (22)
which upon substitution of kx(ky) = 0 and ky(kx ) = k yields
ε(k) = 0 and ε(k) = √

J3 sin k/2. Hence, there are two doubly
degenerate modes along the kx = 0 and ky = 0 axes out of
which one doubly degenerate mode has zero excitation energy
and another linearly dispersing in k for small values.

It is worth noting that along the kx = 0 and ky = 0 axes
we have linear band crossings along the line segments 
X
and 
Y in the Brillouin zone, thus forming Dirac nodal lines.
We now discuss how the spin-wave spectrum depends on
α. (i) For α = 0 or π : in this case the system has two-
sublattice Néel order. The Hamiltonian is block diagonal (see
Appendix A), and each block is PT invariant which gives
rise to two fourfold-degenerate bands [see Fig. 5(a)]. (ii)
For α = π/4: The block-diagonal structure disappears and
as a result the two fourfold-degenerate bands split into four
twofold-degenerate bands [see Fig. 5(b)]. (iii) For α = π/2:
In this case we have a band touching of the α-dependent
bands at the M point which is a consequence of the underlying
mirror reflection symmetry about the kx, ky, and kx = ky axes.
We note that there is a Dirac nodal line along the segment 
M
[see Fig. 5(c)]. Low-energy expansion of dispersion along 
M
gives

ε(κ )1,2 = 2(J3 ± J2 cos α)| sin κ/2|, (27)

ε(κ )3,4 = 2(J3 ± J2)| sin κ/2|. (28)

In the above expressions, we have substituted kx = ky = κ .
It is evident that the number of independent modes along
the 
M depends on α. For α = 0, π there are two doubly
degenerate optical modes as represented by violet and blue
lines in Fig. 5(a). When α = π/4, the twofold degeneracy of
both the optical modes gets lifted [see Fig. 5(b)], however,
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FIG. 5. Free magnon spectrum corresponding to Eqs. (21) and (22) in phase I for the parameter values (J2/J1, J3/J1) = (1, 2) plotted along
the high-symmetry path 
(0, 0), X (π, 0), M(π, π ), and Y (0, π ) for three choices of degeneracy parameters, (a) α = 0 or π , (b) α = π/4 and
(c) α = π/2.

when α = π/2 only the degeneracy of the lower optical mode
gets lifted. The above observation may have experimental rel-
evance in deciding the exchange parameter set for the model
Hamiltonian or the selected angle α.

The appearance of doubly degenerate zero-energy modes
along the 
Y and 
X is reminiscent of the fact that irrespec-
tive of the one-dimensional order along a certain direction,
the perpendicular direction can adjust itself free of energy
cost. We have also found that the inclusion of anisotropy or
magnetic field perpendicular to the spin alignment plane leads
to a lifting of the degeneracy of the optical modes along Y M
or 
M, however, the zero-energy mode along the kx(ky) = 0
survives on 
Y and 
X segments. The inclusion of higher-
order terms may lift this degeneracy [42] but we expect the
zero-energy modes at high-symmetry points to survive the
inclusion of magnon-magnon interaction terms [43,44].

B. Phases II and III

This phase has perfect antiferromagnetic structure which is
the same as for the unfrustrated case (J3 = 0 and J1, J2 > 0)
studied in Ref. [45] where the presence of two Dirac nodal
loops was found. The magnetic unit cell (eight sites) is twice
the size of the crystallographic unit cell (four sites). In the
bipartite representation, the Hamiltonian can be written as in
Eq. (A5), and is seen to be block diagonal with each block
being PT invariant. This results in four fourfold-degenerate
bands shown in Fig. 6. Similar to what was found for the
unfrustrated model (J3 = 0), we find two nodal loops [marked
by blue line in Fig. 7(a)], namely, in Figs. 6(a) and 6(f) we
see that the black circled points form one nodal loop while the
cyan circled points form the second nodal loop. In the absence
of a J3 coupling it was shown in Ref. [45] that the Dirac nodal
loops are topologically protected, and that there is a triple
band touching at the 
 and M points, while in the presence of
an additional J3 coupling we find a quadruple band touching
at the X and Y points as shown in Fig. 6(a). Furthermore, we
find that a J3 coupling leads to the appearance of an additional
Dirac nodal loop along the Brillouin zone boundary and also
along the kx(ky) = 0 axes [see Fig. 6(d) and the orange seg-
ment in Fig. 7(a)]. However, this additional loop appears only
for particular choices of parameters shown in Fig. 7(b), and
is not protected by any symmetry except at the time-reversal
invariant momentum points, i.e., the 
 and M points [see
Figs. 6(f) and 6(i)], where there remains a twofold degeneracy
since the Hamiltonian given by Eq. (A5) is invariant under
T = ıσyK operator.

In phase III, whose magnetic structure has an eight-site
unit cell, we similarly find that the Hamiltonian (A8) is block
diagonal with each block being PT invariant, leading to
four fourfold-degenerate bands as in phase II. However, the
symmetry-protected Dirac nodal loops of phase II are not
found in phase III, on the other hand, the additional nodal loop
along the zone boundary and kx(ky) = 0 axes found for phase
II also appears in phase III for the same choice of parameters
shown in Fig. 8. We note that the surface states for a ribbon
geometry in phase II are gapless but the edge states for phase
III are gapped.

V. THERMAL AND QUANTUM
ORDER-BY-DISORDER EFFECTS

For a two-dimensional system of Heisenberg spins, the
Hohenberg-Mermin-Wagner theorem dictates that even at
infinitesimally small temperature, the deviation of the spin ori-
entation, i.e., the spin fluctuations, is infinitely large. Thus, the
assumption of small fluctuations about the classical ground
state, i.e., the harmonic approximation is, in principle, not ap-
plicable. Nonetheless, the entropic selection of the dominant
magnetic fluctuation tendencies at low temperatures carried
out within a harmonic analysis may provide information on
the nature of the short-range correlations. It is worth mention-
ing that the harmonic order results can be significantly altered
if the anharmonic modes play a decisive role.

We now proceed to carry out such an analysis for phase
I, which at zero temperature is infinitely degenerate being
characterized any value of α ∈ [0, 2π ). However, at finite
temperature, the fluctuation of the spins explicitly contributes
to the α-dependent free energy. This could possibly lead to
a lifting of the degeneracy in the parameter α via a thermal
order-by-disorder mechanism [46–48]. To this effect, we in-
troduce a spin deviation θR,μ → θ0

R,μ + δθR,μ, where θR,μ is
the ground-state spin configuration of the μth sublattice of a
unit cell with radius vector R and δθR,μ is the deviation from
ground-state spin configuration. Substituting this in Eq. (1)
and expanding around the ground state up to quadratic order in
δθR,μ, in Fourier space we obtain Ĥ = EGS + Ĥfluctuation with

Ĥfluctuation =
∑

q

ψ†
qAq(α)ψq, (29)

where ψq = [δθq,1 δθq,2 δθq,3 δθq,4]T , and EGS is the ground-
state energy.

In this (harmonic) approximation, the fluctuations can be
integrated out in the partition sum, and give rise to a linear-T
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FIG. 6. Free magnon spectrum for phase II (Néel phase): (a), (b) (J2, J3) = (2, 1) and (f), (g) (J2, J3) = (3, 2), (c), (d), (e) and (h), (i), (j)
represent the band touchings between different bands, which form the Dirac nodal loops for the two above-mentioned choices of parameters,
respectively. Notice that the nodal loop due to touching of the bands denoted by green and blue colors appears for some choices of parameters
and is gapped out for other choices. Hence, this nodal loop is not protected by any symmetry, whereas the nodal loops due to touching of the
upper and lower two bands survive for all choices of parameters, thereby rendering these loops symmetry protected.

dependence in the free energy F (α, T ). Following Ref. [48],
F (α, T ) can be written as

F (α, T ) = EGS − NT ln T + T
∑
q∈BZ

ln[det Aq(α)], (30)

where the last term is the α-dependent part of the low-
temperature entropy density. The state which minimizes this
term corresponds to the minimum of the free energy: this is the
entropic order-by-disorder selection mechanism discussed in
Refs. [39,40,47,48]. In the region of the phase diagram occu-
pied by phase I, we find that thermal fluctuations select a value
of α equal to 0 or π . This is in contrast to classical Monte
Carlo result which finds that the order-by-disorder mechanism
fails to lift the degeneracy in the angle α. Our results thus point
to the non-negligible impact of anharmonic order fluctuations
which seem to alter the harmonic order picture sharply in
favor of an uncorrelated antiferromagnetic chain phase.

Furthermore, the energy of the spin-wave modes is
h̄Sεq,μ(α) in the semiclassical description for spins of length
S � 1. Quantum fluctuations then choose the state with the

FIG. 7. (a) Projection of Dirac nodal loop on the first Brillouin
zone. The blue line denotes the symmetry-protected nodal loops
whereas the orange one appears for some specific choices of pa-
rameters. (b) Denotes the choices of parameters where the additional
nodal loop appears which is not protected by any symmetry.

lowest zero-point energy

EZP(α) =
∑
q∈BZ

h̄S

2
εq,μ(α). (31)

The EZP(α) behaves qualitatively like the the last term of
Eq. (30) and selects the same ordering vectors. In the region
of the phase diagram occupied by phase I, we find that at
zero-temperature quantum fluctuations select a value of α

equal to 0 or π . It will be interesting to investigate the impact
of anharmonic order terms, which we leave for a future study.

VI. BOND-OPERATOR ANALYSIS: VALENCE BOND
SOLID PHASES

In the extreme quantum limit of S = 1
2 , there arises

the possibility of zero-point quantum fluctuations destroying
long-range antiferromagnetic orders when the amplitude of
the fluctuations becomes of the order of the spin length.
Furthermore, the presence of frustrated interactions enhances
quantum fluctuations, thereby aiding the stabilization of quan-
tum paramagnetic phases such as quantum spin liquids and

FIG. 8. Free magnon spectrum for phase III (sublattice Néel
phase) for (a) (J2, J3) = (−2, 1) and (b) (J2, J3) = (−0.8, 0.6). Un-
like Néel phase there is no robust Dirac nodal loop in this phase.
However, similar to Néel phase in some choices of parameters a
nodal loop (not protected by any symmetry) appears along the zone
boundary and kx = 0 and ky = 0 axes as can be seen from (a).
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FIG. 9. A schematic illustration of the pattern of singlet dimer formations for the parameter regimes of Eq. (1), (a) |J1| � (|J2|, |J3|)
(VBS1), (b) |J3| � (|J1|, |J2|) (VBS2), (c) |J2| � (|J1|, |J3|) (plaquette RVB) wherein the quantum ground state is given by a superposition of
two states with dimer formation on the opposite sides of the square as shown in the right panel.

valence bond solids (VBS). Here, we investigate the effect
of quantum fluctuations beyond the spin-wave approxima-
tion by employing resonating valence bond variational wave
functions. We first investigate our J1-J2-J3 model in param-
eter regimes where one of the couplings is overwhelmingly
stronger compared to the remaining two. In this limiting
regime, we note that at zeroth order the strongest bonds will
form a singlet or triplet dimer and the locally excited states
correspond to singlet-to-triplet excitations or vice versa for
antiferromagnetic or ferromagnetic bonds, respectively (see
Fig. 9). The effect of nonzero values of the remaining two
(subdominant) couplings is to dynamically create local exci-
tations on the strong singlet and triplet dimer bonds. Hence,
an effective Hamiltonian of interacting singlet or triplet bonds
between neighboring dimers can be constructed within this
approach. This procedure is known to be effective in ex-
plaining the low-energy physics of interacting spin systems
[49–57]. We now discuss the different VBS phases which are
found to be realized as variational quantum ground states of
the J1-J2-J3 model.

A. VBS1 and VBS2 phases

In the limit when |J1| � (|J2|, |J3|) we have a VBS config-
uration consisting of dimers on J1 type bonds [see Fig. 9(a)].
The local Hilbert space is four dimensional spanning the sin-
glet ground state and the three triplets as the excited states.
Following Ref. [51], we define ψ̂

†
i and χ̂

†
i as the creation

operators of the singlet and triplet states, respectively, on
the ith bond within a given unit cell with the accompanying
constraint on the dimensionality of the Hilbert space

ψ̂
†
i ψ̂i + χ̂

†
i,αχ̂i,α = 2S, (32)

where i = 1 or 2 corresponds to the two J1 type bonds in a
unit cell, and α = 1, 2, 3 denotes the three types of triplets in
a given dimer. The interaction term between the two neigh-
boring unit cells is obtained by writing the spin components
in terms of the above-mentioned valence bond operators.
This is achieved by calculating 〈m|Ŝν

μ|n〉 where μ = 1, 2 de-
notes the two spins in a given dimer, ν = x, y, z labels the
three spin components, and |m〉 (|n〉) represents the singlet or
triplet states. In general, a spin operator at a given site has
the form Ŝi ≈ 1

2 (ψ̂†
i χ̂i + H.c.) where i labels a given dimer

(see Appendix B for details). As a result of this transforma-
tion we land up with a Hamiltonian which is quartic in the

field operators χ̂ and ψ̂ . We carry out a mean-field decou-
pling such that the resulting quadratic Hamiltonian [Eq. (B2)]
separates into singlet and triplet sectors with no mixing
terms. The ground-state energy is obtained by extremizing the
Hamiltonian with respect to the mean-field parameter Ni

(where
√

Ni = 〈ψ̂†
i 〉 = 〈ψ̂i〉) and the Lagrange multiplier λ

needed to implement the constraint of Eq. (32), which yields
two sets of self-consistent equations which are solved. The
resulting expression for the ground-state energy per unit cell
for VBS state in the parameter regime J1 � (J2, J3) is

Ea = (Na,1 + Na,2)Ea − λ[(Na,1 + Na,2) − 1]

+ 3

2N

∑
k

2∑
i=1

(�k,i − Ak,i ), (33)

where a labels the VBS1 state, �k,i is the eigenenergy ob-
tained in the triplon sector of the interacting Hamiltonian (B2)
signifying the excitation of the triplet state [55], and Ak,i is
the diagonal element of Eq. (B2). A similar procedure can
be followed for the VBS2 state in the parameter regime J3 �
(J1, J2). For the VBS2 state the unit cell has been conveniently
chosen as an elementary square. In a similar manner as above,
we obtain the ground-state energy per square

Eb = (Nb,1 + Nb,2)Eb − λ[(Nb,1 + Nb,2) − 1]

+ 3

2N

∑
k

2∑
i=1

(�k,i − Bk,i ), (34)

where b labels the VBS2 state, and the remaining terms all
have identical meaning to that in Eq. (33) (see Appendix B
for further details).

B. Plaquette VBS

In the parameter regime (J2, J3) � J1 where we expect a
plaquette VBS phase [see Fig. 9(c)], we have two choices of
forming two dimers inside a square. More precisely, if we
denote the four vertices of a square as V1, V2, V3, and V4,
then we have two possibilities for dimer formation, namely,
V1-V2 and V3-V4 or V1-V4 and V2-V3. The corresponding
Hamiltonian is

Ĥp = J2(Ŝ1 + Ŝ3) · (Ŝ2 + Ŝ4) + J3(Ŝ1 · Ŝ3 + Ŝ2 · Ŝ4). (35)
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The diagonalization of the above Hamiltonian gives the fol-
lowing two lowest-energy plaquette singlet states:

|�p,(±)〉 = 1√
2

(|ψ1,2〉|ψ3,4〉 ± |ψ1,4〉|ψ2,3〉), (36)

where |ψi, j〉 denotes a singlet state formed between the sites
i and j, |�p,+〉 is the ground-state wave function with energy
Es

+ = −2J2 + J3
2 and |�p,−〉 is the first (singlet) excited state

with energy Es,− = − 3
2 J3. Above these states lie the nine

triplet states of the plaquette VBS with energies

Et
μ,μ =

(
−J2 + J3

2

)
δμ,3 − J3

2
(δμ,1 + δμ,2), (37)

where μ, ν = 1, 2, 3. The five quintet states have a degenerate
energy Ed = J2 + J3

2 . To capture the low-energy dynamics
we have restricted our analysis to within the singlet-triplet
manifold. The low-energy dynamics now includes, in addition
to the triplet excited states considered for the VBS1 and VBS2

states, the singlet excited states. Within this approximation,
the effective low-energy Hamiltonian for a single plaquette
can be written as

Ĥp =
∑
i=±

Es,iψ̂
†
p,iψ̂p,i +

3∑
μ,ν=1

Et (μ,ν)χ̂
†
(μ,ν)χ̂(μ,ν). (38)

Equations (35), (36), and (38) together with the constraint of
Eq. (32) provide a complete description of the low-energy
spectrum at zeroth order, i.e., in the absence of a J1 interaction,
leading to isolated plaquettes. The presence of a finite J1

introduces interactions between neighboring plaquettes which
induce transitions between different states of Eq. (38). The
interplaquette interactions are obtained by writing the spin
components in terms of the above-mentioned plaquette op-
erators as was done for the VBS1 and VBS2 states (see
Appendix C for details). The effective low-energy Hamilto-
nian for the interacting plaquette-VBS state thus obtained is
given in Eq. (C3) (see Appendix C for details). The ground-
state energy per plaquette is

Ec = Nc,+(Ec − λ) + λ + 3

2N

∑
k

3∑
i=1

(�k,i − Ck,i ), (39)

where
√

Nc,+ = 〈ψ̂†
p,+〉 = 〈ψ̂p,+〉, �k,i is the eigenenergy

obtained in the triplon sector of the interacting plaquette
Hamiltonian [Eq. (C3)].

Employing the expressions [Eqs. (33), (34) and (39)] of
the ground-state energies of the three phases we map out the
resulting phase diagram. The most salient feature of our phase
diagram is the appearance of three quantum paramagnetic
phases, namely, a plaquette VBS, and two other types of dimer
ordered states dubbed VBS1 and VBS2 as shown in Fig. 10.
The classical region of existence of the uncorrelated AF chain
phase is now found to be divided into two regions under the
influence quantum fluctuations. For J1 � (J2, J3), the VBS1

state is stabilized while for J3 � (J1, J2), the VBS2 state is
stabilized. At the phase boundary of these two VBS states,
a long-range ordered (LRO) state is found to be stabilized
in a sliver of parameter space as inferred by the vanishing
singlet-triplet excitation gap. We label this long-range ordered
state as phase I (LRO) and it is characterized by the ordering

FIG. 10. Quantum phase diagram of the S = 1
2 J1-J2-J3 Heisen-

berg model on the Fisher lattice [Fig. 1(a)] obtained by a
bond-operator analysis. We see the appearance of three different
VBS phases in addition to the three long-range ordered (LRO) phases
also present in the classical phase diagram [Fig. 2(a)].

vector Q = (0, ky), (kx, 0). The ordering wave vectors of the
three LRO phases shown in Fig. 10 are determined by the
momenta associated with the singlet-triplet gaps of the VBS
phases that vanish at the Néel-VBS quantum phase transition.

Another interesting aspect of the quantum phase diagram
is that the Néel phase [labeled as phase II in Fig. 2(a)] gives
way to a plaquette-RVB state irrespective of the sign of the J3

coupling. On the other hand, the sublattice Néel phase [labeled
as phase III in Fig. 2(a)] is largely immune to quantum fluctu-
ations, and is referred to as phase III (LRO) in Fig. 10. Apart
from these phases, we find another long-range ordered phase
in a small region for negative J3 sandwiched between VBS1

and plaquette VBS phases and label it as phase II (LRO) in
Fig. 10. For the quantum paramagnetic phases such as VBS1,
VBS2, and plaquette RVB, the singlet-triplet excitation gap
is used as a measure of determining their stability as ground
states with respect to inclusion of higher-order corrections.
For the three long-range ordered phases shown in Fig. 10,
the respective wave vectors which characterize these phases
correspond to the vanishing of the singlet-triplet excitation
gap of the VBS phases.

The singlet-triplet excitation gap for the various VBS
phases is shown in Fig. 11. In Fig. 12, we present a density
plot of the ground-state energy density for all the phases in
the J2-J3 plane. It indicates that the ground-state energy of
the LRO phases is higher compared to the VBS phases which
highlights the role of quantum fluctuations in stabilizing quan-
tum paramagnet phases. In Fig. 13, we present the excitation
spectrum for different VBS phases at a few representative
parameter values. In Figs. 13(a) and 13(b) we notice that
depending on the value of J3, the minimum of the dispersion
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FIG. 11. Density plot of triplet excitation gap obtained by pla-
quette and bond-operator analysis.

occurs either at the M or the 
 point. The local minima at
the M point changes to a local maxima upon increasing the
value of J3. This points to the fact that when J3 < J2 it is
easier to create excitations through J2 bonds which require
an antiferromagnetic ordering between the dimers formed on
J1 bonds. This virtual antiferromagnetic ordering shows up
as minima at the M points [see Fig. 13(a)]. However, when
J3 > J2 such virtual antiferromagnetic ordering is not favor-
able as indicated by the local maxima at the M point [see
Fig. 13(b)]. In Fig. 13(c) we present the excitation spectrum
for VBS2 which shows a maxima at the M point. The exci-
tation spectrum for plaquette RVB shown in Fig. 13(d) is a
gapped quadratic dispersion with minima at the M points.

The above results obtained within bond-operator formal-
ism suggest that the large degeneracy in the disordered
antiferromagnetic chain phase in the classical limit may not
lead to a ground-state degeneracy in the exact quantum limit
as indicated by the stability of the VBS2 phase due to large
values of the singlet-triplet excitation gap as shown in Fig. 11.
On the other hand, the Néel phase which is known to be

FIG. 12. Density plot of ground-state energy obtained by plaque-
tte and bond-operator analysis.

FIG. 13. Dispersion spectra for different VBS phases for
representative values of (J2/J1, J3/J1): (a) VBS1(±0.5, 0.3),
(b) VBS1(±0.5, 0.7), (c) VBS2(±1.0, 1.5), and (d) plaquette VBS
(1.5, 1.1).

susceptible to quantum fluctuations gives way to a plaquette
VBS state. It is to be noted that the singlet-triplet excitation
gap for VBS1 state is smaller compared to that of the VBS2

state. In fact, Fig. 11 suggests that the singlet-triplet excitation
gap gradually decreases with decreasing J3. While the uncor-
related antiferromagnetic chain phase and Néel phase yield
to quantum paramagnetic states under quantum fluctuations,
remarkably the sublattice Néel phase is quite stable as evident
from Fig. 10. This may be attributed to the fact that the num-
ber of nearest-neighbor bonds with ferromagnetic alignment
is three times the number of bonds with antiferromagnetic
alignment. The other possible explanation is that each square
plaquette can be thought of as a large spin with magnitude of
4S which protects it from quantum fluctuations [58]. Finally,
we note that similar observations of a plaquette VBS, and
competing magnetic phases on a variant of the model, namely,
the square kagome lattice Heisenberg model, have previously
been made [59–64].

VII. DISCUSSION

We have investigated the ground-state phase diagram of
the Heisenberg model on the Fisher lattice in the presence
of first-neighbor J1, second-neighbor J2, and third-neighbor
J3 Heisenberg couplings, as a route towards providing a
magnetic model of a two-dimensional layer of the hollan-
dite lattice. At the classical level, a Luttinger-Tisza analysis
shows that the phase diagram is host to three different
phases, namely, (i) an uncorrelated antiferromagnetic chain
phase wherein each horizontal and vertical chain has per-
fect one-dimensional antiferromagnetic order, but the relative
orientations between any two chains are not fixed at T = 0
[30,31,65]. This uncorrelated antiferromagnetic chain phase
exists for J2 � J3 and antiferromagnetic J2, J3 only. Fur-
thermore, there exist two different Néel phases depending
on the sign of J2. For antiferromagnetic J2, we find a Néel
phase (phase II) with the four spins within a unit cell being
antiferromagnetically ordered. On the other hand, for ferro-
magnetic J2, we find that the four spins within a unit cell are
aligned ferromagnetically with such a cluster of ferromagnetic
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spins forming Néel order, namely, the sublattice Néel order
(phase III).

We have investigated the role of thermal and quantum
order-by-disorder effects. Interestingly, our classical Monte
Carlo analysis finds that the uncorrelated antiferromagnetic
chain phase survives at finite temperature, i.e., the order-by-
disorder mechanism fails to lift the degeneracy. On the other
hand, a harmonic order analysis of quantum fluctuations re-
veals an order-by-disorder transition by selecting a common
angle α between all the one-dimensional chains. We find that
although the zeroth-order energy in the spin-wave approxi-
mation is identical for each α, the details of the spin-wave
spectrum depend on the value of α, e.g., the spectrum could
be linear or quadratic for different values of α, and the number
of zero-energy modes depends on α. Interestingly, quantum
fluctuations (within a harmonic order treatment) lift the de-
generacy and select α = 0, π . For specific choices of α, the
spin-wave spectrum shows Dirac nodal lines along 
X and

Y segments. The spin-wave spectrum for phase II reveals
the presence of three Dirac nodal loops out of which two are
symmetry protected and do not depend on the value of J3.

Finally, we have employed a bond-operator formalism to
analyze the model Hamiltonian beyond the spin-wave ap-
proximation. The analysis for spin S = 1

2 shows that most
of the classical phases except the sublattice Néel phase give
way to different types of valence bond states. The region
of parameter space classically occupied by the uncorrelated
antiferromagnetic chain phase is stabilized into VBS1 dimer
order with an appreciable singlet-triplet excitations gap. This
VBS1 phase appears mostly for large positive values of J3. In a
triangular-shaped region around the center in the J2-J3 plane,
a VBS2 dimer state is stabilized. The Néel phase largely gives
way to a plaquette VBS state, while the sublattice Néel phase
is found to be stable under quantum fluctuations within the
bond-operator formalism.

We expect that our study would set the stage for fur-
ther investigations into the magnetic phases on the hollandite
lattice [13,17,26,28]. The experimental realization of two-
dimensional layers of α-MnO2 (if possible) might serve as a
platform to confirm the existence of some of the phases that
have been found here. A possible extension of this study is
to include a coupling between such two-dimensional layers
yielding a three-dimensional model of magnetism in hollan-
dite lattice. As a future endeavor, it would be interesting to
study the spin S = 1

2 quantum phase diagram employing state-
of-the-art numerical quantum many-body frameworks such as
pseudofermion functional renormalization group [66,67] and
variational quantum Monte Carlo methods [68] which have
already been applied on the square [69] and other two- and
three-dimensional lattices [70,71]. In particular, for S = 1

2
there exists the likely possibility of quantum spin liquid(s)
occupying a finite region of parameter space [72]. It will be
worthwhile to carry out a projective symmetry group classifi-
cation [73] of U(1) and Z2 quantum spin liquids on the Fisher
lattice. The resulting Ansätze and the competition between
them could then be studied either by combining the projective
symmetry group classification framework with a functional
renormalization group approach [74] or employing variational
Monte Carlo on the corresponding Gutzwiller projected wave
functions supplemented by a few Lanczos steps [75–80]. In

particular, it would be important to investigate their stability
and energetic competitiveness with the valence bond solid
orders, similar to what has been done on the kagome lattice
[81,82]. Finally, we would like to mention that an interesting
avenue for further exploration would be to possibly destabilize
ferromagnetic order on the Fisher lattice, which could poten-
tially give rise to a plethora of nematic orders as has been
found in the square lattice [83,84].
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APPENDIX A: HAMILTONIAN FOR SPIN-WAVE
SPECTRUM

In this Appendix, we explicitly write the Hamiltonian
which is used to find the spectrum of spin-wave excitations.

1. Phase I

For phase I, which we refer to as the uncorrelated antifer-
romagnetic chain phase, the Hamiltonian matrix is

Hk =
[

A(k) B(k)
B(k) A(k)

]
. (A1)

The basis vector is chosen to be ˆ̃χk = [χ̂k, χ̂
†
−k]T , with χ̂k =

(âk,1, âk,2, âk,3, âk,4). In the above, Ak and Bk are 4 × 4
matrices

Ak =

⎡
⎢⎣

a b 0 −c
b a −c 0
0 −c a b

−c 0 b a

⎤
⎥⎦, (A2)

Bk =

⎡
⎢⎢⎣

0 c bx(k) −b
c 0 −b by(k)

b∗
x (k) −b 0 c
−b b∗

y (k) c 0

⎤
⎥⎥⎦. (A3)

Among the various parameters that appear in the above two
equations, a, b, c are constants with a = 1+J3

2 , b = J2
4 (1 −

cos α), c = J2
4 (1 + cos α). b(x/y)(k) is given below:

bx(k) = − 1
2 (J3 + eıkx ), by(k) = − 1

2 (J3 + e−ıky ). (A4)
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2. Phase II

For the Néel phase, the Hamiltonian becomes an 8 × 8
Hermitian matrix due to its four sublattice structure and the
presence of global antiferromagnetic order. The basis vector
which is used to define the Hamiltonian is ˆ̃χk = [χ̂k, χ̂

†
−k]T ,

with χ̂k=(âk,1, âk,2, âk,3, âk,4, b̂†
−k,1, b̂†

−k,2, b̂†
−k,3, b̂†

−k,4),

where âk and b̂k, respectively, denotes the up spin and down
spin in momentum space. The Hamiltonian is obtained as

Hk = I2×2 ⊗
[

A(k) B(k)
B(k) A(k)

]
, (A5)

where Ak and Bk are given below:

Ak =

⎡
⎢⎣

d 0 −J3 0
0 d 0 −J3

−J3 0 d 0
0 −J3 0 d

⎤
⎥⎦, (A6)

Bk =

⎡
⎢⎢⎣

0 J2 eıkx J2

J2 0 J2 eıkx

e−ıkx J2 0 J2

J2 e−ıkx J2 0

⎤
⎥⎥⎦. (A7)

In the above, d = J1 + 2J2 − J3 and denotes the ground-state
energy per plaquette in phase II.

3. Phase III

For the sublattice Néel phase, the basis vector used to
define the Hamiltonian matrix for each momentum is iden-
tical to phase II. The Hamiltonian contains a few additional
parameters. The Hamiltonian has the following expression:

Hk = I2×2 ⊗
[

A(k) B(k)
B(k) A(k)

]
, (A8)

where Ak and Bk are given below:

Ak =

⎡
⎢⎣

d J2 −J3 J2

J2 d J2 −J3

−J3 J2 d J2

J2 −J3 J2 d

⎤
⎥⎦, (A9)

Bk =

⎡
⎢⎢⎣

0 0 eıkx 0
0 0 0 eıkx

e−ıkx 0 0 0
0 e−ıkx 0 0

⎤
⎥⎥⎦, (A10)

where d = J1 − 2J2 − J3 denotes the ground-state energy per
plaquette in phase III.

APPENDIX B: VALENCE BOND-OPERATOR ANALYSIS

Here, we provide the detailed procedure followed in the
bond-operator formalism. First, we give the definition of spins
in terms of the fermionic field operators �̂ and χ̂ associated
with the singlet and triplet excitations [51,55], respectively:

Ŝ1,α ≈ 1
2 (χ̂†

αψ̂ + H.c.), Ŝ2,α ≈ − 1
2 (χ̂†

αψ̂ + H.c.). (B1)

In the above, the subscripts 1, 2 refer to two spins within a
dimer and α = x, y, z represents the three components of the
spin. In defining the above transformation we have restricted
ourselves up to quadratic order in the fields. The above defini-
tions can be used to write the effective Hamiltonian in terms

of the field operators. The effective Hamiltonian contains a
Lagrangian multiplier λ in order to ensure that the magnitude
of total spin of a given dimer is 2S. It is straightforward to
observe that the use of Eq. (B1) yields quartic terms in field
operators. Mean-field type decomposition has been used to
reduce these quartic terms into appropriate quadratic terms
in singlet and triplet sectors, while neglecting the mixing
between them. Furthermore, as we are interested in finding
the excitations due to triplets over singlet condensation, we
introduce

√
Na,i = 〈ψ̂†

a,i〉 = 〈ψ̂a,i〉 as the singlet occupation
number which is used to define the zeroth-order condensate
energy Ẽa. Here, “a” denotes the VBS1 configuration and
“i = 1, 2” refers to two dimers within a unit cell. Similar
definition holds for VBS2 which is labeled by the subscript
“b.” Hence, we can write the effective Hamiltonian for the
VBS1 as

Ĥa = Ẽa + 1

2

∑
k

φ̂
†
k,αHk,aφ̂k,α. (B2)

In the above expression, the singlet condensate energy Ẽa is

Ẽg,a = (Na,1 + Na,2)Es
a − λ(Na,1 + Na,2 − 1)

− 3

2N

∑
k

∑
i=1,2

Ak,a,i, (B3)

where Ak,a,i represents the ith diagonal element of Hk,a and
Es

a = −3J1/4 is energy of the singlet states per plaquette. The
second term in Eq. (B2) refers to triplet excitations. The basis
vector used to obtain Eq. (B2) is φ̂k,α = [ξ̂k, ξ̂

†
−k]T , with ξ̂k =

(χ̂a,1,α,k, χ̂a,2,α,k ), where α denotes different states within
the triplet sector. It is clear that Hk,a is a 4 × 4 matrix which
can be written as

Ĥk,a =
[
Vk,a + Da Vk,a

Vk,a Vk,a + Da

]
, (B4)

where V and D are 2 × 2 matrices

Vk,a =
[ − J3

2 Na1 cos 2kx J2 sin kx sin ky

J2Na12 sin kx sin ky − J3
2 Na2 cos 2ky

]
, (B5)

Da =
[

Et
a,α − λ 0

0 Et
a,α − λ

]
. (B6)

In the above we have used Na,12 = √
Na1Na2. Et refers to

energy of triplet states with Et
a,α = J1/4, i.e., all the triplet

states are degenerate in energy. To obtain the corresponding
representations for VBS2 we use the singlet- and triplet-state
energies as Es

b = −3J3/4, Et
b,α = J3/4. All other expressions

of Vk,a as given in Eq. (B4) will be replaced by Vk,b which is
given below:

Vk,b =
[− J1

2 Nb1 cos kx 0
0 − J1

2 Nb2 cos ky

]
. (B7)

APPENDIX C: PLAQUETTE OPERATOR ANALYSIS

For the plaquette VBS state represented in Fig. 9(c), the
spin operators are written as [50]

Ŝδ,α ≈ cδ,μ(χ̂†
μ,αψ̂+ + H.c.) + dδ,ν (χ̂†

μ,αψ̂− + H.c.), (C1)

where α = x, y, z, μ = 1, 2, 3 denotes the nine triplets,
and δ = 1, 2, 3, 4 denotes site indices inside a plaquette.
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A summation over the repeated indices is implied in Eq. (C1).
The matrices cδ,μ and dδ,ν are given as

cδ,μ = 1√
6

⎡
⎢⎢⎢⎣

1√
2

0 1

0 1√
2

−1

− 1√
2

0 1

0 − 1√
2

−1

⎤
⎥⎥⎥⎦,

dμ,ν = 1

2

⎡
⎢⎣

0 1 0
1 0 0
0 −1 0

−1 0 0

⎤
⎥⎦. (C2)

To derive the effective Hamiltonian as obtained for the valence
bond singlet states in Appendix B in Eq. (B2), we follow
a procedure similar to that explained before Eq. (B2). After
doing elementary algebra we obtain the effective Hamiltonian
in this case

Ĥc = Ẽc + 1

2

∑
k

φ̂
†
k,αHkφ̂k,α +

∑
k

(Es
− − λ)ψ̂†

k−ψ̂k−.

(C3)

The first term Ẽc in the above equation corresponds to ground-
state condensate energy per plaquette. For the second term,
we have used the basis vector as φ̂k,α = [ξ̂k, ξ̂

†
−k]T , with

ξ̂k = (χ̂1,α,k, χ̂2,α,k, χ̂3,α,k ). Below we provide explicit ex-
pressions of the various terms present in Eq. (C3). First, we
provide Ẽc,

Ẽc = Nc+Es
+ − λ(Nc+ − 1) − 3

2N

∑
k

∑
i=1,2,3

Ck,i, (C4)

where we have used
√

Nc+ = 〈ψ̂†
+〉 = 〈ψ̂+〉 and λ is the

Lagrange multiplier to satisfy the constraint of total angular
momentum of the dimer to be 2S. Es

± is the plaquette singlet-
state energy for the state |�±〉 with Es

+ = −2J2 + J3
2 , Es

− =

− 3J3
2 . Ck,i is the ith diagonal element of Hk. The 6 × 6

Hamiltonian matrix Hk in the second term of Eq. (C3) is

Ĥk =
[
Wk + Dc Wk

Wk Wk + Dc

]
, (C5)

where

Wk = Nc+
3

⎡
⎢⎣

−1
2 cos kx 0 −ı√

2
sin kx

0 −1√
2

cos ky
−ı√

2
sin ky

ı√
2

sin kx
ı√
2

sin ky cos kx + cos ky

⎤
⎥⎦, (C6)

Dc =
⎡
⎣Et

1,α − λ 0 0
0 Et

2,α − λ 0
0 0 Et

3,α − λ

⎤
⎦, (C7)

where i, α = 1, 2, 3 denotes the nine triplet states. After
diagonalization, the fluctuation due to triplon excitation con-
tributes to the ground-state energy and the final expression for
the ground-state energy can be written as given in Eq. (39). We
note that the above analysis has been carried out for J2 > J3

where |�+〉 is the ground state and |�−〉 is the first excited
state. When J3 > J2 with J1 = 0, |�−〉 becomes the ground
state and |�+〉 becomes the first excited state. Thus, there
are parameter regimes where analogous analysis needs to be
followed considering |�−〉 as the ground state. However, after
doing that we find that the final energy obtained in the former
case, i.e., when |�+〉 is the ground state, is lower compared to
the case when |�−〉 is the ground state. To obtain the energy
expression when |�−〉 is the ground state, one needs to replace
the “−” subscript of the third term in Eq. (C3) by “+”, “+”
subscript in Eq. (C4) by “−”. The expression of Wk as given
in Eq. (C6) has the following form:

Wk = −Nc−
4

⎡
⎣cos ky 0 0

0 cos kx 0
0 0 0

⎤
⎦. (C8)
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