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Revealing divergent length scales using quantum Fisher information in the Kitaev honeycomb model
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We compute the quantum Fisher information (QFI) associated with two different local operators in the ground
state of the Kitaev honeycomb model, and find divergent behavior in the second derivatives of these quantities
with respect to the driving parameter at the quantum phase transition between the gapped and gapless phases
for both fully antiferromagnetic and fully ferromagnetic exchange couplings, thus demonstrating that the second
derivative a locally defined, experimentally accessible, QFI can detect topological quantum phase transitions.
The QFI associated with a local magnetization operator behaves differently from that associated with a local
bond operator depending on whether the critical point is approached from the gapped or gapless side. We show
how the behavior of the second derivative of the QFI at the critical point can be understood in terms of the
diverging length scales associated to the two and four point correlators of the Majorana degrees of freedom. We
present critical exponents associated with the divergences of these length scales.
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I. INTRODUCTION

A. Overview

The quantum Fisher information (QFI) F arises naturally
in quantum metrology [1–6]. Given a general state ρ(θ ) where
θ is some parameter, the QFI bounds the precision with
which θ may be extracted in anyM measurements through the
Cramér-Rao bound, Varρ̂ (θi ) � 1/

√
MF . In other words, the

QFI quantifies the extent to which a parameterized state ρ(θ )
may be distinguished from a neighboring state ρ(θ + dθ ). By
quantifying the distinguishability of neighboring states, the
QFI furnishes a natural notion of distance on the Hilbert space,
with more easily distinguishable states separated by a greater
distance. Formally, the QFI quantifies the local change in
the Bures distance under the aforementioned parameterization
[7–10]. This geometrical interpretation of the QFI expands
its scope of application to probing the physics of condensed
matter phases and phase transitions [11–17]. The QFI also
exhibits interesting behavior during a quantum quench in spin
chain systems [18]. In fact, a special case of the QFI is already
ubiquitous in theoretical studies of condensed matter systems.
The fidelity susceptibility (FS) [19] is directly proportional to
the QFI [20] for an appropriate parameterization. In particular,
one often considers parametrizations that have been generated
unitarily (though this is not the only choice) by a Hermitian
operator Ô according to ρ(θ ) = eiθÔρe−iθÔ and we will re-
strict ourselves to this case here. The operator Ô is usually
expressed as a sum over suboperators Ôα ,

Ô =
∑

r

Ôαr
r . (1)
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A local operator is one for which all Ôαr
r depend on a con-

tiguous sublattice that is small relative to the total lattice.
One may also consider nonlocal parametrizations, such as the
string operators considered in Ref. [21]. Nonlocal parameter-
izations reveal remarkable behavior in topological phases as
demonstrated in Ref. [21], where a characteristic, superex-
tensive scaling of the nonlocal QFI is demonstrated in the
topologically nontrivial phases of the Kitaev wire.

In a many-body state containing N degrees of freedom, the
QFI density F = F/N quantifies the degree of multipartite
entanglement when the state ρ is projected into the eigen-
basis of the operator Ô that generates the parametrization.
For F > m where m|N , we say the state is (m + 1) partite
entangled [4,22,23]. Specifically, for the case of pure states
ψ and unitary parametrizations, the QFI is proportional to the
variance of the generator [7]

F = 4Varψ (Ô). (2)

While one could perform an interesting study looking only at
the variances, we prefer to work within the context of the QFI
because it continues to be well defined at finite temperature.
This link allows the critical properties of the ground state to
be inferred from the thermal scaling of the QFI [12,24]. While
we do not consider finite temperature behavior in this study,
the connection offers a path forward for future work. Recently,
it was shown that the QFI can be detected experimentally in
inelastic scattering measurements [12]. Thus working within
the context of the a locally defined QFI also allows for con-
nection with experiment. This contributes to a growing body
of research on experimental approaches to extract multipartite
entanglement [25–27]. We emphasize that we do not detect
genuine multipartite entanglement in this study, but mention
the connection for completeness.

Given that the QFI is defined at finite temperature and
that the zero temperature QFI is proportional to the variance,
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one might ask, what is the generalization of the notion of
variance to the finite temperature case? By imagining that
the variance of an observable contains a quantum contribution
and a thermal contribution, quantum variances (QV) may be
defined which are proportional to an upper and lower bounds
of the QFI [28]. The QFI at zero temperature can be viewed
as the zero-temperature limit of the quantum contribution
to the variance (the thermal contribution being zero at zero
temperature).

The QFI has now been studied in a wide range of models
[12–16]. Of particular interest for our purposes is the work
done on the Kitaev wire in Ref. [21], where the first derivative
of the QFI associated with a local generator was shown to
exhibit a divergence at the topological phase transition of that
model, and where the topologically nontrivial phase exhibits
superextensive scaling of the QFI associated with a nonlocal
generator.

Quantum spin liquids (QSL) are characterized by a lack of
any form of long-range magnetic order down to zero temper-
ature [29]. Such phases are thought to exhibit instead subtle
forms of quantum ordering, along with topologically non-
trivial anyonic excitations [30]. In so far as these phases are
characterized by a lack of order, their detection in experiment
presents a substantial challenge. In this work we examine the
behavior of the QFI in the Kitaev honeycomb model (KHM)
[31], which presents two spin liquid phases (one gapped and
one gapless), induced by exchange coupling anisotropy.

The KHM has been studied from an information theoretic
perspective before, with studies examining the Jensen-
Shannon divergence [32] and the mutual information [33].
Of particular interest is the Fidelity susceptibility, which was
studied in Ref. [17] and the study of the Bures distance in
Ref. [34]. In the case of an n parameter estimation scenario (or
an n-dimensional unitary parametrization), the Bures distance
is locally equivalent to the QFI Matrix which is a Riemannian
metric on the Hilbert space [7]. The Fidelity susceptibility
is recovered by examining the particular parametrization of
the Hilbert space corresponding to the driving operator of the
phase transition. The physics of the KHM have also been
studied using SU(2) parton approaches [35]. Details of the
dynamical response of the model in the presence of magnetic
fields may be found in Ref. [36].

For the remainder of this section we introduce the KHM
and explain its key features. In Sec. II we discuss the relation-
ship between the scaling of the second derivative of the QFI
density (hereafter called the QFI susceptibility) ∂2

u F , where u
drives the phase transition and the correlation functions of the
generator. In Sec. III we analyze the behavior of these quanti-
ties for the magnetization operator

∑
j Sα

j (where j represents
both a unit cell position and sublattice index), in Sec. III A and
the bond

∑
r Sα

r,ASα
r,B, where r indicates a unit cell in Sec. III B.

Finally, we conclude our discussion in Sec. IV, where we
discuss the relevance of this work to studies of the geometric
phase.

B. Kitaev honeycomb model

The Kitaev honeycomb model (KHM) is given by

H =
∑
〈 j,k〉

Kγ j,k S
γ j,k

j S
γ j,k

k , (3)

where the sum is over nearest-neighbor bonds and γ ∈
{x, y, z} denotes a bond-dependent Ising exchange. If the ex-
change couplings are sufficiently isotropic (|Kγ | � |Kα| +
|Kβ |, for all choices of α, β, γ ∈ {x, y, z}), the spectrum is
gapless. In the regime where one exchange coupling is dom-
inant (the opposite inequality), the model is gapped. This
phase transition between two topologically different spin liq-
uid phases presents no local order parameter. It is instead
associated with a subtle kind of symmetry breaking to do
with the structure of the gauge fields themselves [31]. On
the gapped side of the transition, the model is mapped onto
the lattice gauge Ising model [37], with alternative rows of
hexagon plaquettes becoming associated with one of the two
excitations in that model (conventionally called e and m ex-
citations). In both phases, the spin-spin correlation functions
are identically zero beyond nearest neighbor. The model also
possesses an extensive number of conserved charges defined
by the plaquette operators.

Remarkably, the KHM is analytically solvable [31]. By
mapping each spin operator into the space of four Majorana
fermions {c, bx, by, bz} via

Sγ

j = 1
4 ic jb

γ

j ,

an extensive number of conserved charges can be constructed,
given by u j,k = ib

γ j,k

j b
γ j,k

k . These operators take eigenvalues
±1. Using the above mapping, the KHM becomes

H = i

4

∑
jk

Kγ j,k u jkc jck . (4)

Since the u j,k commute with the Hamiltonian, we may fix
a particular configuration of eigenvalues on each bond, and
the problem is reduced to free Majoranas hopping in the
gauge fields. The lowest-energy configuration will be the flux
free configuration, as follows from Lieb’s theorem [38]. We
therefore choose to work in the configuration where all ui, j

have eigenvalue +1 (hereafter referred to as the standard
gauge). Once we fix a gauge configuration, the model is a
simple hopping Hamiltonian, which may be diagonalized by
Fourier transforming and then performing a Bogoliubov rota-
tion, where the mixing angle is defined implicitly via

tan(2θq) = εq


q
, (5)

where

εq = Kα cos(qx ) + Kβ cos(qy) + Kγ , (6a)


q = Kα sin(qy) + Kβ sin(qy), (6b)

where α, β, γ ∈ {x, y, z} depending on the choice of which
bond acts as the unit cell. Here qx = a · q and qy = a · q
where a1 and a2 are any choice of translation vectors on the
principle lattice and q = n

Lx
b1 + m

Ly
b2, with Lx and Ly the side

length of the lattice, is a general vector in the reciprocal space.
We note that the true, physical ground state, must be the

symmetrized product over all physically equivalent choices of
the gauge fields (i.e., all choice of the gauge fields resulting
in zero flux). Following arguments described in Ref. [39], the
operators we consider are not dependent on projection into the
physical subspace at large system sizes. Details of the solution
to the Kitaev model are provided in Appendix B1.
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II. QFI SUSCEPTIBILITY AND DIVERGING
LENGTH SCALES

To interpret the divergences at the critical point, consider
a generator, Ô = ∑

r Ôr where the generators are given by
a sum over local products of spins Ŝr = ∏

j∈�r
S

α j

r+� j
, where

�r is some local, contiguous sublattice. The associated QFI
density in a pure state is given by

F {Ô} = 1

N

∑
r1,r2

〈
Sr1Sr2

〉 − 〈
Sr1

〉〈
Sr2

〉
. (7)

Through Kitaev’s mapping, we may decompose our spin
blocks into a component operating on the flux sector Br =∏

j∈�r
b

α j

r+� j
and a component operating on the matter sector

Cr = ∏
j∈�r

cr+� j ,

F {Ô} = 1

N

∑
r1,r2

〈
Br1Br2

〉〈
Cr1Cr2

〉 − 〈
Br1

〉〈
Br2

〉〈
Cr1

〉〈
Cr2

〉
. (8)

Now there are three possible values for the flux sector ex-
pectation values. If Br is diagonal in the gauge sector, then
the contribution from the gauge sector factorizes and gives
an overall prefactor of ±1. If Br is strictly off-diagonal, but
Br1Br2 has diagonal entries, then the situation is the same.
Finally, it may be the case that Br1Br2 has nonzero diagonal
elements only for certain separations. Regardless of which
scenario is realized, the contribution to the QFI from the
flux sector will be independent of u since the gauge fields
commute at all points in the phase diagram. The QFI is then
given by a sum over the correlation functions in the matter
sector Majorana fermions with some prefactor (which might
be ±1 or 0 as a function of the separation), determined by the
situation above. We adopt the standard ansatz for the matter
sector correlations〈

Cr1Cr2

〉 = (r, u)r−ae− r
ξ (u) , (9)

where a is determined by the phase and does not depend
explicitly on u, and ξ (u) is a length scale associated with
correlations between the Majorana operators which depends
on the position in the phase diagram.

Taking the assumption that, near the critical point,

ξ (u) ∼ |u − uc|−ν (10)

one can show that the second derivative of the QFI density
must diverge at the critical point like

∂2
u F {Ô} ∼ |u − uc|ν−2. (11)

Therefore 
Ô = ν − 2. The QFI and, by extension, the QFI
susceptibility, are, in principle, experimentally accessible
probes. In particular for the case of local generator such as
the total magnetization operator. The QFI can there be used
to extract experimentally the scaling of the correlation length
associated with the matter sector of the KHM. This analysis
is similar to the analysis performed in the supplementary
materials of [12], where the authors examined the effects of
coarse-graining transformation on the QFI to arrive a scaling
hypothesis for the near field and finite temperature regimes.

In practice, experimentally relevant models will not be
amenable to the above treatment, as the KHM acquires ad-
ditional terms in real materials that break the integrability of

Kitaev’s original solution (e.g., Heisenberg terms and sym-
metric off-diagonal terms) [40]. In these cases the analysis
may instead be applied to the correlation length of the spin
degrees of freedom directly, and divergences in the QFI sus-
ceptibility may still be linked to the critical exponent for the
divergence of a correlation length.

III. QFI SUSCEPTIBILITY FOR MAGNETIZATION
AND BOND OPERATORS

Motivated by the results of the authors of Ref. [21], we
compute the QFI associated with two local operators and
examine the second derivatives of those operators with respect
to the driving parameter of the phases transition. In both cases
the second derivative of the QFI is found to diverge. We term
this the QFI susceptibility.

Throughout this section we consider a path through the
space of exchange couplings parameterized by u,

Kz = 1 + u, (12a)

Kx = 1, (12b)

Ky = 1. (12c)

For this parametrization, uc = 1 represents the critical point
between the gapless phase (u < 1) and the gapped phase
(u > 1). The ground state of the KHM is a function of u and is
hereafter denoted as ψ0(u). We consider the case of fully fer-
romagnetic and fully antiferromagnetic exchange couplings
for both parametrizations (in which case Kγ → −Kγ ). Un-
less otherwise noted, calculations are carried out for Lx =
Ly = 104 with periodic boundary conditions in a rhombic
geometry.

A. Magnetization operator

First we examine the QFI in the Kitaev honeycomb as
generated by the magnetization operator

Ôα
M =

∑
r

(
Sα

r,A + Sα
r,B

)
, (13)

here α ∈ {x, y, z}, r denotes a unit cell in the two site basis, and
A, B denotes the sublattice. The corresponding QFI is given by

FM,α (u) ≡ F
{
Ôα

M ; ψ0(u)
} = 4Varψ0

(
Oα

M

)
(14)

= 1 − 1

N

∑
q

cos(2θq) (15)

with ψ0(u) defined at the start of this section.
Figure 1 shows this quantity plotted along the path defined

by Eq. (12c) for the fully antiferromagnetic [Fig. 1(a)] and
ferromagnetic [Fig. 1(b)] cases, respectively. In the AFM case
the ground state possesses FM,α > 1 for each spin component.
This is indicative of at least bipartite entanglement. In a pure
state any nonzero QFI is indicative of the presence of quantum
correlations. Nonetheless, the QFI in the fully ferromagnetic
case is insufficient to witness even bipartite entanglement,
indicating that quantum correlations are reduced for the FM
coupling.

The absolute values of the derivatives of FM,α will be
the same in the AFM and FM cases. This can be seen by
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FIG. 1. QFI for Magnetization operator with fully (a) antiferro
and (b) ferro magnetic exchange couplings. The red vertical line
marks the critical value of u. Results are for Lx = Ly = 104 with a
u spacing of ∼10−3.

considering the fact that the functional dependence of FM,α on
the driving parameter u enters through the nearest-neighbor
correlation functions, which are the same in both cases up to
a negative sign.

The first and second derivatives of the QFI are given in
Fig. 2. We observe that the QFI susceptibility associated with
the magnetization operator exhibits a power-law divergence

FIG. 2. (a) First and (b) second derivatives of the QFI generated
by the magnetization operator. The results are the same in both the
ferro and antiferro magnetic cases. Results for Lx = Ly = 104 with
a u spacing ∼10−3. The red line denotes the position of the critical
point.

FIG. 3. Log-log plot of the second derivative of the QFI with
respect to the magnetization operator and the distance to the critical
point from the gapped side (u > 1). Results for Lx = Ly = 104 with a
linear 
u ∼ 10−5. The purple and blue curves correspond to system
sizes Lx = Ly = 103 and Lx = Ly = 102, respectively, and demon-
strate that the plateau is a finite-size effect. This regime appears to be
valid for approximately the interval 10−1.7 > u > 10−3.0.

when approaching the critical point from the gapped side.
When approaching the critical point from the gapless side the
transition appears first order. The behavior of the transition
from the gapped side can be understood in light of the analysis
in Sec. II. Using the scaling hypothesis

∂2
u FM,α (u) ∼ |u − uc|
M,α , (16)

we extract the following critical exponents for the second
derivative of the QFI for each spin component of the mag-
netization operator


M,x = 
M,y ≈ −0.52(1), (17a)


M,z ≈ −0.50(1), (17b)

and can be seen in Fig. 3 over a region from 10−1.7 > u >

10−3.0. At this point finite, finite-size effects enter, and the
scaling ansatz is no longer valid. This leads to plateaus in the
QFI susceptibility which occur closer to the critical point for
larger system sizes as seen from the data in Figs. 3 and 5.

B. Bond correlation operator

We now turn to the QFI as parameterized by the bond
correlation operator

Ôα
B =

∑
r

Sα
r,ASα

r,B, (18)

with the corresponding QFI density given by

FB,α = 1

2N

∑
q

sin2(2θq). (19)

In this case the AFM and FM cases are identical. We repeat
the same analysis as for the magnetization operator as shown
in Figs. 4 and 5. The QFI associated with the bond operator
along the x and y components converges to a constant value
immediately following the phase transition, while the QFI
associated with the z component bond operator falls towards
zero. This behavior can be understood by the fact that the
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FIG. 4. QFI associated with the (a) bond correlation operator
with (b) first and (c) second derivatives. The critical point is marked
with a solid vertical red line. The second derivatives diverge, this
time approaching the critical point from the left (the gapless phase).

Hamiltonian in the gapped phase is dominated by the Ising
exchange on the z bonds. Consequently, the commutator be-
tween the Hamiltonian and the bond operator approaches zero
in the limit of u → ∞.

FIG. 5. Log-log plot of the second derivative of the QFI asso-
ciated with the bond operator versus the distance from the critical
point from the gapless phase (u < 1). Results are the black curve
are for Lx = Ly = 104 with a line 
u ∼ 10−5. The purple and blue
curves correspond to square geometries of size Lx = Ly = 103 and
Lx = Ly = 102, respectively. The shaded regions (I) and (II) corre-
spond to two regimes where we see linear scaling. The first region
is valid for approximately the interval 10−1.9 > u > 10−2.8, while the
second regime span approximately 10−3.0 > u > 10−3.3.

Assuming the same scaling ansatz as for the second deriva-
tive FM,α we find a crossover between two scaling regimes.
The first regime is given by the critical exponents



(I)
B,x = 


(I)
B,y ≈ −0.52(1), (20a)



(I)
B,z ≈ −0.58(1), (20b)

which appears valid on the interval 10−1.9 > u > 10−2.8 and a
second regime characterized by the exponents



(II)
B,x = 


(II)
B,y ≈ −0.62(1), (21a)



(II)
B,z ≈ −0.65(1), (21b)

which appears to be valid on the interval 10−3.0 > u > 10−3.3.
While the magnetization operator exhibits a divergence when
approaching the critical point from the gapped phase, the bond
operator exhibits a divergence approaching the critical point
from the gapless phase.

The oscillatory behavior on the gapless side of the tran-
sitions for both QFI’s is related to divergences in the QFI
susceptibility due to points where the denominator of the
integrand goes to zero. In the gapped phase these points are
necessarily absent.

C. Diverging length scales

Using the results of the previous section we can determine
the scaling of the divergence in the correlation length for
〈cr1,Acr2,B〉 (using the divergence in the magnetization oper-
ator), and for 〈cr1,Acr1,Bcr2,Acr2,B〉.

In light of Eq. (11), we can now understand that the QFI
susceptibility associated with the magnetization operator di-
verges from the gapped side due specifically to the divergence
in that correlation function of the matter sector Majorana’s.
On the gapless side of the transition, the correlation function
for the matter sector Majorana’s is critical, and consequently
the second derivative of Eq. (9) is given specifically by (r, u)
and contains no divergence.

Using Eq. (11), we may extract the scaling exponents for
the correlation length of the matter sector correlation func-
tions in the x and y, and z channels for ∂2

u FM,α ,

νM,x = νM,y ≈ 1.48(1), (22a)

νM,z ≈ 1.50(1), (22b)

and for the two scaling regimes of ∂2
u FB,α for u < uc. The first

given by

ν
(I)
B,x = ν

(I)
B,y ≈ 1.48(1), (23a)

ν
(I)
B,z ≈ 1.42(1), (23b)

and the second by

ν
(II)
B,x = ν

(II)
B,y ≈ 1.38(1), (24a)

ν
(II)
B,z ≈ 1.35(1). (24b)

IV. CONCLUSION

We examined the QFI for the bond and magnetization
operators in both the gapped and gapless phases of the KHM
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and at the transition between these two phases for fully ferro-
magnetic and fully antiferromagnetic couplings. The second
derivative of the QFI with respect to the magnetization opera-
tor is shown to diverge when approaching the phase transition
from the gapped side like at a second order transition, while
the QFI susceptibility approaching the critical point from the
gapless side appears first order. Conversely, we find that the
QFI susceptibility associated with the bond operator diverges
like a second-order transition when approaching the critical
point from the gapless side, and like a first-order transition
when approaching the critical point from the gapped side.

In both cases, the divergences in the QFI susceptibility
can be associated to diverging length scales in the two point
correlators of the local generators of the QFI. For the par-
ticular case of the KHM, these divergences can be linked
to diverging length scales in the matter sector Majorana’s,
even when the physical spin-spin correlation functions are
truncated (as in the case of the two point correlation function).
The implication is that the presence of the topological phase
transition between the gapped and gapless phases may be
detected experimentally at low temperatures.

There has been related work examining the Geometric
phase associated with a twist operator acting on both sites
[41]. We note that the critical exponents presented in Eq. (21b)
for scaling regime (II) of the bond operators are within the
margin of error of those in Ref. [41]. Geometrically, the QFI
that we compute with respect to the bond operator is the
diagonal component of the quantum geometric tensor [42].
The imaginary component of this tensor corresponds to the
Berry curvature, while the real component corresponds to
the notion of distance induced by the distinguishability of
states. In Ref. [43], the connection between these two com-
ponents of metric was discussed. The implication is that the
geometry detected by the Berry phase is intimately related
to the geometry of distinguishability, opening the prospect
of experimentally measuring the Berry phase in condensed
matter systems. Extracting the full quantum metric tensor has
recently been achieved in cold atom systems [44].

The QFI associated with the magnetization operator in the
fully antiferromagnetic phase is shown to be greater than for
the fully ferromagnetic phase, as one would expect from the
tendency of the antiferromagnetic coupling to produce spin
singlets on the bonds. In the gapped phase defined by large Kγ

coupling, the QFI associated with the bond operator converges
to a constant value for the QFI generated by the transverse
spin components (specifically the x and y components in our
analysis).

It is shown in Ref. [20] that the QFI is proportional to
the FS if the operator parametrizing the QFI is the same as
the operator that generates the change in parameter for the
ground state. This implies that the QFI for the bond operator
from the gapless side of the transition is proportional the FS
calculated in Ref. [17], however, we do not find this to be
the case. This may be due to the fact that the ground state
used in Ref. [17] differs from that used by Kitaev in Ref. [31],
which is the one we employ here. Understanding the details of
the connection between the QFI and the fidelity susceptibility
warrants further investigation. We also note that the definition
of the QFI may not be unique when a Hamiltonian posseses
a degenerate ground-state manifold. In particular, one can

imagine a situation where the generator of the QFI lifts the
degeneracy of this manifold, affecting the results. While in our
calculation this ambiguity is not present in the gapped phase,
it may affect the results in the gapless phase.

Future research is warranted to examine the behavior of the
QFI at finite temperatures around the critical point, where the
ground-state scaling will be modified by finite-temperature
effects. The connection between the finite-temperature scaling
and the length scale of the Majorana fermions in this case
may offer insight into the details of candidate Kitaev spin
liquid phases in materials where the pure Kitaev Hamiltonian
is modifed by material relevant terms [40].

APPENDIX A: SCALING BEHAVIOR OF QFI
SUSCEPTIBILITY

Let us work specifically on the case of pure states and
unitary QFI. The generator of the QFI is most generally given
by

Ô =
∑

r

Ôr, (A1)

where Ôr is an operator associated with the site located at r.
We assume that r is contiguous and local, that is, it encom-
passes a finite number of degrees of freedom all lying within
a distance � from the site r. We consider a state ψ that depends
on some parameter u that drives a phase transition at a value
uc = 1,

f {Ô, ψ (u)} = 1

N

∑
r1,r2

〈
Ôr1 Ôr2

〉
ψ

− 〈
Ôr1

〉
ψ

〈
Ôr2

〉
ψ

= 1

N

∑
r1,r2

Cr1,r2 (u). (A2)

Let us assume that the model is translation invariant and define
r := |r1 − r2|. In general, we may assume that the connected
correlation functions can be fit to the following form:

Cr (u) = (r, u)r−ae− r
ξ (u) , (A3)

where a depends on the phase (i.e., is assumed independent of
the driving parameter), and ξ is the correlation length, taken to
be a function of the parameter u (we hereafter drop the explicit
dependence). The function (r, u) is assumed to be a smooth
function of r and of the parameter u within a particular phase
(though not necessarily smooth at the phase boundary). The
divergence in the second derivative of the QFI must emerge
from a divergence in the two point correlation functions. We
therefore consider the second derivative of Eq. (9)

∂2
uCr (u) = ∂u

(
(r, u)r1−aξ−2∂uξe− r

ξ + ∂u(r, u)r−ae− r
ξ

)
= −2r1−a(r, u)ξ−3(∂uξ )2e− r

ξ

+ r1−a(r, u)ξ−2∂2
u ξe− r

ξ

+ r2−a(r, u)ξ−4(∂uξ )2e− r
ξ + ∂2

u (r, u)r−ae− r
ξ

+ ∂u(r, u)r1−aξ−2∂uξe− r
ξ . (A4)

Naively, the correlation length is expected to diverge at the
critical point. Let ũ = |u − uc| be the distance from the critical
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point. Then the correlation length goes as

ξ ∼ ũ−ν . (A5)

This ansatz may be used to infer the scaling relations for the
derivatives of the correlation length

∂uξ ∼ −νũ−(ν+1), (A6a)

∂2
u ξ ∼ ν(ν + 1)ũ−(ν+2). (A6b)

Substituting this into Eq. (A4) gives

∂2
uCr (u) = −2(r, u)r1−aũ3νν2ũ−2(ν+1)e− r

ξ

+ (r, u)r1−aũ2νv(v + 1)ũ−(ν+1)e− r
ξ

+ (r, u)r2−aũ4νν2ũ−2(ν+1)e− r
ξ

+ ∂2
u (r, u)r−ae− r

ξ + ∂u(r, u)r1−aũ2ν (−ν)

× ũ−(ν+1)e− r
ξ

= e− r
ξ (−2(r, u)r1−aũν−2ν2 + (r, u)r1−aũν−2

× ν(ν + 1) + (r, u)r2−aũ2ν−2 + ∂2
u (r, u)r−a

− ν∂u(r, u)r1−aũν−2). (A7)

We can now pull out the divergence associated with the prox-
imity to the critical point

∂2
uCr (u) = ũν−2e− r

ξ (−2(r, u)r1−aν2 + (r, u)r1−aν(ν + 1)

+ (r, u)r2−aũν + ũ2−ν∂2
u (r, u)r−a

− ν∂u(r, u)r1−a). (A8)

The scaling behavior of the QFI susceptibility is thus given by

∂2
u f {Ô, ψ} = ũν−2ζ (r, u). (A9)

We define 
Ô = ν − 2 as the scaling of the QFI with proxim-
ity to the critical point. The y-intercept on the log-log plot will
be given by the nonuniversal function ζ (r, u).

APPENDIX B: CALCULATING VARIANCES

1. Solution of the Kitaev model

We adopt the approach of Refs. [39,45], where the Majo-
rana degrees of freedom are recombined into Dirac fermions,
with three bond fermions

bγ

r,A = 1

2

(
βγ

r + (
βγ

r

)†)
, (B1a)

bγ
r,B = 1

2i

(
βγ

r − (
βγ

r

)†)
, (B1b)

and one matter fermion

cr,A = 1
2 ( fr + f †

r ), (B2a)

cr,B = 1
2 ( fr − f †

r ). (B2b)

The bond fermions are not present in the Hamiltonian
since we simply replace the bond operators with
the eigenvalues of the standard gauge configuration

(u j,k = 1). The resulting Hamiltonian is quadratic in the
matter fermions and translation invariant. It can be diago-
nalized first by mapping each matter fermion to momentum
space, fr = 1√

N

∑
q eiq·r fq, and then applying the Bogoliubov

rotation, fq = cos(θq)aq + i sin(θq)a†
−q, where θq is

defined by

tan(2θq) = Kx cos(qx ) + Ky cos(qy) + Kz

Kx sin(qx ) + Ky sin(qy)
. (B3)

2. Magnetization operator

Begin with

Ôα
Mag =

∑
r

Ŝα
r . (B4)

The variance is given generally by

〈(
Ô)2〉 = 〈O2〉 − 〈O〉2, (B5)

which, for the magnetization operator, gives〈(

Ôα

Mag

)2〉 =
∑
r1,r2

〈
Ŝα

r1
Ŝα

r2

〉
. (B6)

Using translation invariance and converting the Majorana rep-
resentation, this expression can be given as〈(


Ôα
Mag

)2〉 = N
∑

r

〈
Ŝα

0 Ŝα
r

〉
. (B7)

In the Kitaev model, the two-point correlator is zero for all
values of r except nearest neighbors. Thus the sum above can
be reduced to

〈(

Ôα

Mag

)2〉 = N
(

1
4 + 〈

Ŝα
0,AŜα

0,B

〉)
. (B8)

Thus we only need to calculate the nearest-neighbor correla-
tion function

〈
Ŝα

0,AŜα
0,B

〉 = 1

4

〈
σα

0,Aσα
0,B

〉

= 1

4

〈(
ibα

0,Ac0,A
)(

ibα
0,Bc0,B

)〉

= 1

4

〈
F

∣∣bα
0,Abα

0,B

∣∣F 〉〈M|c0,Ac0,B|M〉

= 1

4

〈
F

∣∣(−i)
(
2n̂βα

0 − 1
)∣∣F 〉〈M|(−i)

(
2n̂ f

0 − 1
)|F〉

= −1

4

(
2
〈
n̂ f

0

〉 − 1
)

= −1

4

(
2

1

N

∑
q1,q2

〈
f †
q1

fq2

〉 − 1

)

= −1

4

(
2

N

∑
q

sin2(θq) − 1

)
. (B9)
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The QFI density is four times the variance divided by the
system size. Thus

f
{
Ôα

Mag

} = 1 + 〈
σα

0,Aσα
0,B

〉
. (B10)

3. Bond operator

Var
(
Ôα

2-Site

) = 〈(
Ôα

2-Site

)2〉 − 〈
Ôα

2-Site

〉2
=

∑
r1,r2

〈
Ŝα

r1AŜα
r1BŜα

r2AŜα
r2A

〉 −
(∑

r

Ŝα
r1AŜα

r1B

)2

= 1

16

(∑
r1,r2

〈
bα

r1Abα
r1Bbα

r2Abα
r2B

〉〈
cr1Acr1Bcr2Acr2B

〉

−
(∑

r

−〈bα
rAbα

rB〉〈crAcrB〉
)2)

. (B11)

We can compute the flux sector expectation values easily

〈
bα

r1Abα
r1Bbα

r2Abα
r2B

〉 = (−i)2
〈(
βr1 + β†

r1

)(
βr1 − β†

r1

)(
βr2 + β†

r2

)
× (

βr2 − β†
r2

)〉
= −〈(

2nr1 − 1
)(

2nr2 − 1
)〉

= −1, (B12)

where the last line follows from the fact that the ground state
in the standard flux configuration is defined by ur = 2nr −
1 = 1. Similarly we find〈

bα
rAbα

rB

〉 = (−i)〈(2nr − 1)〉
= (−i). (B13)

The variance is therefore

Var
(
Ôα

2-Site

) = 1

16

(∑
r1,r2

(−1)
〈
cr1Acr1Bcr2Acr2B

〉 −
(∑

r

(i)〈crAcrB〉
)2)

= 1

16

(
−

∑
r1,r2

〈
cr1Acr1Bcr2Acr2B

〉 + ∑
r1,r2

〈
cr1Acr1B

〉〈cr2Acr2B〉
)

= 1

16

(∑
r1,r2

−〈
cr1Acr1B

〉〈
cr2Acr2B

〉 + 〈
cr1Acr2A

〉〈
cr1Bcr2B

〉 − 〈
cr1Acr2B

〉〈
cr1Bcr2A

〉〈
cr1Acr1B

〉〈
cr2Acr2B

〉)

= 1

16

(∑
r1,r2

〈
cr1Acr2A

〉〈
cr1Bcr2B

〉 − 〈
cr1Acr2B

〉〈
cr1Bcr2A

〉)
. (B14)

We now need only evaluate the two point correlators above.
For the first term we have

〈
cr1Acr2A

〉 = 1

N

∑
q1,q2

eiq1r1 eiq2r2
〈(

fq1 + f †
q1

)〉〈(
fq2 + f †

q2

)〉

= 1

N

∑
q1,q2

eiq1r1 eiq2r2
〈
fq1 fq2 + fq1 f †

q2
+ f †

q1
fq2

+ f †
q1

f †
q2

〉
= 1

N

∑
q1,q2

eiq1r1 eiq2r2
〈
fq1 fq2 + f †

q1
f †
q2

+ δq1,q2

〉
.

(B15)

We can see that

〈
fq1 fq2

〉 = i cos
(
θq1

)
sin

(
θq2

)〈
aq1 a†

−q2

〉
= i cos

(
θq1

)
sin

(
θq2

)
δq1,−q2 ,

〈
f †
q1

f †
q2

〉 = (−i) cos
(
θq1

)
sin

(
θq2

)〈
a−q1 a†

q2

〉
= (−i) cos

(
θq1

)
sin

(
θq2

)
δ−q1,q2 . (B16)

Consequently,

〈
cr1Acr2A

〉 = 1

N

∑
q1,q2

eiq1r1 eiq2r2δq1,q2

= 1

N

∑
q

eiq(r1−r2 ) = δr1,r2 . (B17)

Similarly we may show that

〈
cr1Bcr2B

〉 = δr1,r2 . (B18)

224401-8



REVEALING DIVERGENT LENGTH SCALES USING … PHYSICAL REVIEW B 102, 224401 (2020)

For the second term we begin with

〈
cr1Acr2B

〉 = 1

N

∑
q1,q2

eiq1r1 eiq2r2 (−i)
〈
( fq1 + f †

q1
)( fq2 − f †

q2

〉

= 1

N

∑
q1,q2

eiq1r1 eiq2r2 (−i)
〈
fq1 fq2 − fq1 f †

q2
+ f †

q1
fq2 − f †

q1
f †
q2

〉

= (−i)

N

∑
q1,q2

eiq1r1 eiq2r2
(〈

fq1 fq2 − f †
q1

f †
q2

+ f †
q1

fq2 − fq1 f †
q2

〉)

= (−i)

N

∑
q1,q2

eiq1r1 eiq2r2
(〈

fq1 fq2 − f †
q1

f †
q2

〉 + 〈
2 f †

q1
fq2 − 1

〉)

= (−i)

N

∑
q1,q2

eiq1r1 eiq2r2
[
i cos

(
θq1

)
sin

(
θq2

)(
δq1,−q2 + δ−q1,q2

) + 2 sin
(
θq1

)
sin

(
θq2

)
δq1,q2 − 1

]

= (−i)

N

∑
q

2ie−iq(r1−r2 ) cos(θq) sin(θq) + (−i)

N

∑
q

[2 sin2(θq) − 1]

= 1

N

∑
q

e−iq(r1−r2 )2 cos(θq) sin(θq) + i

N

∑
q

eiq(r1+r2 ) cos(2θq)

= 1

N

∑
q

e−iq(r1−r2 ) sin(2θq) + i

N

∑
q

eiq(r1+r2 ) cos(2θq). (B19)

The final two-point correlator is given by

〈
cr1Bcr2A

〉 = 1

N

∑
q1,q2

eiq1r1 eiq2r2 (−i)
〈(

fq1 − f †
q1

)(
fq2 + f †

q2

)〉

= (−i)

N

∑
q1,q2

eiq1r1 eiq2r2
(〈

fq1 fq2 − f †
q1

f †
q2

〉 − 〈
2 f †

q1
fq2 − 1

〉)

= (−i)

N

∑
q1,q2

eiq1r1 eiq2r2
[
i cos

(
θq1

)
sin

(
θq2

)(
δq1,−q2 + δ−q1,q2

] − [
2 sin

(
θq1

)
sin

(
θq2

)
δq1,q2 − 1)

]

= (−i)

N

∑
q

2ie−iq(r1−r2 ) cos(θq) sin(θq) − (−i)

N

∑
q

eiq(r1+r2 )[2 sin2(θq) − 1]

= 1

N

∑
q

e−iq(r1−r2 ) sin(2θq) − i

N

∑
q

eiq(r1+r2 ) cos(2θq). (B20)

The final term is therefore a product of differences

〈
cr1Bcr2A

〉〈
cr1Acr2B

〉 = 1

N2

∑
q1,q2

[
e−i(q1+q2 )(r1−r2 ) sin

(
2θq1

)
sin

(
2θq2

) + ei(q1+q2 )(r1+r2 ) cos
(
2θq1

)
cos

(
2θq2

)]

= 1

N2

∑
q1,q2

[
eir1

(
q1+q2

)
e−ir2

(
q1+q2

)
sin

(
2θq1

)
sin

(
2θq2

) + eir1(q1+q2 )eir2(q1+q2 ) cos
(
2θq1

)
cos

(
2θq2

)]
. (B21)

Under the summation, we may extract the delta functions

∑
r1,r2

〈
cr1Bcr2A

〉〈
cr1Acr2B

〉 = 1

N

∑
r2

∑
q1,q2

δq1,−q2 e−ir2(q1+q2 ) sin
(
2θq1

)
sin

(
2θq2

) + δq1,−q2 eir2(q1+q2 ) cos
(
2θq1

)
cos

(
2θq2

)

=
∑

q

cos2(2θq) − sin2(2θq). (B22)
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We are now ready to return to our original expression for the
variance which reads

Var
(
Ôα

2-Site

) = 1

16

(
N −

∑
q

[cos2(2θq) − sin2(2θq)]

)

= 1

16

∑
q

[1 − cos2(2θq) + sin2(2θq)]

= 1

8

∑
q

sin2(2θq). (B23)

Thus the associated QFI density is

F
(
Ôα

2-Site

) = 4
Var

(
Ôα

2-Site

)
N

= 1

2

1

N

∑
q

sin2(θq), (B24)

passing to the continuum limit we find

F
(
Ôα

2-Site

) = 1

2

∫
BZ

sin2(2θq)d2q. (B25)

APPENDIX C: DERIVATIVES OF THE QFI
SUSCEPTIBILITY MOMENTUM DENSITY

To gain more insight into the divergence in FM,α , we define
the QFI momentum density for the magnetization operator,
fM,α via

FM,α =
∑

q

(
1

N
− cos(2θq)

)
=

∑
q

fM,α (q; u). (C1)

We may explicitly evaluate the first and second derivatives of
this quantity for each spin component, giving

∂u fM,x = 
2
x cos(qy) − εx
x sin(qy)(

ε2
x + 
2

x

) 3
2 ,

(C2a)

∂u fM,y = 
2
y cos(qx ) − εy
y sin(qx )(

ε2
y + 
2

y

) 3
2 ,

(C2b)

∂u fM,z = 
2
z(

ε2
z + 
2

z

) 3
2

, (C2c)

for the first derivatives, and

∂2
u fM,x = −3εx


2
x cos2(qy) + 
x

[
3
(
ε2

x − 
2
x

) + εx + 
x] sin(qy) cos(qy) + εx
(
2
2

x − ε2
x

)
sin2(qy)(

ε2
x + 
2

x

) 5
2 ,

(C3a)

∂2
u fM,y = −3εy


2
y cos2(qx ) + 
y

[
3
(
ε2

y − 
2
y

) + εy + 
y] sin(qx ) cos(qx ) + εy
(
2
2

y − ε2
y

)
sin2(qx )(

ε2
y + 
2

y

) 5
2 ,

(C3b)

∂2
u fM,z = −3εz


2
z(

ε2
z + 
2

z

) 5
2 ,

(C3c)

for the second derivatives. We again compute explicitly the first and second derivatives of the QFI with respect to the driving
parameter by rewriting the QFI in terms of an integral over a QFI density

FB,α =
∫

BZ
fB,α (q; u)

finding

∂u fB,x = 
xεx[εx sin(qy) − 
x cos(qy)](
ε2

x + 
2
x

)2
,

(C4a)

∂u fB,y = 
yεy[εy sin(qx ) − 
y cos(qx )](
ε2

y + 
2
y

)2
,

(C4b)

∂u fB,z = 
2
z εz(

ε2
z + 
2

z

)2
,

(C4c)

for the first derivatives and

∂2
u fB,x = [εx sin(qy) − 
x cos(qy)]

([

2

x − 3ε2
x

)

x cos(qy) + (

ε2
x − 3
2

x

)
εx sin(qy)

]
(
ε2

x + 
2
x

)3
,

(C5a)

∂2
u fB,y = [εy sin(qx ) − 
y cos(qx )]

([

2

y − 3ε2
y

)

y cos(qx ) + (

ε2
y − 3
2

y

)
εy sin(qx )

]
(
ε2

y + 
2
y

)3
,

(C5b)

∂2
u fB,z = 
2

z

(

2

z − 3ε2
z

)
(
ε2

z + 
2
z

)3 . (C5c)
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