
PHYSICAL REVIEW B 102, 224402 (2020)
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Here we revisit the thermodynamics of the Kitaev quantum spin liquid realized on the honeycomb lattice.
We address two main questions: First, we investigate whether there are observable thermodynamic signatures of
the topological Majorana boundary modes of the Kitaev honeycomb model. We argue that for the time-reversal
invariant case the residual low-temperature entropy is the primary thermodynamic signature of these Majorana
edge modes. Using large-scale Monte Carlo simulations, we verify that this residual entropy is present in the
full Kitaev model. When time-reversal symmetry is broken, the Majorana edge modes are potentially observable
in more direct thermodynamic measurements such as the specific heat, though only at temperatures well below
the bulk gap. Second, we study the energetics, and the corresponding thermodynamic signatures, of the flux
excitations in the Kitaev model. Specifically, we study the flux interactions on both cylinder and torus geometries
numerically and quantify their impact on the thermodynamics of the Kitaev spin liquid by using a polynomial
fit for the average flux energy as a function of flux density and extrapolating it to the thermodynamic limit. By
comparing this model to Monte Carlo simulations, we find that flux interactions have a significant quantitative
impact on the shape and the position of the low-temperature peak in the specific heat.
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I. INTRODUCTION

The Kitaev model on the honeycomb lattice [1] and re-
lated models have recently attracted much interest in both
theoretical and experimental communities [2–5]. Strikingly,
these 2D and 3D Kitaev models have exact quantum spin
liquid (QSL) ground states [1] and can be potentially real-
ized in Mott insulating magnets on tricoordinated two- (2D)
and three-dimensional (3D) lattices with the strong spin-orbit
coupling [3,4,6–9].

One hallmark of a quantum spin liquid is fractionalization.
Spin excitations in the Kitaev model are fractionalized into
two types of quasiparticles: itinerant spinonlike excitations,
which are described by the Majorana fermions which are
gapless or gapped depending on the coupling parameters, and
localized gapped Z2 fluxes, also referred to as visons [1].
Much effort has been devoted to searching for traces of such
fractionalization in the spin dynamics of α-RuCl3 [10–14] and
H3LiIr2O6 [15], which are believed to be proximate to the
Kitaev QSL [6]; evidence suggestive of Majorana fermions
has been found in these compounds at temperatures up to
100 K. Though most of these materials have magnetically
ordered ground states, and hence are not spin liquids, the
idea is that even if residual long range magnetic order sets
in below a certain temperature, the fractionalized quasiparti-
cles of the nearby QSL phase may still lead to characteristic
signatures in the dynamical response spectrum reminiscent
of the nearby QSL [2,5,16]. One promising route to look
for such signatures is by using various dynamical probes,
such as inelastic neutron scattering [17–20], Raman scattering
with visible light [21–30], resonant inelastic x-ray scattering
[31–33], and through the phonon dynamics [34,35].

Another important probe of fractionalization in the Ki-
taev QSL is thermodynamics [5,36–40]. Not surprisingly, the
emergent fractionalized quasiparticles of the Kitaev QSL re-
veal themselves in the thermodynamic behavior in a peculiar
manner. In the 2D Kitaev QSL, two characteristic crossovers
are seen in the specific heat, indicating a two-stage release
of magnetic entropy. The first is associated with itinerant
fermionic excitations, the second with the localized Z2 fluxes
[36,37]. In 3D Kitaev QSLs, flux freezeout is associated with
a phase transition in which topological order is lost. Under
certain conditions in three-dimensional tricoordinated lattices,
coexistence between the low-temperature chiral QSL phase
and crystalline ordering of the Z2 fluxes has also been ob-
served numerically [39].

The goal of the present work is to revisit the thermodynam-
ics of the Kitaev model on the honeycomb lattice with two
main foci. First, we scrutinize the impact of the boundary ge-
ometry on the specific heat. In the presence of a boundary, one
distinctive signature of the Kitaev spin liquid phase is the ex-
istence of topologically protected Majorana boundary modes
[26,27,41–44]. Because these protected boundary modes are
associated with fractionalized Majorana fermion excitations,
they are more difficult to detect than the boundary modes char-
acteristic of topological insulators and superconductors, and
thermodynamic measurements have been proposed [43] as
one approach. Our second focus is to study the impact of flux
interactions on the thermodynamics of the Kitaev model and
present a quantitative model of the low-temperature specific
heat that we argue captures the main features of the crossover
in the thermodynamic limit.

For the first question, our main results are as follows. We
show that in principle, the Majorana boundary modes can be
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observed in the thermodynamics. Specifically, we find that
when time-reversal symmetry is broken, or with unbroken
time-reversal symmetry on very narrow nanoribbons, the Ma-
jorana boundary modes lead to a low-temperature power law
in the specific heat that differs from the C(T ) ∼ T 2 power-
law behavior of the bulk. When time-reversal symmetry is
unbroken, however, the temperatures at which these power
laws occur in currently available materials are well below
the range accessed by current experiments. In this case, the
Majorana boundary modes can be detected only indirectly,
from their contribution to the residual low-temperature en-
tropy. We expect that this residual entropy can be detected
using methods similar to those employed in spin ice, where the
macroscopic ground state degeneracy contributes to a finite
entropy density at ultralow temperatures [45–47], which has
been detected using highly accurate measurements of the spe-
cific heat [46,48,49]. For Kitaev materials, such experiments
offer an alternative to resonant Raman scattering, which can
also be used to detect the fractionalized Kitaev boundary
modes under certain conditions [25,27].

For the second focus, we study in detail several aspects
of the energetics of flux excitations in the Kitaev model that
have not been scrutinized in the literature. First, we show that
on a lattice with open boundaries, the energy cost of a single
flux is significantly reduced near the boundary relative to its
bulk value; this has a noticeable impact on the specific heat,
as it leads to a lower onset temperature for flux excitations
on the cylinder relative to the torus. Second, we study the
energetics of fluxes at finite density. We use the results to
construct a model of the flux-only contribution to the specific
heat in the thermodynamic limit and show that this has good
quantitative agreement with the low-temperature peak in the
specific heat obtained from the Monte Carlo (MC) simula-
tions in finite systems. This affirms the conclusion of previous
numerical work [37] that in the 2D Kitaev model there is no
finite-temperature phase transition but rather a crossover from
a low-temperature region with vanishingly small flux density
to an intermediate temperature region where fluxes (but not
fermionic excitations) have proliferated.

Our model is based on an analysis of the distribution of the
energies of different flux configurations at fixed flux density.
We show that for sufficiently large torus lattices, this distri-
bution is sharply peaked and is approximately independent of
lattice size. Therefore, we can model flux thermodynamics by
numerically fitting the average energy as a function of flux
density. A similar fit is obtained on the cylinder, by separately
accounting for flux densities in the bulk and on the boundary.
These models shed light on the flux’s contribution to the
low-temperature specific heat and help identify the role of
the boundary fluxes therein. Since the best-fit energy depends
only on the flux density, we refer to it as to the pseudopotential
energy (PPE), by analogy with the local density approxima-
tion (LDA) in density functional theory [50,51]. In Sec. VII,
we show that some features of the multiflux interactions can
be understood by looking into the microscopics of the two-
flux interactions.

The paper is organized as follows. In Sec. II we briefly
review the exact solution of the Kitaev model [1]. In Sec. III,
we analyze the energy spectrum of the fermionic boundary
modes in the flux-free sector and identify the signatures of

FIG. 1. Kitaev model on the honeycomb lattice. The unit vectors
n1 = (1, 0), n2 = ( 1

2 ,
√

3
2 ). The blue hexagon shows a π flux, i.e., the

eigenvalue of Ŵp = σ x
1 σ

y
2 σ z

3 σ x
4 σ

y
5 σ z

6 is equal to −1. The convention
for the sign of the NN couplings on the bonds labeled by x, y, and
z is as follows: An arrow pointing from site k to i means uki on the
corresponding bond (k, i) in Eq. (2) is positive. The sites (i, k, j) are
an example of the NNN triplet used in Eq. (2). The solid green line
shows the zigzag edge of the finite size system.

these modes in the low-temperature scaling behavior of the
specific heat. In Sec. IV, we show that the residual entropy
from the fermionic boundary modes can be observed in MC
simulations of the Kitaev model. In Sec. V, we study the flux
energetics in the time-reversal symmetric case. Using best-fit
polynomials to describe the PPE, we propose phenomenolog-
ical flux models for both torus and cylinder lattices, and use
these to describe the flux thermodynamics in the thermody-
namic limit. Next, Sec. VI focuses on the flux energetics when
time-reversal symmetry is broken. We analyze how the spe-
cific heat changes with varying magnitude of the time-reversal
breaking term. Finally, to better understand the resulting flux
PPE models, in Sec. VII we examine the two-flux interactions
and show that they capture the essence of the flux energetics
in the multiflux systems. Finally, in Sec. VIII, we summarize
the main results of this paper.

II. THE MODEL

The extended Kitaev model on a honeycomb lattice is given
by the Hamiltonian [1]:

H = −
∑
〈i, j〉α

Jασα
i σα

j − κ
∑
〈i, j,k〉

σα
i σ

β
j σ

γ

k , (1)

where Jα in the first term denotes the nearest neighbor (NN)
Kitaev interaction on the corresponding bond of type α =
x, y, z (see Fig. 1), and σα

r are the Pauli matrices. The second
term is a three-spin interaction on the three adjacent sites (see
Fig. 1) of strength κ , which breaks time-reversal symmetry
(TRS). It mimics the effect of a magnetic field but preserves
exact solubility of the model [1].
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At the heart of exact solvability is the macroscopic number
of local symmetries in the plaquette operators [H,Ŵp] = 0,
where Ŵp are defined as Ŵp = σ x

1 σ
y
2 σ z

3σ x
4 σ

y
5 σ z

6 (see Fig. 1).
These operators commute with the Hamiltonian and take
eigenvalues of ±1. Thus the Hilbert space can be divided into
eigenspaces of Ŵp, and the ground state is the one with all Wp

equal to one, which is also referred to as the flux-free sector.
Using Kitaev’s representation of spins in terms of Majo-

rana fermions [1], σα
j = ibα

j c j , we rewrite the spin Hamilto-
nian (1) as

H= −
∑
〈i j〉α

Jαi j iûi jcic j −κ
∑
〈〈i j〉〉

iûik û jkcic j, (2)

where the bond operators are defined as ûi j = ibα
i bα

j , and 〈i j〉
and 〈〈i j〉〉 denote NN and next NN (NNN) bonds, respectively.
When κ �= 0 and time reversal symmetry is broken, Eq. (2)
is closely related to the Haldane model for the anomalous
quantum Hall effect [52].

The Hilbert space of the fermionic model is larger than that
of the spin model; the latter is recovered when we impose
the constraint bx

jb
y
jb

z
jc j |�〉 = |ψ〉 at each site j of our lattice.

This constraint commutes with the Hamiltonian, as well as
with the bond operators ûi j . Thus the eigenvalues ui j = ±1 of
the operators ûi j are constants of motion of the model (2) and
can be understood as Z2 gauge fields. This picture captures
the fact that not all choices of {ui j} correspond to distinct
physical states of the spin model, and only those that are gauge
inequivalent should be treated as distinct. In the fermionic rep-
resentation, Ŵp = ∏

(i, j)∈edge(p) ûi j , and Ŵp can be understood
as a gauge invariant Wilson loop operator around a single
plaquette p, with the eigenvalue Wp = −1 corresponding to a
(gapped) π -flux excitation on the plaquette in question. This is
why in the following we will also use notation {φp} to denote a
particular flux sector, described (in a given gauge) by choosing
a particular configuration of the eigenvalues {ui j}.

Topological band structure of the Kitaev spin liquid

One interesting feature of the Kitaev spin liquid is that,
with ui j chosen such that the hopping matrix element from
the A sublattice to the B sublattice is +i, for κ = 0 Eq. (2)
describes a band structure in the symmetry class BDI whose
band crossings are topologically protected [43], leading to a
protected, zero energy band of states at the system’s boundary
in the thermodynamic limit [42]. These topologically pro-
tected boundary (or edge) modes are characteristic of the
Kitaev QSL phase, rather than the specific Kitaev Hamil-
tonian. When time-reversal symmetry is broken for κ �= 0,
the bulk band structure becomes gapped with a nonvanishing
Chern number, leading to topologically protected chiral edge
modes. We briefly review the nature and origins of these
Majorana edge modes, as this understanding is crucial for the
remaining discussion.

To understand the topology of the band structure, it is help-
ful to write the Majorana fermion Hamiltonian Eq. (2) in the
zero-flux sector as H = ∑

k cT
k Hkck, where cT

k = (cA,k, cB,k ),
and

Hk = dk · σ, (3)

FIG. 2. The 2D Brillouin zone with two Dirac points. γk1 (blue
vertical line) is the integration loop path along which the winding
number is calculated. The bold segment on the k1 axis denotes the
region where the gapless edge mode exists (in the limit of large
system size) when the lattice is made open in the n1 direction. It
is referred to as a topologically nontrivial region.

where σ is a Pauli matrix over the two sublattices of the
honeycomb lattice [27,44]. Explicitly, for κ = 0, we have

dx
k = −Jx sin k2 − Jy sin(k2 − k1),

dy
k = −Jz − Jx cos k2 − Jy cos(k2 − k1), (4)

dz
k = 0,

where ki ≡ k · ni. The Fermi surface then consists of the pair
of Dirac points obtained by taking dx

k = 0 and dy
k = 0. Time-

reversal symmetry and particle-hole symmetry constrain the
dk vector to lie in the plane of the 2D honeycomb lattice,
and the Hamiltonian (3) can be used to define the topological
winding number [43,44,53]:

ν
[
γk1

] = 1

4π i

∫
dk2 Tr

[
H−1

k σ z∂k2 Hk
]

= 1

2π

∫
dk2 Im

[
∂k2
k


k

]
, (5)

where γk1 is a path that traverses the Brillouin zone in the
k2 direction at fixed k1 (see Fig. 2). For Jx = Jy = Jz = J ,
the winding number ν[γk1 ] = 1 if k1 ∈ [ 2π

3 , 4π
3 ] and is 0 else-

where.
On a cylinder with open boundaries in the n2 direction

and periodic boundaries in the n1 direction, the effective
Hamiltonian at a fixed value of the conserved momentum
k1 describes a 1D Majorana chain with open boundary con-
ditions. The topologically nontrivial winding implies that
each 1D Majorana chain at fixed k1 ∈ [ 2π

3 , 4π
3 ] hosts zero-

energy topologically protected Majorana boundary modes
[27,44,54,55].
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Breaking time-reversal symmetry by taking κ �= 0 intro-
duces a diagonal term dz

kσz into the bulk Hamiltonian (3) with

dz
k = 2κ (sin(k2) + sin(k1 − k2) − sin(k1)). (6)

The bulk band structure becomes gapped and acquires non-
vanishing Chern number [1]. This destroys the boundary flat
bands described above and leads instead to chiral edge modes
and a corresponding thermal Hall conductance.

III. THERMODYNAMIC SIGNATURES
OF MAJORANA EDGE MODES

The topological boundary modes of the Kitaev spin liq-
uid are a distinctive signature of the spin liquid phase at
temperatures well below the flux gap, where flux excitations
are exponentially suppressed [56]. In this section, we discuss
under what conditions these gapless edge modes can be ex-
perimentally detected with low-temperature thermodynamic
probes by studying the fermionic contribution to the specific
heat—i.e., by studying the specific heat of the model (2) in the
absence of fluxes. We expect this to be a good description of
the actual specific heat of the Kitaev QSL at temperatures well
below the flux gap. Throughout this section, we work on a
cylindrical lattice with open boundaries in the n2 direction and
periodic boundaries in the n1 direction (see Fig. 1). We let N2

denote the number of unit cells in the n2 direction. Since the
system is translationally invariant in the n1 direction, we set
the distance a between two A sites to a = 1 and diagonalize
the Hamiltonian (3) for each k1 to obtain the dispersion.

A. Specific heat of fermions

First, we briefly review how the low-temperature fermionic
specific heat is calculated. Suppose that the fermionic
dispersion in an energy window εmin � ε � εmax is well ap-
proximated by a power law of the form ε − εmin ∼ kα (α �
1). The density of states in this energy window is given by

D(ε) = A
∫

δ(ε − εk )dk

= A(ε − εmin)−(1− 1
α

), α � 1, (7)

where A is a normalization constant, which in general will
depend on the choice of the interval (εmin, εmax). The corre-
sponding contribution to the fermionic specific heat can be
evaluated via:

C = A 1

T 2

∫ εmax

εmin

D(ε)
ε2eβε

(eβε + 1)2
dε (8)

= AT
1
α

∫ βεmax

x0

(x − x0)−(1− 1
α

) x2ex

(ex + 1)2
dx, (9)

where β = 1/T and x0 = βεmin. Thus we find

C = AI T
1
α , (10)

where

I =
∫ εmax

εmin

(x − βεmin)−(1− 1
α

) x2ex

(ex + 1)2
dx. (11)

TABLE I. The quantities kc, rc, and �fs for a variety of cylinder
widths. Here N2 is the number of unit cells along n2 direction on
a cylinder lattice. The momentum kc, which indicates the boundary
between regions (1) and (2), is given in units of π . rc is the ratio of the
length of the region (2) to the length of the topologically nontrivial
region [2π/3, 4π/3]. �fs is the fermionic energy at the projected
Dirac point.

N2 5 10 25 50 100 500 1000

kc/π 1.011 1.06 1.166 1.235 1.277 1.319 1.326
rc 0.967 0.82 0.502 0.296 0.169 0.042 0.021
�fs 0.569 0.299 0.123 0.062 0.031 0.006 0.003

To obtain the low temperature limit, we take εmin 	 T , in
which case we can safely treat εmin as 0. In this case, for
T 	 βεmax, we have

I ≈
∫ ∞

0
x1+ 1

α
ex

(ex + 1)2
dx

=
∞∑

l=0

(−1)lG

(
1

α
+ 2, l + 1

)
. (12)

Here we define G(ν, l ) = ∫ ∞
0 xν−1(cosh x)−l dx, which is con-

verging for ν > 0, l ∈ N. When the temperature increases,
β�fs becomes finite and the integral in Eq. (9) needs to be
computed more accurately.

Our calculation gives the contribution of states within the
energy window (εmin, εmax) to the specific heat, for any tem-
perature. However, at temperatures comparable to εmax, other
higher energy states also begin to contribute to the specific
heat via C = A

T 2

∫ ∞
εmax

D(ε) ε2eβε

(eβε+1)2 dε. In what follows, we will
discuss the appropriate energy window, and corresponding
values of α and nεmax , that describe the topological bound-
ary modes of both the nodal topological Kitaev QSL with
κ = 0, and the gapped topological Kitaev QSL obtained for
κ > 0.

B. Time-reversal symmetric Kitaev QSL (κ = 0)

We first consider κ = 0, where the edge state consists of
a boundary Majorana flat band in the thermodynamic limit.
Clearly the entropy associated with this flat band never freezes
out; in the thermodynamic limit its thermodynamic signature
is a residual zero-temperature entropy, which we discuss in
detail in Sec. IV A. However, when the lattice size is finite,
the edge modes localized at opposite boundaries have finite
overlap, and the boundary bands have finite-size splitting
everywhere except at k1 = π . Here we determine when this
finite-size splitting is large enough to be observed in thermo-
dynamic measurements. We quote all energies in units of J
and set the Boltzmann constant kB = 1.

As described above, in order to calculate the specific heat,
we first need to understand the low-energy spectrum of our
model. To this end, Fig. 3 illustrates the effects of finite size on
the fermionic band structure, which is particularly clear from
the comparison of the fermion energy spectrum for cylinder
lattices with N2 = 10 and N2 = 100 shown in Figs. 3(a) and
3(c), respectively. The finite N2 manifests itself in two main
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FIG. 3. Fermionic spectrum and density of states (DOS) of the Majorana fermion Hamiltonian (2) with κ = 0 obtained on the cylinder
lattices with N2 = 10 [(a) and (d)] and with N2 = 100 [(c) and (f)]. The nearly-flat lowest energy band in (a) and (c) appears as a near-zero
energy peak in the DOS. Here red dots indicate the position of the bulk Dirac points projected to k1 (i.e., k1 = 2π

3 , 4π

3 ), and �fs corresponds to
the energy of the lowest band at these projected Dirac points. Green dots indicate the analytical solution [57] for the boundary of the k1 region
inside which the states in the lowest band are exponentially localized to the edges. In (a) and (b), the regions (1) and (2) denote [π, kc] and
[kc, 4π/3], respectively. �fs and kc for different values of N2 are given in Table I. (b) A zoomed-in view of the lowest band obtained on the
cylinder lattice with N2 = 10. The inset shows the zoomed-in edge mode spectrum in the log-log scale (blue dots), with the red line showing an
approximate power-law fit to the dispersion in the leftmost one fifth of region (2). We use this to approximate the dispersion throughout region
(2) by a power law, noting however that this deviates substantially from the exact dispersion before the boundary of the region containing
exponentially localized edge modes (green dot). (e) The N2 dependence of the scaling powers of the edge mode dispersion, obtained as shown
in (b). Blue dots show the exact values (also quoted in Table I in the inset). The red line α = 0.87N2 + 1.3 is the linear fit of these data points.

ways. First, the Dirac cones are lifted, and the purely bulk
bands (i.e., the second and higher subbands) acquire a finite-
size gap, which decreases as 1/N2. As can be seen in Fig. 3(c),
for N2 = 100 the resulting bulk gap is extremely small com-
pared to the bandwidth. Second, states in the lowest subband
localized at opposite edges of the system have finite overlap,
leading to a finite-size splitting that falls off exponentially in
N2. In Fig. 3(b), in order to present the details of this finite-size
effect, we show the zoomed-in dispersion of the lowest band
for N2 = 10.

We numerically introduce the scales εmax and εmin for this
band structure as follows. We take εmax to be the energy of
the lowest subband at the projected Dirac points k1 = 2π

3 , 4π
3

[shown by red dots in Figs. 3(a)–3(c)], which is nonzero
due to finite-size effects. Thus, we denote εmax = �fs. Note
that states in the lowest subband become delocalized in the
bulk at a slightly lower energy than this, at the momentum
indicated by the green dot in Fig. 3 (see Ref. [57] for exact
expressions); however this difference vanishes as N2 in-
creases, and is already small for N2 = 10. We take εmin =
10−7J to be a low-temperature cutoff below which thermo-
dynamic measurements cannot be performed. For the value
J ≈ 100 K, this corresponds to a temperature scale of 10−5 K.

The corresponding momentum kc depends on the value of N2

(see Table I), approaching 4π/3 as N2 increases.
To understand the contribution of modes in the energy

window (εmin, εmax) to the specific heat, we approximate the
dispersion in the lowest subband in the region kc � k1 �
4π/3 [region (2) in Figs. 3(a) and 3(b)] with a power law:
εfs

edge ∼ kα, α � 1. Figure 3(b) (inset) shows this fit on log-log
scale for N2 = 10; the best-fit power α for different values
of N2 is presented in Fig. 3(e). We emphasize that because
the dispersion is not an exact power law (see Ref. [57]),
the precise value we obtain for α depends on the range of
momenta that we include in our scaling. Here, we obtain α

by fitting only the leftmost fifth of region (2), meaning that
our power law is a good approximation for the dispersion at
the lowest energies but becomes less accurate as we approach
�fs. Irrespective of this choice, however, we find that α is large
compared to 1, and grows linearly with N2, reflecting the fact
that for π � k1 < 4π/3, the lowest subband becomes flatter
as N2 increases. For the range of momenta that we fit to, we
find α ≈ 0.87 N2 + 1.3, with exact values shown in the inset
of Fig. 3(e).

We may now use Eq. (10) to evaluate the contribu-
tion of the boundary modes to the specific heat. The total
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FIG. 4. The total fermionic specific heat, Ctot = Cedge + Cbulk, in
the flux-free sector for different κ and N2. The inverse of the slope
of the red dashed line gives the power of the low-temperature scaling
behavior of the specific heat: (a) α = 9.8, (b) α = 88.3, (c) α = 1,
and (d) α = 1. The black dashed line shows the expected bulk
fermionic contribution to the specific heat with α = 2. The purple
dotted line marks the temperature corresponding to �fs, which is
virtually indistinguishable from εmax on a logarithmic scale.

number of states in region (2) is approximately 1
3 N1rc, where

N1 is the number of unit cells in the n1 direction. Here
rc = (4 − 3kc/π ) is the length of region (2) divided by π/3
(which is half the length of the topologically nontrivial re-
gion), and 1

3 N1 gives the number of states in the topologically
nontrivial region.

The remaining boundary states, contained in region (1) in
Figs. 3(a) and 3(b), do not contribute to the specific heat in the
temperature range of interest (where T is large compared to
εmin); instead they contribute to the zero-temperature entropy.
Therefore, for εmin 	 T 	 εmax the specific heat obtained in
Eq. (10) becomes

Cedge = 1
3 rcN1IT

1
α , (13)

where I is given by Eq. (12). Note that as N2 → ∞, rc [and
hence the length of region (2)] approaches 0, as shown in
Table I, while T 1/α approaches unity. Thus for fixed N1, the
edge’s contribution to the specific heat vanishes as N2 in-
creases.

At temperature scales on the order of �fs, the low-
temperature fermionic specific heat also has a contribution
from the bulk states, which in practice dominates over the
contribution from the edge. This is shown in Figs. 4(a) and
4(b), which plot the total fermionic specific heat as a function
of temperature for κ = 0 and N2 = 10 and 100, respectively.
The solid blue line is obtained from the exact fermionic den-
sity of states in the absence of fluxes, shown for N2 = 10 and
100 in Figs. 3(d) and 3(f), respectively. At temperature scales
larger than �fs, the specific heat is approximately proportional
to T 2 (black dashed line), which is the usual bulk power law
from the Dirac cone. We see a crossover from this bulk power

law to the boundary power law in Eq. (13), at a temperature
scale of approximately 0.1εmax, below which the specific heat
changes much more slowly with temperature. The red dashed
line indicates our prediction of the low temperature specific
heat based on the power α shown in Fig. 3(e).

C. System with broken time-reversal symmetry (κ �= 0)

In the extended Kitaev model (1), time reversal symmetry
is broken by the κ term, which introduces the diagonal term
(6) into the bulk Hamiltonian (3). This diagonal term opens
a bulk energy gap equal to �bulk = 6

√
3 κ in the thermody-

namic limit [1]. It also introduces energy dispersion to the
edge modes. For small κ , the dispersion of the corresponding
edge modes in the thermodynamic limit can be obtained by
perturbation theory in κ/J [1,27]:

ε
edge
k = 12κ| sin k|, k ∈ [2π/3, 4π/3]. (14)

We will refer to this dispersion as the magnetic dispersion.
Note that near the gapless point k = π , ε

edge
k is linear in k,

with a velocity proportional to κ . At the projected Dirac point,
ε

edge
4π/3 = 6

√
3κ , this agrees with the bulk energy gap �bulk, and

in the thermodynamic limit, the boundary mode merges with
the bulk bands at this point.

However, Eq. (14) does not account for finite-size correc-
tions that modify both the bulk gap and the dispersion of the
boundary modes. In order to illustrate how the magnitude
of these corrections depends on the magnitude of the time-
reversal symmetry breaking term and the size of the system,
in Fig. 5 we plot the fermionic energy spectrum for different
κ and N2, where the numerical band structures are shown by
solid blue lines and the magnetic dispersions computed from
Eq. (14) are shown by red dashed lines. Two observations are
in order here. First, we see that for all values κ and N2, the
magnetic dispersion is essentially indistinguishable from the
true dispersion over much of the range 2π/3 < k1 < 4π/3,
with deviations most noticeable in the immediate vicinity of
the projected Dirac points. Second, as expected, the finite-size
effects decrease with increasing N2 [Fig. 5(b)], however they
also decrease with increasing κ [Figs. 5(c) and 5(d)].

As for the κ = 0 case, it is convenient to divide the inter-
val k1 ∈ [π, 4π/3] into two regions, as shown in Fig. 5(a).
Region (1) consists of the interval [π, kc), on which the
boundary dispersion Eq. (14) deviates from the numerical
dispersion of the lowest subband by less than 1%; here finite-
size effects are negligible and the gap of the edge mode
is dominated by κ . In region (2), consisting of the interval
[kc, 4π/3], finite-size effects cannot be neglected, as they
lead to a correction of 1% or more relative to Eq. (14). In
this region, the dispersion of the edge mode can still be
approximated by the power law, ε

edge(2)
k ∼ kα2 ; numerically,

we find α2 = (2.14, 2.02, 1.94, 1.7) for the system sizes N2 =
(10, 25, 30, 50). Table II shows the extent of these finite-size
effects for a variety of system sizes with κ = 0.01. Specifi-
cally, it lists the momentum kc at which the deviation from
Eq. (14) exceeds 1%, the corresponding energy εmin, the ratio
r1 = 3(kc/π − 1) of the length of region (1) to the length of
the interval [π, 4π/3], and the minimum energy �fs at the
projected bulk Dirac point. We see that by N2 = 100, finite-
size corrections in all of these quantities are on the order of
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FIG. 5. The fermionic energy spectrum for different κ and N2.
The spectrum obtained by numerically diagonalizing the Majorana
fermion Hamiltonian (2) with κ �= 0 is shown with blue lines. The
magnetic dispersion of the edge mode obtained from the perturbative
analytical expression Eq. (14) is shown by the red dashed line. The
right half of the topologically nontrivial region k1 ∈ [2π/3, 4π/3] is
divided into a region (1) spanning the interval [π, kc] and a region
(2), containing [kc, 4π/3]. The division is such that in region (1) the
deviation between two dispersions is less than 1%, and in region (2)
the deviation between two dispersions is more than 1%, so the finite-
size effects are essential. �fs is the energy of the lowest subband at
the projected Dirac point (red dots). �fs and kc for different values of
N2 are given in Table II.

a few percent, and by N2 = 500 they are less than a fraction
of a percent. At larger values of κ , the finite-size corrections
will be further reduced relative to those shown in Table II, as
is clear from Fig. 5(c).

When the finite-size corrections can be neglected, the en-
ergy dispersion is well approximated by ε

edge(1)
k ≈ 12κ|k −

π |, and the DOS is given by D1 ∼ κ−1 leading to the scaling
behavior of the specific heat given by

C(1)
edge ∼ 1

3 N1κ
−1T, T < εmin, (15)

TABLE II. kc, εmin, r1, and �fs computed for different N2 and tak-
ing κ = 0.01. kc corresponds to the point where the energy calculated
by numerical diagonalization and the energy from the perturbative
analysis are different by 1%, as shown in Fig. 5. r1 is the ratio of
the number of states in region (1) to the number of states in the
whole topologically nontrivial region. �fs is the fermionic energy
at the projected Dirac point.

N2 5 10 25 50 100 500

kc/π 1.101 1.201 1.285 1.315 1.328 1.333
εmin 0.038 0.072 0.095 0.101 0.104 0.104
r1 0.302 0.604 0.856 0.944 0.984 1.000
�fs 0.576 0.314 0.159 0.12 0.108 0.104

FIG. 6. The fermionic energy spectrum for various values of κ =
0.01 and (a) N2 = 10 and (b) N2 = 100 computed in the presence of
the Zeeman coupling h between the dangling edge fermions and the
itinerant fermions. Here we set the external filed components hx =
hy = hz = κ1/3. The red dots show the projected Dirac points.

in agreement with Ref. [27]. Therefore, a low-temperature
specific heat C/T ∼ κ−1 at scales below the bulk gap is a
signature of the edge mode in the presence of time reversal
symmetry breaking. Unlike the time-reversal symmetric case,
this signature is robust in the thermodynamic limit.

We note that for very small N2, finite-size effects can
lead to observable deviations from the scaling (15) for tem-
peratures below the bulk gap but above the energy scale
εmin. In region (2), where εmin � ε

edge(2)
k � εmax = 6

√
3κ , the

corresponding DOS scales as D2 ∼ (ε − εmin)1/α2−1 and con-
tributes a term to the specific heat that scales as:

C(2)
edge = 1

3 N1(1 − r1)IT 1/α2 , (16)

where the constant I is given by Eq. (12), with εmax = 6
√

3κ .
Figures 4(c) and 4(d) show the total fermionic specific heat

for κ = 0.01. At temperatures well below the bulk gap, the
specific heat fits well to the analytical result in Eq. (15) for
both N2 = 10 [panel (c)] and N2 = 100 [panel (d)]. At temper-
atures on the order of 10% of the bulk gap �bulk = 6

√
3κ , bulk

states begin to dominate the fermionic specific heat, which fits
reasonably well to the T 2 dependence expected for a 2D Dirac
cone.

In the pure Kitaev model, a further correction to the edge
spectrum at finite magnetic field comes from the Zeeman cou-
pling to spins on the boundary [1]. In the absence of magnetic
field, these edge spins are associated with a nontopologi-
cal zero-energy boundary flat band of “dangling” Majorana
fermions, which happen to be completely decoupled from the
bulk of the system (see Sec. IV A). Since the resulting flat
band is nontopological, we expect that in real materials, terms
that perturb the bulk Hamiltonian away from the Kitaev limit
will gap out these states; hence we have ignored them in
our analysis thus far. However, it is worth noting that if we
consider the Zeeman term as the only coupling of our system
to these dangling boundary fermions, the edge spectrum is
modified significantly, since the zero-energy trivial flat band
hybridizes strongly with the chiral boundary modes that we
have focused on here. This is shown in Fig 6, where we
include a coupling hz

∑
i cib

z
i between the dispersing Majo-

rana ci and the dangling Majorana bz
i on each site i on the

edge, via a Zeeman field hz = κ1/3. We see that the velocity
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of the chiral edge mode is drastically reduced through hy-
bridization with the boundary flat band and that the gapless
point is moved from the center to the edge of our Brillouin
zone. Though this does not alter the qualitative nature of
the low-energy power law arising due to the chiral boundary
modes, it does significantly alter the energy scale at which
it sets in.

D. Specific heat as a probe of topological boundary modes

We now turn to the question of whether the Majorana
edge modes can be detected experimentally using realistic
specific heat measurements. As observed above, for κ = 0 this
requires measurements to be made at temperatures below the
finite-size gap �fs. The best chance of detection is therefore
in nanoribbons with the smallest possible N2, which increases
both the temperature scale at which the specific heat becomes
dominated by Cedge and the magnitude of the edge contribution
at the higher end of this range. To the best of our knowl-
edge, the smallest α-RuCl3 monolayer nanosheet has a size
of around 10 μm × 10 μm × 2 nm. Given that the spacing of
the ions in α-RuCl3 is around 10 Å [58,59], the number of
the unit cells of the nanosheet is estimated to be N1 × N2 ∼
104 × 104. The corresponding high temperature cutoff is set
by �fs ∼ 2 × 10−4 which is around 2 × 10−2 K, given that
J ≈ 100 K [17,22]. To the best of our knowledge, the lowest
accessible temperature for the specific heat measurements is
on a scale of 0.1 K [38,60], which is three orders of magnitude
larger than �fs. We conclude that direct observation of the
Majorana boundary modes in the specific in α-RuCl3 without
time-reversal symmetry breaking is likely out of reach for
current experiments.

For κ > 0, on the other hand, the linear-in T specific
heat predicted in Eq. (15) up to a temperature scale corre-
sponding to approximately 0.1�bulk, followed by a crossover
to the quadratic temperature dependence of the bulk, could
potentially be observed even for realistic sample sizes. For
example, with N2 ∼ 104 and κ = 0.01, we have �bulk =
6
√

3κ = 0.104J , which gives a bulk gap of 10 K and a tem-
perature scale of 1 K for T -linear specific heat to be observed
α-RuCl3. We caution, however, that in real experiments time-
reversal symmetry is typically broken by applying a magnetic
field; in this situation our analysis applies only for κ much
smaller than the bulk flux gap.

Note that in realistic samples, the edges will not be of
the perfect zigzag type considered here, but rather will in-
clude a degree of boundary disorder. While disorder only
at the boundary cannot eliminate the gapless chiral bound-
ary modes found at κ �= 0, the fate of the boundary states
of the nodal topological phase for κ = 0 is much less well
understood. However, a few remarks on its likely impact
are in order here. Disorder can include both random steps
(or more generally, segments of armchair edge) interspersed
with segments of zigzag edges, as well as random vacancies
along the zigzag edge. In the former case, the armchair edge
segments do not contribute to the boundary states [57,61].
If the zigzag segments are long on the scale of the lattice
constant, we expect that the system can be heuristically un-
derstood as a series of short, disconnected zigzag ribbons,

such that much of the phenomenology described here will
be qualitatively unchanged at energy scales that are larger
than the typical segment length. If the zigzag segments are
short, then we expect the effect of disorder to be qualitatively
similar to adding a high density of vacancies on the edge.
The latter can be viewed as a particular type of (strong)
hopping disorder at the boundary of the zigzag nanoribbon.
The random-hopping problem has been much studied in 1D
systems with linear dispersion and with the same symmetries
as the Kitaev model (see, e.g., Refs. [62–64]). It is known
that in this case, the disorder does not gap out the low-energy
modes, but instead leads to a low-energy divergence in the
density of states, which can be either power-law or Dyson-like
(ρ(ε) ∼ ε−1| ln3 ε|. Thus we expect that the system will retain
a divergent low-energy density of states and a correspond-
ing contribution to the zero-temperature entropy; however,
the low-temperature specific heat, which is sensitive to the
precise nature of this divergence, will evidently be sensitive
to such disorder. To fully understand this dependence re-
quires further systematic analysis, similar to that performed
in Refs. [65,66], where the finite-size effects were properly
accounted for.

IV. RESIDUAL ENTROPY AND GAPLESS EDGE MODES IN
THE TIME-REVERSAL SYMMETRIC KITAEV MODEL

In the previous section we discussed the fermionic con-
tribution to the specific heat, which we expect to dominate
at temperatures well below the temperature scale associated
with the flux gap. In the time-reversal invariant case, we
argued that the boundary modes do not give a measurable
contribution to the specific heat for realistic sample sizes;
instead their primary thermodynamic signature is a residual
low-temperature entropy S0. Here we derive the value of S0 in
the absence of fluxes and compare this to S0 for the full Kitaev
spin liquid. To this end, we will compute the specific heat by
using the MC method for the Kitaev spin liquid developed by
Nasu, Udagawa, and Motome [36]. The entropy is then given
by

S(T ) = S∞ −
∫ Tmax

T
C d ln T, (17)

where S∞ is the entropy in the limit T → ∞, i.e., the maxi-
mum entropy of our system, and we choose Tmax = 101.5, as
above this the specific heat is vanishingly small. Recall that
throughout we work in units where J = 1. In the limit T → 0,
the residual low-temperature entropy is estimated numerically
using S0 = S(Tmin), where Tmin = 10−2 is the lowest temper-
ature simulated. In order to extract an approximate finite-size
scaling of S0, we compare numerical results on tori (with no
boundary modes) and cylinders (with boundary modes) of
different sizes.

A. S∞ in the system with open boundaries

At this point a note on S∞ is in order. For a system of
Ns spin-1/2 degrees of freedom, S∞ = ln � = Ns ln 2, where
� is the number of states. However, on a lattice with open
boundary conditions, this does not correspond exactly to the
infinite-temperature entropy of our flux-fermion model. This
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is because the Kitaev spin model (1) contains extra static
degrees of freedom at the boundary [1] that are not included
in the flux-fermion model (2).

To see this, consider a zigzag boundary with A sites on the
boundary (such a zigzag edge is shown by the solid green line
in Fig. 1). For a given site on the boundary, the Hamiltonian
includes only two terms:

Hedge =
∑

i

σ x
i,Aσ x

i,B + σ
y
i,Aσ

y
i−1,B. (18)

Thus in addition to the conserved plaquette operators Wp,
there is a subextensive set of operators

W (b)
i = σ

y
i,Aσ z

i,Bσ x
i+1,A, (19)

which commute with the Hamiltonian (1) for every site i
on the boundary. In the Majorana fermion representation, by
applying the constraint operator D̂ j = bx

jb
y
jb

z
jc j , W (b)

i operator

can be expressed as W (b)
i = −iûiA,iBû(i+1)A,iBbz

i,Abz
i+1,A. It is

always possible to work in a gauge where all ûi j on the bound-
ary are +1, where W (b)

i = −ibz
i,Abz

i+1,A. Since the “dangling”
fermions bz

i,A (for unit cells i on the edge) do not enter the

Hamiltonian at all, the two possible values of W (b)
i correspond

to states with the same energy. This leads to a twofold de-
generacy in the spectrum for every pair of dangling fermions
(i.e., every pair of unit cells) on the boundary, i.e., a total of
2N1 zero-energy states from both boundaries combined.

These zero-energy states, which we refer to as “dangling
fermion states,” are not included in the model (2) but must
be accounted for in calculating S∞. Specifically, each pair of
unit cells on the zigzag boundary contributes an additional ln 2
to the entropy of the spin model, which we must subtract to
obtain S∞. Thus, on a cylinder with N1 unit cells on each of
the two zigzag boundaries we find that

S∞ = (Ns − N1) ln 2. (20)

B. Results of Monte Carlo simulations

The thermodynamics of the Kitaev honeycomb model has
been studied previously by Nasu, Udagawa, and Motome
[36,37]. In particular, using MC simulations they have deter-
mined the basic structure of the specific heat of the Kitaev
honeycomb model on finite-size systems with L × L unit
cells, using both periodic and open boundary conditions. It
was found that the specific heat C(T ) has a two-peak structure,
with the low-temperature peak at T = TL associated with the
freezeout of flux excitations, and a high-temperature peak
from the fermionic excitations at T = TH . Since this is im-
portant for our discussion, we review the derivations of the
relevant thermodynamic quantities for the Kitaev model in
Appendix B.

Here we extend the analysis of Refs. [36,37] and present a
detailed study of the specific heat and entropy of the Kitaev
model based on extensive MC simulations on various finite-
size lattices with periodic (tori) and semiperiodic (cylinders)
boundary conditions. Our main focus is on exploring the
contribution of the Majorana fermion boundary modes to the
specific heat and the entropy. As such, we focus on systems
with N1 = 4N2, leading to a long boundary in the cylinder’s
case, thereby maximizing effects of the edge states. A short

description of the implementation of the MC algorithm [36] is
outlined in Appendix C.

The MC results for the specific heat are presented in
Fig. 7(a). As in Refs. [36,37], we observe a two-peak structure
for the specific heat on both torus and cylindrical lattices,
with a high-temperature peak that is basically insensitive to
both the system size and boundary conditions. This is ex-
pected since the bulk band structure for these high-energy
modes is qualitatively similar in all cases. In contrast, the low-
temperature peak (TL) is markedly different between the torus
and the cylindrical lattices. Notably, the onset temperature for
this lower peak on a cylindrical lattice is lower than on a com-
parably sized torus lattice. This indicates a smaller average
flux gap due to the presence of open boundaries. Finite-size
effects are also significant for the lower peak, primarily due to
interactions between fluxes that are enhanced by small system
size. We will discuss both of these effects in detail in Sec. V.
Figure 7(b) presents the corresponding entropy, computed by
using Eq. (17). The two peaks in C(T ) lead to a two-step
entropy release, with entropy release near TL predominantly
due to the proliferation of flux degrees of freedom, while that
near TH stems from the proliferation of high-energy itinerant
fermionic degrees of freedom.

Figure 7(b) also clearly shows the difference between
torus and cylindrical lattices. On torus lattices, the entropy
decreases to nearly zero at the lowest temperatures. This is
expected: In the thermodynamic limit all the physical degrees
of freedom except the states very near the gapless Dirac points
are frozen out at temperatures small compared to the flux
gap. On finite-sized tori the freezeout is more pronounced,
since the Dirac points acquire a gap on the order of 1/N2

unless N1 and N2 are both divisible by 3 (see Appendix D),
leading to a freezeout of all degrees of freedom below this
scale. In contrast, the residual entropy on cylindrical lattices is
nonzero due to the band of low-energy fermionic edge modes.
Specifically, with a low-temperature cutoff at a scale Tmin,
the residual entropy S0 is approximately given by the number
of states with energy less than Tmin. For the model (2), and
Tmin ∼ �fs, this is approximately:

S0 = ln �0, (21)

where �0 is the number of states associated with the zero-
energy edge mode, �0 ≈ 2

1
3 N1 . Note that for the small values

of N2 simulated here, �fs > Tmin = 10−2, and we find S0 �
1
3 N1 ln 2. To obtain the residual entropy associated with the
original Kitaev spin model (1), we must add the contribution
from dangling gauge fermions discussed in Sec. IV A giving

Sspin
0 = ln �0 + N1 ln 2. (22)

A quantitative comparison between these analytical es-
timates and the MC results is given in Table III, which
compares various ways of evaluating sspin

0 ≡ Sspin
0 /(Ns ln 2).

In the table, Sspin
0 (I) = 4

3 N1 ln 2 is the residual entropy of the
spin model in the thermodynamic limit, i.e., assuming that all
edge states contribute to S0; Sspin

0 (II) is the residual entropy
obtained from Eq. (21) by taking �0 equal to the number
of fermionic states with energy less than Tmin; Sspin

0 (III) is
the residual entropy obtained from the MC results using
Eq. (17). In both Sspin

0 (I) and Sspin
0 (II) we have added the
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FIG. 7. Specific heat (a) and entropy (b) on torus and cylinder lattices with different N1 × N2 sizes. For cylinder lattices, n1 is periodic
direction. We choose the aspect ratio to be 4 to have longer open edges and more edge modes.

contribution N1 ln 2 due to dangling fermions, to match the
residual entropy of the spin model. As expected we find
excellent agreement between Sspin

0 (II) and Sspin
0 (III), even

when finite size effects are significant. This illustrates how,
in principle, a measurement of the residual entropy Sspin

0 for
different sample geometries can be used to establish the pres-
ence of the topological boundary modes characteristic of the
Kitaev spin liquid.

We emphasize that because the boundary flat band is topo-
logically protected provided that time-reversal symmetry is

TABLE III. Residual entropy per site divided by ln 2, i.e., sspin
0 =

Sspin
0 /(Ns ln 2), computed for cylindrical lattices with open bound-

aries in the n2 direction. Sspin
0 (I) = 4

3 N1 ln 2 is obtained by neglecting
finite size effects and assuming all states in the lowest subband on
the interval k1 ∈ [2π/3, 4π/3] contribute to the residual entropy.
Sspin

0 (II) is obtained from Eq. (22) by numerically counting the num-
ber �0 of fermionic states below the energy scale of εmin. Sspin

0 (III) is
obtained by integrating the specific heat from high temperature Tmax

down to Tmin, according to Eq. (17).

N1 × N2 sspin
0 (I) sspin

0 (II) sspin
0 (III)

12 × 3 0.222 0.176 0.174 ± 0.002
16 × 4 0.167 0.136 0.138 ± 0.001
20 × 5 0.133 0.112 0.113 ± 0.001
24 × 6 0.111 0.095 0.096 ± 0.002

unbroken, the residual low-temperature entropy is a feature
of the entire gapless Kitaev spin liquid phase and thus is
a robust experimental signature of the gapless Kitaev spin
liquid. Reference [67] verified this explicitly, showing that
the residual entropy survives in the presence of non-Kitaev
interactions that are finite but not too strong.

V. FLUX ENERGETICS IN THE TIME-REVERSAL
SYMMETRIC KITAEV MODEL (κ = 0)

The MC results discussed in the previous section reveal
significant differences in the low-temperature specific heat
peak associated with flux freezeout on the cylinder relative
to the torus. In this section, we give a physical interpretation
for these differences, by studying the energetics of flux excita-
tions in both torus and cylinder lattices. We use this to model
how flux energetics impact thermodynamic quantities in both
geometries, for both finite and infinite systems. Here we will
focus on the time-reversal symmetric Kitaev model, κ = 0,
and consider the effects of finite κ �= 0 in Sec. VI.

A. One-flux gap energy in torus and cylinder

We start by computing the one-flux energy gap �φ in
toroidal and cylindrical geometries. On the torus, the one-flux
energy gap was analyzed by Kitaev [1], who associated it
with a half of the two-flux energy �φ = 1

2 E (0)
2φ , where E (0)

2φ is
defined to be the energy of the flux configuration {φp} = 2φ
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FIG. 8. Position dependence of the one-flux gap on a N1 × N2 =
40 × 20 cylinder. Here d indicates the distance between the flux and
the edge.

with the maximum separation between the two fluxes [see
Eq. (B1)]. He also showed that E (0)

2φ displays oscillatory
period-3 modulations as the lattice size increases, due to the
fact that on a L × L lattice, for L divisible by 3, the Dirac cone
is located on the reciprocal lattice point, while for other values
of L it is not (see Appendix D). By extrapolating E (0)

2φ to the
thermodynamic limit, Kitaev obtained an estimate for the flux
gap �∞

φ = 0.154.
We follow the same method and compute the one-flux gap

in cylinder lattices. In this case, however, the open boundary
allows us to create just one flux and study how the one-flux en-
ergy depends on the distance of the flux to the open boundary.
Figure 8 shows the one-flux energy gap at different distances
from the boundary computed on a N1 × N2 = 40 × 20 cylin-
der. We can clearly see that the flux gap decreases as the
flux approaches the open boundary and is significantly lower
(by over 30%) on the boundary than deep in the bulk. This
decrease in energy can be seen as an effective attractive in-
teraction between the fluxes and the boundary, due to the
Majorana boundary modes [68]. To see the finite size scaling
of the one-flux gap, in Fig. 9 we plot the flux gap when it
is created on the plaquette on the edge (a) and in the middle
of the cylinder (b) calculated for different system sizes L. By
extrapolation to thermodynamic limit separately for L = 3k,
L = 3k + 1 and L = 3k + 2 (see details in Appendix D), we
get the edge gap equal to �∞

φ,e = 0.102 and the bulk gap equal
to �∞

φ,b = 0.154. The latter, as expected, is the same as on the
torus lattices.

To summarize, our numerical analysis suggests that, on
average, the one-flux gap in cylinder lattices is smaller than
that on comparable torus lattices and decreases as the flux
approaches the boundary. This finding is in agreement with
our MC results of the specific heat (see Fig. 7) which shows
that the onset temperature for flux excitations on cylinders are
lower than those on tori.

B. Phenomenological flux energy models

To understand the energetics of systems with many fluxes,
we analyze the distribution of the flux energy E (0)

φp
[defined

as the lowest-energy state with a given flux configuration
φp—see Eq. (B1)] for different flux configurations {φp} at
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FIG. 9. One-flux energy as a function of the inverse lattice size
1/L computed when the flux is located (a) on a boundary plaquette
and (b) on a plaquette maximally distant from the edge, for different
cylinder systems with N1 = N2 = L. Due to the periodic dependence
on system size modulo 3, we use separate polynomial fits to the
series L = 3k (green), L = 3k + 1 (red), and L = 3k + 2 (blue),
and extrapolate these in the limit 1/L → 0 to estimate the gap for
large system sizes. We find that the energy gaps for the edge and
bulk fluxes extrapolate to (a) �∞

φ,e = 0.102 and (b) �∞
φ,b = 0.154,

respectively.

fixed flux density on torus and cylinder lattices. We perform
a polynomial fit to the average energy obtained over many
random flux configurations at each flux density. We call this
fit the flux pseudopotential energy (PPE). By comparing the
resulting curves on lattices of different sizes and geometries,
we argue that in the limit of large system size, the PPE on the
torus describes a universal dependence of flux energy density
on flux density. On the cylinder the dependence on geometry
is not universal, but we find evidence of a universal depen-
dence of total flux energy to total flux density on cylinders of
fixed width in the thermodynamic limit.

1. Flux pseudopotential energy on a torus

For a given flux configuration, the flux energy density is
given by E (0)

φp
/Np, where Np is the number of plaquettes and

Nφ is the number of fluxes. For fixed flux density nφ = Nφ/Np,
we define E (nφ ) to be the distribution of E (0)

φp
/Np for different

flux configurations with the same flux number Nφ . We begin
by studying how E (nφ ) depends on nφ for torus lattices. An ex-
ample is shown in Fig. 10(a), which plots E (nφ ) as a function
of nφ on the N1 × N2 = 24 × 6 torus lattice. To generate this
distribution we sample 100 random flux configurations at each
flux density nφ ; each blue dot represents the energy of one
such configuration. The solid red line represents a fifth-order
polynomial best fit to the average Ē (nφ ) at each flux den-
sity nφ , given by Ē (nφ ) 
 −0.143n5

φ + 0.274n4
φ − 0.181n3

φ −
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FIG. 10. (a) Distribution of the flux energy density E (nφ ) for different flux densities nφ on the torus lattices with N1 × N2 = 24 × 6,
generated by taking 100 randomly generated flux configurations at each flux density. The best-fit polynomial Ē (nφ ) 
 −0.143n5

φ + 0.274n4
φ −

0.181n3
φ − 0.004n2

φ + 0.121nφ + 0.002 is shown by the red curve. The standard deviation of the residual errors is 0.14. (b) The flux energy
densities on the lattices of N1 × N2 = 16 × 16 (blue), 22 × 11 (green), and 44 × 11 (yellow) from a random sampling of 60 flux configurations.
Vertical bars at each flux number show one standard deviation of energy. The best-fit polynomial that simultaneously fits the three sets of data
is Ēbest(nφ ) 
 −0.321n6

φ + 0.850n5
φ − 0.898n4

φ + 0.475n3
φ − 0.180n2

φ + 0.141nφ . (c) Distribution of flux energies for various lattices sizes L
for a fixed flux density nφ = 0.5 from a sampling of 60 flux configurations. The red error bars show one standard deviation of the flux energies.
(d) The finite-size energy splitting of the ground state energy E fs

0 as a function of the inverse lattice size 1/L, where N1 = N2 = L.

0.004n2
φ + 0.121nφ + 0.002. We call this polynomial fit the

flux pseudopotential energy (PPE). We choose to fit to fifth-
order polynomials as this is the lowest order that consistently
fits the data, based on the distribution of residual errors.

The PPE curves for smaller tori, where the finite-size split-
ting of topological sectors is large, are not universal and can
differ significantly depending on the system size and aspect
ratio. To understand why, recall that in the absence of fluxes
the Kitaev model has four topologically distinct sectors on
the torus [1]. These sectors are energetically degenerate in the
thermodynamic limit; however on finite-size tori the splitting
between them can be appreciable, as is evident from the distri-
bution of energies for the four configurations with nφ = 0 in
Fig. 10(a). This splitting is shown for L × L tori in Fig. 10(d),
as a function of 1/L. For comparison, Fig. 10(c) shows how
the width of the distribution E (nφ = 0.5) depends on the sys-
tem size L for an L × L torus. We see that for L � 20, the
differences between the energies of these four sectors rapidly

becomes comparable to the width of the distribution of flux
energies at nφ = 0.5, suggesting that the difference between
topological sectors accounts for a significant part of the finite-
size broadening of this distribution at small L.

For L � 20, in contrast, differences between the energies
of these four sectors are small compared to the width of the
distribution of flux energies. Though the distribution narrows
with increasing L in this range, it does so only very slowly.
Indeed we expect this distribution to reach a plateau of finite
width as L → ∞, since the interactions between fluxes lead
to variations in the energies of different flux configurations at
fixed nφ . Our numerics suggest that for L � 20 the distribution
of energies converges to a universal function, independent of
both system size and aspect ratio, which captures the main
features of the flux energetics as a function of flux density
in the thermodynamic limit. In order to find this universal
function, we consider tori with N1 × N2 = 16×16, 22×11,
and 44×11 (for which the aspect ratios N1/N2 are 1, 2, and 4,
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respectively) and for each of the systems obtain E (nφ ) [shown
in Fig. 10(b)] generated from 60 random flux configurations.
The height of the bars at each value of nφ represents the
standard deviation of the corresponding energy distribution.
We see that the overlap between the three curves is large,
indicating that the dependence on aspect ratio (as well as
system size, not shown here) is negligible. All three curves
are well described by the best-fit polynomial (shown by the
red line)

Ēbest(nφ ) 
 −0.321n6
φ + 0.850n5

φ − 0.898n4
φ

+ 0.475n3
φ − 0.180n2

φ + 0.141nφ . (23)

We find that the sixth-order polynomial gives better fit for
the distribution of energies shown in Fig. 10(b) than the fifth-
order polynomial. We thus use the functional form (23) as an
approximate universal PPE fit, which describes the average
flux energy density in the thermodynamic limit.

The PPE polynomial Eq. (23) gives us a useful tool to
obtain insights into the nature of the flux interactions on the
torus. First, the concave shape of the flux PPE as a function
of the flux density indicates that the flux interactions are, on
average, attractive; our analysis suggests this remains true at
all flux densities. Second, it is natural to try to identify the
coefficient of the linear term in the best-fit curve with an
average flux gap �̄φ , since on a large torus 2�̄φ should give a
good approximation of the average energy of a configuration
of two fluxes. The value obtained from the universal PPE
in Eq. (23) is 0.14, which is smaller than �∞

φ = 0.154. We
attribute this to the attractive interactions between fluxes: �∞

φ

is measured by putting the two fluxes at the maximum sepa-
ration, while �̄φ is obtained from the 2-flux energy averaged
over all separations. As interactions between the fluxes are
attractive on average, the latter is smaller.

2. Flux pseudopotential energy on a cylinder

In order to study how the flux energies are distributed on
the cylinder lattices, we again sample different flux config-
urations for fixed flux densities. However, since the energy
of a single flux significantly depends on its proximity to the
edge of the lattice (see Fig. 8), we now do this for a pair of
two independent flux densities: one for the edge, ne

φ = Ne
φ/Ne

p,
and one for the bulk, nb

φ = Nb
φ/Nb

p . Here Ne
φ is the edge flux

number, counting the fluxes on the two outermost layers of
plaquettes, and Nb

φ = Nφ − Ne
φ is the bulk flux number. Nb

p
and Ne

p count the number of plaquettes on the edges and
in the bulk, respectively. The energy density is defined as
E (ne

φ, nb
φ ) = E (0)

φp
(Ne

φ, Nb
φ )/Np, where E (0)

φp
(Ne

φ, Nb
φ ) is the flux

energy of the configuration with Ne
φ edge fluxes and Nb

φ bulk
fluxes.

On the cylinder, we do not expect the flux PPE to be
universal even for large system sizes, since it depends on
the fraction of plaquettes that lie on the boundary. However,
for fixed N2 (and hence a fixed boundary-to-area ratio), we
do find good agreement to a universal PPE, as shown in
Fig. 11. The distributions of flux energy densities E (ne

φ, nb
φ )

computed on cylindrical lattices with N1 × N2 = 28×6, 24×6,
20×6, and 16×6 are shown in Fig. 11(a), with 30 different
flux configurations sampled randomly for each pair (ne

φ, nb
φ ).

FIG. 11. (a) Distribution of the flux energy density E as a func-
tion of edge (ne

φ = Ne
φ/Ne

p) and bulk (nb
φ = Nb

φ/Nb
p ) flux densities

computed on cylindrical lattices with N1 × N2 = 28 × 6 (purple),
24 × 6 (yellow), 20 × 6 (orange), and 16 × 6 (blue). The best-fit
polynomial surface is shown. (b) The line cuts of the best-fit surface
obtained for fixed edge flux densities ne

φ = 0, 0.5, 1.0. Vertical bars
indicate one standard deviation in energies.

As for the torus lattices, due to the attraction (on average)
between fluxes, the average energy density Ē (ne

φ, nb
φ ) lies on a

concave-down surface.
To obtain the flux PPE surface appropriate to cylinders

with N2 = 6, we perform a two-variable polynomial fit to the
average of all of the energy distributions shown in Fig. 11(a).
This gives the best-fit polynomial surface shown in Fig. 11(a),
described by the equation:

Ēbest
(
ne

φ, nb
φ

) = 0.001 + 0.042ne
φ + 0.066nb

φ

− 0.005
(
ne

φ

)2 − 0.006ne
φnb

φ − 0.011
(
nb

φ

)2

− 0.007
(
ne

φ

)3−0.001
(
ne

φ

)2
nb

φ−0.001ne
φ

(
nb

φ

)2

− 0.010
(
nb

φ

)3
. (24)
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Using this polynomial, we can also determine the edge and
bulk flux gaps as

�φ,e = ∂ Ēbest
(
ne

φ, nb
φ

)
∂ne

φ

∣∣∣∣
ne

φ,nb
φ=0

· Np

Ne
p

= 0.105, (25)

�φ,b = ∂ Ēbest
(
ne

φ, nb
φ

)
∂nb

φ

∣∣∣∣
ne

φ,nb
φ=0

· Np

Nb
p

= 0.110. (26)

While the estimate of the edge flux gap is close to the ex-
trapolated result shown in Fig. 9(a), the bulk gap energy is
lower than the energy obtained from the extrapolation shown
in Fig. 9(b). As for the torus lattice, one contribution to this
difference is that the two-flux interactions are attractive on
average. In addition, however, for the small N2 shown here
many of our “bulk” fluxes are in fact quite close to the edge,
leading to a significant further reduction.

The line cuts of the best-fit surface obtained for fixed edge
flux densities ne

φ = 0, 0.5, 1.0 are shown in Fig. 11(b), where
the height of the bars at each value of nb

φ represents the
standard deviation of the corresponding energy distribution
for a given value of ne

φ . All system sizes shown are well fit
within error bars by the PPE given in Eq. (24).

C. Flux contribution to specific heat (κ = 0)

We now leverage our phenomenological flux models to
predict the contribution of fluxes to the specific heat in the
thermodynamic limit of the time-reversal invariant Kitaev
model. In particular, since the low-temperature peak in the
specific heat is mainly due to the flux excitations, its position
and shape are closely related to the flux energetics, which we
can now describe in the thermodynamic limit using our nu-
merically obtained best-fit polynomials. We will also compare
the predictions of the specific heat based on the PPE poly-
nomials with the results of the MC simulations in analogous
boundary conditions and analyze how well they capture the
position and shape of the low-temperature peak in the specific
heat.

1. Torus lattices

We calculate thermodynamic quantities on the torus lat-
tices by a saddle point approximation of the effective free
energy of the flux degrees of freedom,

Fφ = NpE (nφ ) − T Sφ, (27)

where E (nφ ) from now on denotes the average flux energy
density and Sφ is the flux entropy. On a torus with Np plaque-

ttes, there are (Np

Nφ
) = Np!

Nφ !(Np−Nφ )! possible configurations with a
total of Nφ fluxes. Hence the configurational entropy is equal

to Sφ = ln (Np

Nφ
). Using the Stirling’s formula, for large Np and

Nφ we find:

Sφ = Np[−nφ ln nφ − (1 − nφ ) ln (1 − nφ )]. (28)

In the thermodynamic limit, the value of the flux density nφ

can be obtained by minimizing the free energy:

1

Np

dFφ

dnφ

= E ′(nφ ) − T ln
1 − nφ

nφ

= 0, (29)

where E ′(nφ ) = ∂E (nφ )/∂nφ . This yields the flux density:

nφ (T ) = 1

eE ′(nφ )/T + 1
. (30)

Since the energy density depends on T only through its de-
pendence on nφ , the specific heat per site arising from solely
flux degrees of freedom can be expressed as:

Cφ = 1

2
E ′(nφ )

dnφ

dT
. (31)

Explicitly,

∂nφ (T )

∂T
= − eE

′(nφ )/T

(eE ′(nφ )/T + 1)2

(
−E ′(nφ )

T 2
+ 1

T

∂E ′(nφ )

∂T

)

= nφ (1 − nφ )

(E ′(nφ )

T 2
− 1

T

∂E ′(nφ )

∂nφ

∂nφ (T )

∂T

)
.

(32)

Solving the above for ∂nφ (T )/∂T gives the specific heat per
site:

Cφ = 1

2

(E ′(nφ )

T

)2 1
1

nφ (1−nφ ) + E ′′(nφ )
T

, (33)

where E ′′(nφ ) = ∂2E (nφ )/∂n2
φ . The denominator of Eq. (33)

shows two distinct contributions to the specific heat. The
first, from the term 1

nφ (1−nφ ) , is entropic in origin and comes
from the curvature of the configurational entropy, S′′

φ/Np =
− 1

nφ (1−nφ ) .
The second contribution is due to the curvature of the

average flux energy density E (nφ ). For an attractive in-
teraction, such as the one we found for our flux PPE in
Sec. VI A, E ′′(nφ ) < 0, and this term increases the value of
the specific heat. Intuitively, this is because the attractive
interaction between the fluxes lowers the energy required
to excite additional fluxes as the flux density increases, in-
creasing the number of thermal flux excitations at a given
temperature.

We evaluate the flux contribution to the specific heat by
using the best-fit polynomial (23) to describe the average flux
energy density E (nφ ) in Eq. (33). This gives us the specific
heat of the interacting flux model (IFT) on the torus. For
comparison, we also compute the specific heat Eq. (33) for the
noninteracting flux model on the torus (NIFT), for which the
energy density is simply E (nφ ) = �φnφ , with �φ = �φ , and
E ′′(nφ ) = 0. In Fig. 12(a) we plot the specific heat for both
the IFT (dark blue) and NIFT (light blue) models. Clearly,
flux interactions have an important effect on the shape of
the peak in specific heat: The IFT model has a higher and
narrower peak than the NIFT model due to the attractive flux
interactions. The difference is on the order of 30%, indicating
that interaction effects are quantitatively important. We also
find that the precise shape and height of the specific heat
curve is sensitive to small changes in the flux PPE, resulting
in significant error bars to our predictions for C in spite of
the relatively small error of our PPE fits. (See Appendix F for
details.)

Figure 12(a) also compares these flux-only specific heat
curves Cφ (T ) to those obtained by the MC simulations on
different-size torus lattices, which describe both flux and

224402-14



FURTHER INSIGHTS INTO THE THERMODYNAMICS … PHYSICAL REVIEW B 102, 224402 (2020)

-2 -1.5 -1 -0.5 0 0.5 1 1.5
log

10
(T)

0

0.1

0.2

0.3

C

(a)
IFT
NIFT
MC 10 10
MC 14 14
MC 16 16

-2 -1.5 -1 -0.5 0 0.5 1 1.5
log

10
T 

0

0.1

0.2

0.3

C

(b)
IFC
NIFC
MC 16 4
MC 20 5
MC 24 6

FIG. 12. Comparison between IFT, NIFT, and MC predictions of the specific heat. (a) The specific heat per site with IFT and NIFT models,
computed according to Eq. (33), compared to Monte Carlo simulations on various L × L tori. (b) The specific heat per site with IFC and NIFC
models, computed according to Eq. (37), compared to Monte Carlo simulations. Note that our NIFC fit is specific to cylinders with N2 = 6.
Here the uncertainty in the specific heat of the PPE models are estimated from an ensemble of fit curves created by bootstrapping the regression
data [69], as described in Appendix F.

fermionic contributions to the specific heat C(T ). We find
reasonable agreement between the specific heat of the IFT
model and that of the MC simulations over most of the lower
peak in C(T ), particularly for the largest lattice sizes simu-
lated. The two models do exhibit significant differences at low
temperatures, with the specific heat falling off more quickly in
the MC simulations than in our IFT model. We conjecture that
this is primarily due to finite-size effects, which decrease the
average distance (and thus increase the average interaction)
between fluxes at low flux numbers in our MC simula-
tions. Thus, as expected, we find that the low-temperature
peak in C(T ) can be well accounted for by a model that
includes only flux excitations and ignores the dispersing
fermions.

Moreover, the IFT model based on the PPE polynomial
fit suggests that the low-temperature peak in specific heat
is of finite width even in the thermodynamic limit. This
confirms the expectation [37] that the gapless phase of the
2D Kitaev model does not have a finite-temperature phase
transition, but rather a crossover from a state of vanishingly
small flux density at temperatures well below the flux gap,
to one with flux density nφ ≈ 0.5 at temperatures above the
flux gap. To see why, we expand the exact expression for the
free energy at large Np and small Nφ to find Fφ ≈ (E ′(0) −
T ln Np)Nφ. This is minimized by Nφ > 0 at the flux onset

temperature

Tonset ≈ �̄φ/ ln Np, (34)

where 2�̄φ is the average energy cost of inserting a pair of
fluxes. Thus in the thermodynamic limit, for any T > 0 there
will be some (finite) number of fluxes in the system. Although
for T 	 �̄φ the flux density is effectively 0, these few fluxes
are sufficient to destroy the topological order, such that there
are no singularities in C(T ). Our numerics suggest that includ-
ing the low-energy fermionic excitations in this analysis will
not substantively alter Tonset, or the nature of the crossover.
We emphasize that Tonset does not correspond to the position
of the low-temperature peak in C(T ), which always occurs at
a temperature scale set by �̄φ , irrespective of the system size.
On the finite-sized systems studied here, however, where the
flux density can never be lower than 2/Np, Tonset is a good
proxy for where this lower peak begins.

In Fig. 12(a), the specific heat curves of the NIFT and
IFT models merge together at low temperatures, where the
flux density is small. This is because at low flux densities the
energy density of the IFT model is dominated by the linear
term, E (nφ ) ≈ E ′(0)nφ . Thus taking the flux gap of the NIFT
model to be �̄φ = E ′(0), the two models exhibit very similar
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behavior for C(T ) at temperatures well below �̄φ , where the
flux density is small.

2. Cylinder lattices

We now discuss the analogs of both the noninteracting
(NIFC) and the interacting (IFC) flux models appropriate for
cylinder lattices. With the 2-variable model of the flux energy
described in Sec. V B 2, the approach taken above to calcu-
late C(T ) becomes cumbersome. Instead, we start from the
expression for the specific heat in Eq. (B5) and exploit the
fact that the last term vanishes in the absence of fermionic
excitations, i.e.,

Cφ (T ) =
d
〈
E (0)

φp

〉
dT

= 1

T 2

(〈(
E (0)

φp

)2〉 − 〈
E (0)

φp

〉2)
. (35)

Here the expectation 〈. . .〉 is taken over different flux con-
figurations characterized by the pairs of the flux numbers
(Ne

φ, Nb
φ ), weighted by the probability

p
(
Ne

φ, Nb
φ

) = e
−βE (0)

φp
+ln (Ne

p
Ne
φ
)+ln (Nb

p

Nb
φ

)
. (36)

On a finite-size cylinder, this allows us to compute the specific
heat exactly by summing over the possible values of Ne

φ, Nb
φ :

Cφ (T ) = 1

NsT 2

∑
Ne

φ,Nb
φ

(
E (0)

φp
− 〈

E (0)
φp

〉)2
p
(
Ne

φ, Nb
φ

)
, (37)

where the sum over Ne
φ (Nb

φ) runs from 1 to Ne
p (1 to Nb

p),
where Ne

p(Nb
p ) is the number of plaquettes on the edge (in the

bulk). Using Eq. (37), we compute the specific heat using both
the best-fit PPE surface for the cylinders (IFC model) and the
noninteracting flux model (NIFC), in which E (0)

φp
= Ne

φ�φ,e +
Nb

φ�φ,b, with the gaps �φ,e and �φ,b given by Eqs. (25) and
(26).

Figure 12(b) shows the specific heat of the NIFC and IFC
models evaluated on a 24 × 6 lattice along with the ones ob-
tained by the MC simulations on 16 × 4, 20 × 5, and 24 × 6
lattices. (Recall that the fit used in our IFC model is specific to
cylinders with N2 = 6.) Again, we see that flux interactions,
which are attractive on average, play an important role: The
specific heat in the NIFC model has a lower and broader peak
than that in the IFC model, with a difference in peak heights
on the order of 20%. We also find good agreement between the
specific heat in the IFC and our MC simulations in the vicinity
of the low-temperature peak, particularly for the two largest
system sizes. Notice that there is still a small disagreement
between the IFC and the MC results on a 24 × 6 lattice: The
peak temperature in the IFC model is slightly higher than that
obtained with the MC simulation. This is because the IFC
model assigns the same energy to any flux not on the edge.
Though this leads to an underestimate for the gap of fluxes
deep in the bulk of the system, it also overestimates the gap
of fluxes close to, but not on, the boundary (see Fig. 8). Since
these lower energy excitations contribute disproportionately
to the specific heat at lower temperatures, our IFC model ac-
tually overestimates the peak position. Still, Fig. 12(b) shows
that the IFC model captures the specific heat due to thermal
flux excitations relatively well.
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FIG. 13. Comparison of the specific heat computed using an IFC
model based on fits for various lattice sizes, with the specific heat
computed using the IFT model in the thermodynamic limit. Error
estimates are obtained using the same method as in Fig. 12.

3. Comparison between the IFT and IFC specific heats

To illustrate the effect of the boundary fluxes on the ther-
modynamics, here we directly compare the specific heat on
torus and cylinder lattices. Figure 13 presents the specific heat
of the IFC model computed on a series of finite-size cylinder
lattices and that of the universal IFT model on the torus lattice.
It shows that the peak begins at a lower temperature on the
cylinder than on the torus, predominantly due to the smaller
single-flux gap near the edge of the cylinder, which broadens
the temperature range over which the flux entropy is released.
Because the total entropy released is the same in both cases,
the peak height for the cylinder lattice is correspondingly
lower than that on the torus lattice.

Additionally, as the lattice size increases, the specific heat
peak of the cylinders moves slightly towards the right, with the
right half of the peak appearing to tend towards the IFT curve.
This is because for an aL × L lattice (a > 1), as the lattice size
L increases, the fraction of the plaquettes on the boundary falls
off as Ne

p/Np = a/L. Thus any effects associated with the edge
diminish in importance in the thermodynamic limit.

VI. FLUX ENERGETICS IN THE EXTENDED KITAEV
MODEL (κ �= 0)

A. Flux pseudopotential energy on a torus at κ �= 0

We now turn to the time-reversal symmetry broken Kitaev
model and study the energetics of the many-flux problem at
finite κ . As we discussed in Sec. III C, the κ term introduces
both an energy dispersion to the edge modes and a bulk energy
band gap. Collectively, these lead to a slightly weaker depen-
dence of the single flux energy on its proximity to the edge of
the lattice; however, the main effects of the boundary on the
flux energetics remain the same as in the time-reversal invari-
ant case. Here we therefore only consider the flux energetics
on torus lattices, for which we numerically obtain best-fit PPE
polynomials to the average flux energy as a function of the flux
density nφ and the strength of κ [see Fig. 14(a)]. Note that we
treat the three-spin interaction as an independent time-reversal
symmetry breaking term rather than as a perturbative effect of
the magnetic field [1], and thus for curiosity consider values
of κ up to 1.
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FIG. 14. (a) The flux PPE for different κ on the N1 × N2 = 16 × 16 torus. The corresponding best-fit polynomials are given in
Appendix E. For κ = 0.5, the nearly straight band and small standard deviation indicates that flux interactions are very weak. (b) The
fermionic DOS, D(ε), in the flux-free sector obtained by numerically diagonalizing the Bloch Hamiltonian Hk defined in Eq. (3) on the
N1 × N2 = 30 × 30 torus. The inset in (b) shows the two-flux gap E2φ (∞) (dark yellow line) and the fermionic gap �bulk (dark red line). Here
E2φ (∞) is defined as the flux energy when two fluxes are placed at the maximum separation.

The value of κ affects the flux energetics through its im-
pact on the fermionic spectrum. In Fig. 14(b) we plot the
fermionic DOS in the flux-free sector for various values
of κ . Recall that in the extended Kitaev model, Majorana
fermions can hop to nearest neighbor sites with an ampli-
tude of J and to second neighbor sites with an amplitude
of κ . Two main effects of finite κ should be noticed: First,
as expected, κ leads to a bulk gap �bulk in the fermionic
spectrum, which grows linearly with κ up to κ 
 0.2. The
inset in (b) shows that both this fermionic energy gap (dark
red line) and the flux gap E2φ (∞) (dark yellow line, de-
fined as the flux energy with a pair of maximally separated
fluxes on the torus), grow monotonically with κ . Second, for
κ > 1/

√
3, the maximum fermionic energy is greater than

its κ = 0 value of 6J and increases linearly with κ , leading
to the increased maximum fermionic energy that is apparent
for κ = 1.

Figure 14(a) shows the phenomenological models of flux
energetics in the time-reversal symmetry broken case com-
puted on the N1 × N2 = 16 × 16 torus. The PPE polynomials
are shown using solid lines, while the vertical bars show the
mean and standard deviation of 60 random flux configurations
at each flux density, with colors indicating the value of κ in
each case. As before, the best-fit polynomials (given explicitly
in Appendix E) are obtained by fitting the mean energy as a
function of nφ for each value of κ . We see that the slope of the
PPE at low flux densities increases monotonically with κ , due
to the increase in the flux energy gap. The explicit dependence
of �̄φ on the strength of κ is shown in Fig. 22 and is consistent
with the trend for E2φ (∞) shown in the inset of Fig. 14(b). For
κ � 0.5 this difference in slope is clearly the most significant
effect of increasing κ . We also observe differences in the
curvature of the PPE for different κ , indicating differences
in the average importance of flux interactions, which we will
attempt to understand with the minimal two-flux interaction
model in Sec. VII.

B. Flux contribution to the specific heat at κ �= 0

The change of the flux energetics due to κ is clearly ob-
servable in the behavior of the specific heat. This is shown
in Fig. 15, which compares the predictions of our flux-PPE
model Cφ (T ) with MC results C(T ) on 16 × 16 tori. The
solid lines show the specific heat for various values of κ as
a function of temperature using the best-fit flux PPE polyno-
mials explicitly given in Eq. (E1) and shown in Fig. 14(a).
Comparing these with the results for C(T ) obtained with MC
simulations on the 16 × 16 torus shows that the specific heat
peak positions are well approximated by the flux PPE model:
In Fig. 15 we clearly see a rightward shift in the position of
the low-temperature peak with increasing κ in both the flux
PPE models and the MC simulation results. This is due to the
fact that the flux gap increases with κ .

The peak’s height and shape are more sensitive to the
details of the PPE fit. In particular, small changes in the values
of the polynomial coefficients of the flux PPE can lead to large
differences in the peak height and shape; this is apparent when
comparing the fit at κ = 0 in Fig. 15 (obtained from a PPE
derived from a single system size) to that in Fig. 12, obtained
from the universal best-fit PPE in Eq. (23). As a result, as
discussed in detail in Appendix F, the small sampling error
in the PPE fits translates to significant error bars near the
peak of Cφ (T ). Moreover, the flux PPE model predicts Cφ (T )
based on the average flux energy for a given flux density and
does not account for fluctuations in this energy over different
configurations with the same flux number, which can also
impact the specific shape of the peak. These factors, together
with finite-size effects in the MC data, lead to differences
between the PPE and MC predictions for the peak height and
shape. These are particularly apparent when comparing the
PPE results for the specific heat computed for κ = 0.1 with
corresponding MC result.

For κ � 0.2, our MC simulations also show changes in
the high-temperature (fermionic) peak in C(T ), which shifts
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FIG. 15. Comparison of the specific heat per site for various values of κ on a 16 × 16 torus lattice, computed by the MC simulations (the
dots) and from the flux PPE model via Eq. (33) (the solid lines). The uncertainty of the PPE model specific heat is estimated the same way as
described in Fig. 12.

to noticeably higher temperatures for κ = 1. This reflects the
changes in the high-energy fermionic DOS for larger values
of κ [see Fig. 14(b)].

VII. TWO-FLUX INTERACTIONS

In the previous sections, we presented phenomenological
models of the average flux energy Ē (nφ ) as a function of flux
density nφ that we argued were universal on sufficiently large
tori and universal for a fixed value of N2 on the cylinder. We
found that Ē (nφ ) is a concave function of nφ , indicating that
on average, interactions between the fluxes are attractive. For
sufficiently large system sizes, we showed that the width of
the distribution of energies around the best-fit PPE curve was
narrow, indicating that at given flux density the flux energy
depends only weakly on the specific flux configuration. In this
section, we examine the microscopics of the flux interactions
and argue that the essential features of our flux PPE models
can be understood by studying the interaction between just
two fluxes. We will also show how these interactions can be
tuned by the time-reversal symmetry breaking term κ .

At finite κ , the interaction between fluxes in the Kitaev
model originates from the Majorana zero mode localized near
each flux [1], leading to flux interactions that are similar
to those of vortices in chiral p-wave superconductors [70].
The resulting fermion energetics was studied numerically by
Ref. [68], who obtained a phenomenological fit to the Majo-
rana fermion energy as a function of the separation between
the two fluxes. Subsequently, similar effective Hamiltonians
describing the interactions between Majorana zero modes
have been used to study the Majorana zero mode spectrum in
the presence of various flux lattices, often called vison crystals
[71–74].

Specifically, a pair of Majorana zero modes corresponds
to two possible states, which can be characterized by their
fermion parity. Thus due to the bound Majorana zero modes,
each pair of fluxes can have either even or odd fermion parity.
As the separation d between the two fluxes approaches ∞, the
energy splitting 2ε0(d ) between these states approaches 0, and
the two possibilities are energetically degenerate, hence the
name “zero mode.” At finite separation, however, the wave

functions of the Majorana zero modes hybridize, leading to
a nonvanishing value of ε0(d ), which can be quantitatively
described by [68]

ε0(d ) = �bulk cos

(
2πd

λ

)
e− d

ξ , (38)

where λ is a characteristic wavelength and �bulk is the com-
plex fermion bulk energy gap. The coherence length ξ is
inversely proportional to the bulk fermion gap, i.e., ξ ∼ �−1

bulk,
indicating that the length scale over which the flux interactions
are appreciable decreases with increasing κ . In addition to
the exponential decrease with separation, Eq. (38) shows that
ε0(d ) oscillates as a function of the separation d .

To show the relationship between Majorana zero modes
and the two-flux interactions, we follow Ref. [68] and plot the
fermionic energy spectrum on the torus as a function of the
two-flux separation d along the n1 direction, for both κ = 0
[Fig. 16(a)] and κ = 0.05 [Fig. 16(b)]. In Fig. 16 we show
the full particle-hole symmetric Majorana fermion spectrum;
the positive energy corresponding to a complex fermion at
momentum k is given by twice the energy of the upper band
at k. Note that throughout this paper, we use the symbol ε

to denote this complex fermion energy. We identify the two
Majorana states with energies closest to 0 (red lines) as those
associated with the Majorana zero mode pair, with energy
± 1

2ε0(d ). The two-flux interaction energy Vint(d ) is given by
the difference between the energy of the flux pair in the lower
energy state at separation d [see Eq. (B1)] and the energy of
the flux pair at infinite separation:

Vint(d ) = −1

2
ε0(d ) − 1

2

∑
i>0

(εi(d ) − εi(∞)), (39)

where we have used the fact that ε0(∞) = 0, and the second
sum runs over all positive-energy fermionic states except the
lowest-energy one. It is clear that due to the oscillating behav-
ior of ε0(d ), Vint(d ) also exhibits short-range modulations.

Figure 16(b) shows that for κ = 0.05, all fermionic modes
except the lowest one (shown in red) are almost independent
of d . This is true for all nonzero κ , thus at finite κ the two-flux
interaction energy is due almost entirely to the hybridization
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FIG. 16. The fermion energy spectrum on N1 × N2 = 30 × 20 torus as a function of the two-flux separation d along the n1 direction
computed with (a) κ = 0 and (b) κ = 0.05. The plot shows the 40 lowest energy bands. The lowest-energy fermionic band is associated with
the Majorana zero modes bound to the flux pair, with the corresponding energy ε0(d ) shown by the red line. In both cases ε0(d ) displays
decaying oscillations as a function of d . For κ = 0.05 the rest of the fermionic modes are almost independent of d for d > 1; for κ = 0 all
modes exhibit d dependence.

of the Majorana zero modes, which determines ε0(d ). On
the other hand at κ = 0 [see Fig. 16(a)], the entire fermionic
spectrum varies with the two-flux separation d , and we can no
longer study Vint(d ) merely by examining ε0(d ). Moreover at
κ = 0 the expression (38) no longer holds in the thermody-
namic limit, where the bulk fermion gap �bulk = 0, and ξ is
infinite. In this case we expect a power-law decay to replace
the exponential envelope; for finite-size systems, we expect ξ

to be on the order of the system size. This is apparent if we
compare Figs. 16(a) and 16(b), which show a clear contrast
in the length scale over which ε0(d ) falls off. Thus Vint(d )
is effectively long ranged for κ = 0 but short ranged (for
sufficiently large system sizes) when κ > 0.

To demonstrate the evolution of the two-flux interaction
with increasing κ , Fig. 17 shows spatial maps of Vint(d ) on
a 30 × 20 torus for κ ranging from 0 [panel (a)] to 1 [panel
(f)]. For κ = 0, where the coherence length ξ is compara-
ble to the system size, we see appreciable interactions on
virtually all plaquettes in the system. Moreover, they can be
either attractive (negative) or repulsive (positive), depending
on the relative positions of the two plaquettes. In addition,
at the system sizes studied here, the spatial pattern of flux
interactions depends strongly on the topological sector. This
is clearly seen in Fig. 18, which shows the two-flux inter-
action maps for the four topological sectors. Here fixing the
topological sector effectively determines which of the possible
configurations of bonds with ûi j = −1 connect our flux pair
(see Appendix C for our conventions); these differences lead
to a significant anisotropy in the pattern of spatial interactions,
as seen in Fig. 18. As a consequence, on finite-size tori a fixed
flux configuration corresponds to multiple distinct energies,
depending on the underlying topological sector; this is respon-
sible for a significant fraction of the variance in the energy at a
given flux sector observed in Fig. 10(a). We emphasize that the
anisotropy in the pattern of spatial interactions seen in Fig. 18
is due to finite-size effects: Choosing a different topological
sector in the n1 or n2 direction corresponds to interchanging
periodic and antiperiodic boundary conditions in n1 or n2,
respectively, for the itinerant fermions. On small tori, where
the fermion momenta are discrete, such changes in boundary
conditions can lead to significant changes in the energy. In the

thermodynamic limit, however, these differences vanish with
the inverse system size, and the four topological sectors are
energetically degenerate. This highlights the fact that finite-
size effects due to these topological sectors are present in all
of the system sizes shown in Fig. 10(b).

When κ increases, the coherence length ξ decreases, and
already for κ = 0.05, we see that ξ is less than the maxi-
mal separation between fluxes on the 30 × 20 lattice shown
in Fig. 17. Consequently, the anisotropy corresponding to
different topological sectors for κ = 0 is no longer present,
indicating that the impact of finite-size effects on flux ener-
getics is already small for this system size.

Figure 17 also shows how the two-flux interaction depends
on the strength of κ . For κ up to 0.2, we see that ξ decreases
with increasing κ , as anticipated above. For larger values of
κ [see Figs. 17(d)–17(f)], however, we can see an interesting
transition. As was discussed in Ref. [68], for κ � 0.2, the
coherence length ξ is on the order of a single plaquette and
cannot decrease further with increasing κ; this corresponds to
the point at which the perturbative treatment used to obtain
ξ ∼ �−1

bulk is no longer valid. Instead, by κ ∼ 0.5, we find that
the coherence length has begun to increase with κ , with a flux
interaction pattern that is qualitatively different from the one
at small κ .

We now connect our findings about the pairwise flux inter-
actions to the character of the flux energetics when the flux
density is finite. For κ = 0 the interactions are longer ranged
and hence stronger in magnitude on average than for finite κ;
however from Fig. 18 we see that they can be either attractive
or repulsive, depending on the relative positions of the two
plaquettes. Thus, we do not see a higher curvature for our flux
PPE (which averages over all positions) for κ = 0 than for
κ = 0.1, 0.2 shown in Fig. 14. As noted above, somewhere
between κ = 0.2 and κ = 0.5 the coherence length begins
to increase with κ . Since interactions in this regime are uni-
formly attractive, this leads to an increase in curvature of the
flux PPE, at least at low flux densities. However this does not
carry over to high flux density: Near nφ = 1 the flux PPE for
κ = 0.5 shows the lowest curvature of any of our PPE curves
and is relatively close to the straight line expected for non-
interacting fluxes. This indicates that the two-flux interaction
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FIG. 17. The two-flux interaction map on a 30 × 20 torus for various values of κ: (a) κ = 0, (b) κ = 0.05, (c) κ = 0.1, (d) κ = 0.2,
(e) κ = 0.5, (f) κ = 1. Eφ,2(∞) is taken as the energy where separation of the two fluxes is 15 plaquettes.

FIG. 18. The two-flux interaction map on a 30 × 20 lattice for the four topological sectors at κ = 0 obtained by: (a) is generated by taking
bonds along the path described in Fig. 19 to be −1, with all other bonds equal to +1. Bonds in (b) and (c) are obtained from bonds in (a) by
flipping the z bonds along a loop in the n1 direction, and the y bonds along a loop in the n2 direction, respectively. In (d) we have flipped the
appropriate bonds along both n1 and n2 directions. Eφ,2(∞) is taken as the energy where separation of the two fluxes is 15 plaquettes.

224402-20



FURTHER INSIGHTS INTO THE THERMODYNAMICS … PHYSICAL REVIEW B 102, 224402 (2020)

does not fully capture the flux energetics at high densities. In
contrast, for κ = 1 we observe substantial curvature, both at
low flux densities [in agreement with the longer coherence
length observed in Fig. 17(f)] and at high flux densities. This
is consistent with the 2-flux interaction map, which indicates
significantly longer ranged, predominantly attractive interac-
tions at this value of κ .

VIII. SUMMARY

In this work, we address the question of whether the
physics characteristic of the boundary of the Kitaev honey-
comb spin liquid has observable thermodynamic signatures.
We consider two aspects of this question: First, in the ultralow
temperature regime, we consider possible thermodynamic sig-
natures of the gapless boundary fermion modes associated
with the topological Majorana band structure. Second, at
temperatures on the order of the bulk flux gap, we study
the impact of boundary conditions, as well as time-reversal
symmetry breaking, on flux energetics of the Kitaev model,
and discuss the resulting quantitative impact on the specific
heat.

We find that in realistic experiments on currently avail-
able sample sizes, the topological boundary flat band cannot
be seen in the specific heat; rather, it can only be detected
indirectly through a contribution to the residual entropy. Be-
cause the boundary flat band is topological in nature, this
residual entropy is a robust feature of the gapless spin liq-
uid phase—though at the Kitaev point, there is an additional
contribution due to boundary operators that commute with the
Kitaev Hamiltonian. The chiral edge modes that arise in the
presence of time-reversal symmetry breaking, on the other
hand, are in principle observable in the specific heat, though
the temperature scale for this is set by the parameter κ . In most
experiments this term would be generated by a magnetic field,
which must be small compared to the flux gap in order for our
analysis to be valid. We note that though in the pure Kitaev
model the temperature scale of the flux gap is �φ ∼ 15 K
for J ∼ 100 K, in real materials we expect this value to be
smaller.

We also find that boundary conditions have a significant
impact on flux excitations in the Kitaev model. We quantify
this impact on both cylinder and torus geometries by using
a polynomial fit (the PPE) for the average flux energy as
a function of flux density. We show that a single universal
curve provides a good fit for tori of various sizes and aspect
ratios for both the time-reversal symmetric and time-reversal
broken cases. On the cylinder the best fit depends on both
the density of fluxes in the bulk and on the edges and can
be described by a single universal surface. Finally, we use
these universal best fits to compute the flux contribution to the
low-temperature specific heat in the thermodynamic limit and
show that these agree well with the specific heat obtained in
Monte Carlo simulations at finite system sizes. We show that
the flux interactions captured by the PPE models have impor-
tant quantitative fingerprints on the shapes and positions of the
low-temperature peaks in the specific heat computed in differ-
ent geometries. In particular, in the cylinder, the lower average
energy of fluxes near the boundary leads to a broadening of the
specific heat peak. Finally, we analyze how a nonzero value of

the time-reversal symmetry breaking strength κ tunes the flux
energetics and thus affects the specific heat, finding that the
flux energetics are qualitatively different between large and
small values of κ .
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APPENDIX A: MAJORANA FERMION SPECTRUM
IN A GIVEN FLUX SECTOR

Within a given flux sector, the ûi j operators in the Hamilto-
nian (2) are replaced by the corresponding eigenvalues ui j ,
so the Hamiltonian (2) becomes quadratic in the Majorana
fermion operators. Exploiting the bipartite nature of the hon-
eycomb lattice, and noting that each unit cell l has two sites
rA,l and rB,l in the two sublattices A and B, the Hamiltonian
(2) can be written as

H =
∑
〈l,l ′〉

iMll ′cA,l cB,l ′ +
∑
〈〈l,l ′〉〉

iM̃ll ′ (cA,l cA,l ′ + cB,l cB,l ′ ),

(A1)

where the first term describes the nearest neighbor hopping of
the Majorana fermions with Mll ′ = −JαuAB,ll ′ if rA,l and rB,l ′

are connected by α bond and Mll ′ = 0 otherwise. The second
term describes the second neighbor hopping between two sites
of the A (or B) sublattice with M̃ll ′ = −κuAB,ll ′′uAB,l ′l ′′ . Using
the singular-value decomposition M = U · � · V T , the result-
ing free-fermion Hamiltonian can be written in the canonical
form as

H =
∑

n

εn(ψ†
n ψn − 1/2), (A2)

where the fermions ψn = (γA,n + iγB,n)/2 are expressed in
terms of Majorana fermions γA,n = ∑

l UlncA,l and γB,n =∑
l VlncB,l on sublattices A and B, respectively, and εn = 2�nn

are their energies. Since M is a real matrix, U and V are
real orthogonal matrices, while � is a diagonal matrix with
non-negative (real) entries.

APPENDIX B: STATISTICAL MECHANICS
OF THE KITAEV MODEL

Here we briefly outline the distinctive aspects of the ther-
modynamics of the Kitaev model [5,24,37]. Given the exact
solution of the model [1], both Z2 fluxes and fermionic frac-
tional excitations contribute to the thermodynamic behavior
of the system. In a given flux configuration, φp, with a given
fermionic occupation number configuration, {ni}, the corre-
sponding energy of the system is

∑
i εi,φp (ni − 1

2 ), where the
fermionic energy levels εi,φp are obtained by diagonalizing the
Majorana fermion Hamiltonian in a given flux configuration
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φp (see details in Appendix A). The energy of the lowest-
energy state in a given flux configuration,

E (0)
φp

≡ −1

2

∑
i

εi,φp, (B1)

which corresponds to all unoccupied fermionic states, is now
associated with the energy of a corresponding flux sector.

The partition function of the system is given by:

Z =
∑
φp,ni

e−β
∑

i εi,φp (ni− 1
2 ) =

∑
φp

Zφp, (B2)

with

Zφp = e−βE (0)
φp

∏
i

(1 + e−βεi,φp ), (B3)

where we denote β = 1/T . The expectation value of the total
energy at a given temperature is then given by

〈E〉 = 1

Z

∑
φp,ni

∑
i

εi,φp

(
ni − 1

2

)
e−β

∑
i εi,φp (ni− 1

2 )

= 1

Z

∑
φp

EφpZφp, (B4)

where Eφp = ∑
i εi,φpnF (βεi,φp ) + E (0)

φp
and nF (βεi,φp ) =

1/(eβεi,φp + 1) is the Fermi-Dirac distribution function. The
specific heat of the Kitaev model is thus given by:

C = d〈E〉
dT

= − 1

T 2

∑
φp

(
Eφp

∂
(
Zφp

/
Z
)

∂β
+ Zφ

Z

∂Eφp

∂β

)

= 1

T 2

(〈
E2

φp

〉 − 〈
Eφp

〉2 −
〈
∂Eφp

∂β

〉)
, (B5)

where we have simplified the first term in the second line via:

1

Z

∑
φp

Eφp

∂Zφp

∂β
− 1

Z2

∂Z

∂β

∑
φp

EφpZφp (B6)

=− 1

Z

∑
φp

E2
φp

Zφp +
〈
Eφp

〉 1

Z

∑
φp

EφpZφp (B7)

= −〈
E2

φp

〉 + 〈
Eφp

〉2
, (B8)

i.e., it is simply the variance of the fermionic energy.

APPENDIX C: MONTE CARLO METHOD
FOR THE FLUX-FERMION MODEL

In this Appendix, we discuss details of the implementa-
tion of the MC algorithm [36], which has been used for the
computation of the specific heat of the flux-fermion model
(B5). The basic idea of this MC algorithm is that we can
perform sampling over flux configurations {φp} classically by
exploiting the fact that the energy of each flux configuration,
E (0)

φp
, can be computed exactly by diagonalizing the quadratic

Majorana Hamiltonian (A2). From Eqs. (B2) and (B3), the

(a) (b)

FIG. 19. Gauge choice used to generate a given flux configura-
tion on (a) torus and (b) cylinder in our MC algorithm. The red bonds
correspond to ui j = −1. The fluxes are located on the red plaquettes.

probability distribution function for fluxes is defined as

p(φp) = Zφp

Z
= 1

Z
e−βE (0)

φp

∏
i

(1 + e−βεi ). (C1)

In practice, to implement a given flux configuration φp, we
must choose one of the many possible bond configurations
{ui j} that lead to fluxes on the desired plaquettes. Figure 19
shows the convention that we use for our MC simulations.
On a torus lattice, a pair of fluxes is generated as follows. (i)
Choose a pair of plaquettes, which are separated by an1 +
bn2. (ii) Choose a path on the dual lattice that connects these
two plaquettes by first crossing a bonds in the +n1 direction,
and then b bonds in the +n2 direction, and flip the sign of
ui j on all bonds that this path crosses. The same convention
can be used to move a flux between two plaquettes. To create
a more general flux configuration, steps (i) and (ii) can be
repeated. On a cylinder lattice, we can create a single flux on
the plaquette p by choosing a path along the +n2 direction
connecting p to the lower boundary of the cylinder and flip-
ping the sign of ui j on all of the bonds crossed by this path.
Flux annihilation is carried out using the same conventions.
On the cylinder, we move a flux from plaquette p to plaquette
p′ by annihilating the flux on plaquette p and creating a new
flux on p′.

All the simulations for the specific heat reported in the
main text were done in the following way. The simulations
were performed on finite-size lattices with spanning vectors
(R1, R2) = (N1n1, N2n2) with either periodic boundary con-
ditions, which we refer to as torus lattices, or with open
boundary conditions in the n2 direction and periodic boundary
conditions in the n1 direction, which we refer to as cylinder
lattices. We initially perform 1000 MC steps for thermaliza-
tion and then 100 000 steps for measurement on a lattice of up
to 2 × 24 × 6 = 288 sites.

Three kinds of MC moves are implemented: (1) Randomly
shuffle all the fluxes while keeping the total flux number fixed.
(2) Count the current total flux number, change the total flux
number by two, and then randomly place the updated number
of fluxes on the plaquettes. (3) Flip all the bonds crossed by a
path encircling the system in (one of) the periodic directions,
which will change the topological sector while keeping the
flux configuration fixed. The transition (or acceptance) proba-
bility, satisfying the detailed balance condition, is then defined
as

T (x → y) = min

(
1,

p(y)n(y)

p(x)n(x)

)
, (C2)
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FIG. 20. The autocorrelation as a function of the number of MC
steps on an N1 × N2 = 16 × 16 torus lattice, at the temperature of
10−1.3. This is approximately the temperature of the low-temperature
peak in the specific heat shown in Fig. 7.

where x represents a certain flux configuration {φp} and n(x) is
the number of the candidate flux configurations in a proposal
(see Ref. [75] for details). Since these MC moves are all
global, our algorithm does not struggle with local minima,
and we find good convergence without requiring parallel tem-
pering. In order to demonstrate the quality of convergence,
in Fig. 20 we plot the autocorrelation function of our MC
algorithm for N1 × N2 = 16 × 16 torus lattice at temperature
equal to 10−1.3 ≈ 0.05, a typical temperature near the low-
temperature peak of specific heat. (We have found that this
is the temperature regime where MC convergence is most
difficult). The autocorrelation function reaches zero in around
200 MC update steps, indicating that our MC moves lead to
thermalization on a relatively rapid timescale.

A note of caution is in order here. For lattices with peri-
odic boundaries, there is a parity constraint [76] on the total
fermion parity

∏
i(−1)ni . Specifically, for a given lattice shape

with fixed boundary conditions and gauge field (bond opera-
tor) configurations, we find that the physical states have fixed
fermion parity; states in the flux-fermion model with opposite
fermion parity are unphysical, in the sense that they do not
correspond to states in the spin Hilbert space [65]. In the
thermodynamic limit, this constraint has little relevance for
the model’s spectrum and hence its thermodynamics; however
it can lead to substantial finite-size corrections to the energy
spectrum, which in turn can be relevant for thermodynamic
quantities such as the specific heat.

One way to circumvent the parity constraint is to remove
a single bond from the lattice [36]. Exactly as for the open
cylinder boundary discussed in the main text, this creates a
pair of dangling Majorana fermions and a corresponding zero-
energy state. This ensures that for every state with odd fermion
parity, there is a state of identical energy with even fermion
parity; in this case we do not need to know which of the
two states is physical to compute thermodynamic quantities
exactly. (We do, however, need to account for the impact of
this zero mode on the entropy S∞.) Though the numerical
results shown here are evaluated with all bonds present in
the lattice, we have checked that the differences caused by
removing the single bond are within the statistical error of our
Monte Carlo simulations.
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FIG. 21. The reciprocal lattices that correspond to two real-space
lattice sizes: (a) L = 3, (b) L = 6, where N1 = N2 = L. The dashed
honeycomb is the Brillouin zone. The two red points K , K ′ are the
two nonequivalent Dirac points. This shows that only when L = 3k
do the Dirac points sit on the sites of reciprocal lattice.

APPENDIX D: EXTRAPOLATING THE FLUX GAP
ENERGY TO THERMODYNAMIC LIMIT

As we discussed in Sec. V A of the main text, when ex-
trapolating the flux gap energy to infinitely large lattice size,
generally the energies display period-3 oscillatory finite-size
behavior [1]. In order to understand this behavior, we consider
the flux-free sector, where the 2D reciprocal space is well
defined. Figure 21 shows the reciprocal lattices corresponding
to two real-space lattice sizes: L = 3 and L = 6. We see that
for L = 3k the two Dirac points K , K ′ can sit on reciprocal
lattice sites, while for L = 3k + 1 and L = 3k + 2, the Dirac
point is off the reciprocal lattice by a distance of order 1/L.
This difference in the fermionic spectrum {εi} leads to a dif-
ferent series of flux gaps E (0)

φp
for L = 3k, 3k + 1, and 3k + 2,

respectively.

APPENDIX E: THE BEST-FIT FLUX PPE POLYNOMIALS
FOR DIFFERENT κ ON THE N1 × N2 = 16 × 16 torus

The equation of the best-fit polynomials E (nφ ) for various
κ shown in Fig. 14 are:

κ = 0.0, E (nφ ) = −0.309n6
φ + 0.814n5

φ − 0.859n4
φ

+ 0.456n3
φ − 0.176n2

φ + 0.141nφ

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

0.6

FIG. 22. The dependence of the flux gap �φ on κ .
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FIG. 23. Error estimates for specific heat curves from flux PPE fits. (a) One random sample drawn from the data, shown together with
the corresponding flux PPE curve. (b) An ensemble of 10 selected flux PPE curves generated from these random samples. (c)–(f) Plots of
the corresponding specific heat, calculated using Eq. (33). We see that very small variations in the flux PPE correspond to relatively large
variations in the precise shape of the specific heat peak.

κ = 0.1, E (nφ ) = −0.024n5
φ − 0.115n4

φ

+ 0.286n3
φ − 0.282n2

φ + 0.232nφ

κ = 0.2, E (nφ ) = −0.055n5
φ − 0.075n4

φ

+ 0.270n3
φ − 0.316n2

φ + 0.330nφ

κ = 0.5, E (nφ ) = 0.239n5
φ − 0.652n4

φ

+ 0.679n3
φ − 0.403n2

φ + 0.489nφ

κ = 1.0, E (nφ ) = −0.157n5
φ − 0.062n4

φ

+ 0.348n3
φ − 0.536n2

φ + 0.566nφ.

(E1)

We find that while sixth-order polynomials give the best fit to
C for κ = 0, for nonzero kappa a better fit is achieved with
fifth-order polynomials. We note, however, that it is difficult
to distinguish the fifth- and sixth-order fits based on residual

errors, which are comparable in both cases. This reflects the
extreme sensitivity of C to the details of the PPE curve used.
The dependence of the flux gap �φ computed by the first
derivatives of the PPE polynomials on the strength of κ is
shown in Fig. 22.

APPENDIX F: THE COMPUTATION OF THE ERROR
BARS FOR PPE CURVES

To obtain the error estimates in Figs. 12, 13, and 15, we
generate 60 PPE-like curves by randomly sampling from the
data used to generate the initial PPE curve, choosing one value
of the energy density for each value of the flux density. For
each set of data, we generate a PPE curve using the best-fit
polynomial obtained from the mean of the data. Then, from
each such PPE curve, we generate a specific heat curve using
Eq. (33) [or, for cylinder lattices, Eq. (37)]. The error bars
at each point show one standard deviation of the resulting
curves. Some results are shown in Fig. 23.
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