
PHYSICAL REVIEW B 102, 224308 (2020)

Coherent control in ferromagnets driven by microwave radiation and spin polarized current
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Coherent control is a method used to manipulate the state of matter using oscillatory electromagnetic radiation
which interacts with the state in a nonequilibrium manner before the steady precessional state is reached.
It is commonly applied in quantum processing applications. This technique is interesting in the context of
ferromagnetic materials because of the ability to combine it with spintronics for the purpose of fundamental spin
transport research, low-power information processing, and potentially future quantum bit (Qubit) applications.
In this work we address the theoretical grounds of coherent manipulation in practical ferromagnetic systems. We
study the electromagnetic radiation-driven interaction that is enhanced in the presence of spin-polarized current
and map the conditions that allow coherent manipulation for which Rabi oscillations take place. The role of the
magnetic anisotropy field is shown to act as an additional oscillatory driving field. We discuss the Gilbert losses
in the context of effective coherence decay rates and show that it is possible to control these rates by application
of a static spin current. The case of coherent manipulation using oscillatory spin current that is free of radiation is
discussed as well. Our work paves the way towards spin current amplification as well as radiation-free coherent
control schemes that may potentially lead to novel Qubits that are robust and scalable.
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I. INTRODUCTION

Coherent control is a method of controlling dynamical pro-
cesses using electromagnetic (EM) radiation that translates a
dynamical system from one state to another. At its basis stands
a nonadiabatic process which means that the system loses
or gains energy during the interaction with the radiation. As
opposed to the nonadiabatic process, the ferromagnetic reso-
nance (FMR) experiment is an adiabatic process: A harmonic
stimulus drives the system in steady state and the energy
stored in the magnetic medium is constant over time. Simi-
larly, the pump-probe type free-induction decay experiment in
ferromagnets (FM) is also not considered a nonadiabatic inter-
action because the driving EM radiation is absent. However,
the perturbed FMR interaction is a nonadiabatic process.

Studies of spin dynamics in magnetic media have been
mainly carried out under either the adiabatic regime (e.g.,
Refs. [1–3]), or the free-induction decay regime (e.g.,
Refs. [4–7]). These regimes have played an increasingly
important role in understanding spin transport processes in
atomically engineered solid-state devices and key funda-
mental phenomena have been explored, e.g., spin angular
momentum losses [8–10], the spin Hall effect (SHE) [11–15],
the anomalous Hall effect [16], motion of magnetic domains
[17–20], the spin transfer torques (STT) [21–23], and more.

The third dynamical regime of the nonadiabatic interaction
has so far received little attention in the context of FM systems
[24]. It can be considered as a hybrid dynamical regime which
is a combination of the microwave-driven steady-state inter-
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action [1–3] and the impulse stimulated free-induction decay
[4–7] so that the EM radiation and the magnetization state are
not in equilibrium and excessive energy is transferred back
and forth between the two before the steady precessional state
is reached. When the energy is exchanged periodically, Rabi
oscillations arise that are characterized by the Rabi frequency
and are the basis for coherent control similarly to a two-level
system [25]. The analogy to quantum two-level system stems
from the fact that the observables of angular momentum in
two-level systems obey the classical equations of motion.
In fact, Rabi’s original theory [24] which was derived for a
nuclear two-level spin system that is driven by an oscillatory
field under the nonadiabatic interaction can be equally applied
to an isolated electron or equivalently to a FM in the absence
of the Gilbert losses and anisotropies under the macrospin
limit. Furthermore, similarly to the two-level system, in the
nonadiabatic interaction coherence plays a role in the sense
that the outcome of the interaction is dependent on the initial
phase relations between the magnetization state and the os-
cillatory torque [26]. Hence, a great deal of insight into the
quantum world is gained from studies of the spin ensembles.

Because of the large gyromagnetic ratio of the electron,
exploration of the nonadiabatic regime in FM systems often
requires fast electronics and/or synchronization circuitry ca-
pable of operating in the GHz range. Hence, experimental
studies of the nonadiabatic regime in magnetic solid-state
systems is usually more cumbersome. In the work by
Karenowska (Ref. [27]), a spatial nonequilibrium energy ex-
change was demonstrated between counterpropagating spin
waves in yttrium iron garnets using artificial magnonic crys-
tals. In these experiments a periodic spatial modulation
fulfilled the role of the oscillatory signal whereas the effect
was recognized to be valuable for signal processing purposes.
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At the quantum limit, coherent control of single artificial
magnetic spins was demonstrated using a scanning tunnel-
ing microscope [28]. In Ref. [28] magnetic Ti atoms were
excited using microwaves to induce Rabi oscillations while
initialization of the atoms was achieved by passing a DC
spin current through the atom. This study was carried out
in the time domain and the magnetization state was read out
magnetoresistively.

Recently, we have demonstrated a hybrid time-frequency
domain method to excite the nonadiabatic regime in magnetic
media which we can describe as the pump-probe optically
sensed ferromagnetic resonance [29]. In this method, Rabi
oscillations were excited in a few Å-thick film of a CoFeB
ferromagnet and in the presence of rf radiation following a
perturbation by an intense ultrashort demagnetizing optical
pulse. These experiments revealed a frequency chirp which
was controllable by the static magnetic field and that the
microwave field induced coherence in the inhomogeneously
(IH)-broadened spin ensemble. Moreover, the experiments
showed that according to Gilbert’s damping theory the in-
trinsic relaxation times were tunable by proper choice of the
external magnetic field and when taken long enough they
eventually initiated a resonant spin mode locking of the sys-
tem.

In the present work we provide the theoretical grounds
for the nonadiabatic regime in a FM. We consider a sys-
tem being driven into precession by microwave EM radiation
and spin current. We compute the equations of motion for
small deviations away from the steady precessional state.
The deviations nutate at the Rabi frequency with a decaying
amplitude. The frequency and decay rates of these nutations
in a variety of circumstances are derived. To that end we
combine the formalism of the adiabatic interaction in FMs
and approaches that are commonly used to describe two-state
quantum systems. We compare between the representation of
the spin-lattice and transverse spin-polarization decay times,
T1 and T ∗

2 , used to describe quantum coherent phenomena and
the Gilbert damping constant and IH broadening arising from
Gilbert’s damping theory. The influence of the injection of DC
spin current on the effective coherence and decay times and
the role of the magnetic anisotropy is studied. In addition,
we present the case of using the AC spin current to drive
the nonadiabatic dynamics instead of EM microwaves. We
discuss the limitations of using AC STT as a driving force,
and clarify its distinct nature compared to the ordinary rf EM
field case.

Our work is presented as follows: We start by introducing
the general conditions for observing Rabi oscillations in a
magnetic system that is driven by a rf EM field. Next, we
include the anisotropy fields and examine the case of the film
having a perpendicular magnetic anisotropy (PMA) which is
relevant for practical applications. We then add to our model
a DC SHE. Specifically, we look into the influence of the
injection of spin current on the overdamped interaction for
which the magnetization simply decays and Rabi oscillations
are not observable. Finally, the nonadiabatic interaction is
studied in the presence of a driving oscillatory STT generated
by the SHE.

II. MODEL AND RESULTS

A. Model framework: Rabi oscillations in FMs

Our analysis is carried out under the framework of the
macrospin approximation. To that end we start with the
Landau-Lifshitz-Gilbert (LLG) equation for the magneti-
zation, �M ′, in the presence of the effective field, �H ′

eff .
Throughout the paper we use a prime to indicate variables in
the lab frame of reference and the unprimed variables refer
to the rotating system of coordinates. In the lab frame of
reference

d �M ′

dt
= −γ ( �M ′ × �H ′

eff ) + α

Ms

(
�M ′ × d �M ′

dt

)
, (1)

in which Ms is the magnetization saturation, α is the Gilbert
damping parameter, and γ is the gyromagnetic ratio. In spher-
ical coordinates the LLG equation converts to

θ̇ ′ = γ H ′
ϕ

sin θ ′ϕ̇′ = −γ H ′
θ , (2)

where H ′
θ and H ′

ϕ are the polar and azimuthal components of
the effective field, respectively.

In order to study the nonadiabatic interaction, we convert
Eq. (2) to a coordinate system rotating about the ẑ′ axis at
the driving angular frequency, ω. In spherical coordinates, this
corresponds to the substitutions θ ′ = θ and ϕ′ = ϕ + ωt . Fol-
lowing linearization, we express the solution of Eq. (2) in the
rotating frame by θ (t ) = θ0 + �θ (t ) and ϕ(t ) = ϕ0 + �ϕ(t )
with [�θ (t ),�ϕ(t )] being small deviations from equilibrium
(θ0, ϕ0). (θ0, ϕ0) indicate the coordinates that the mag-
netization decays towards in the rotating frame and not the
energy minimum in the lab frame as in conventional FMR
models. Alternatively, in the lab frame, these coordinates cor-
respond to the coordinates of the steady precessional state (up
to a constant phase difference). �θ (t ) and �ϕ(t ) are then
expressed by their phasors �θ = �θiexp(−i�t ) and �ϕ =
�ϕiexp(−i�t ), with �θi and �ϕi being constants of the prob-
lem that are determined by the initial conditions. The complex
frequency, �, consists of the real part responsible for the os-
cillatory component known as the generalized Rabi frequency,
�G

R , and of the imaginary part responsible for the dampening
of the response, indicated by the decay rate, 	, according
to � = −i	 + �G

R . Rabi oscillations are generally observable
when the decay time is longer than the Rabi cycle, namely,
when 	 < �G

R and the response becomes underdamped. When
	 > �G

R the response becomes overdamped and the magnetic
moment in the rotating frame decays exponentially towards
(θ0, ϕ0) without oscillating. Finally, �G

R is given by �G
R =√

�2
σ − 	2, where �σ and 	 are obtained by satisfying the

secular equation �2 + i2�	−�2
σ = 0 in the usual manner.

B. Fundamental interaction: EM-driven dynamics

1. Rabi frequency and linewidth

We first examine the microwave magnetic field-driven in-
teraction that will also serve as a reference case. The external
magnetic field of magnitude H0 is chosen in the ẑ′ direction
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while the oscillatory driving field of amplitude hrf is applied
along the x̂′ axis. In the rotating frame under the rotating wave
approximation, Eq. (2) becomes

θ̇ = −1

2
γ hrf sin ϕ − α sin θ (ϕ̇ + ω)

sin θϕ̇ = γ

(
H0 − ω

γ

)
sin θ

− 1

2
γ hrf cos θ cos ϕ + αθ̇ . (3)

(θ0, ϕ0) can be inferred from the equilibrium conditions θ̇ =
ϕ̇ = 0, while the time-dependent part of Eq. (3) gives

�θ̇ = − 1

2
γ hrf cos ϕ0�ϕ

− α sin θ0�ϕ̇ − αω cos θ0�θ

sin θ0�ϕ̇ = γ

(
H0 − ω

γ

)
cos θ0�θ

+ 1

2
γ hrf cos θ0 sin ϕ0�ϕ

+ 1

2
γ hrf sin θ0 cos ϕ0�θ + α�θ̇. (4)

The set of Eq. (4) describes the conventional problem of a
two-level system [30] with the difference that the spin angular
momentum losses are incorporated through Gilbert’s damping
theory [31]. The Gilbert damping in the LLG equation has a
rigorous physical origin. It originates from a Rayleigh friction
process that is included to model losses such as those medi-
ated by the spin-orbit and exchange interactions. Hence, the
energy dissipation rate in our model is inherently dependent
on numerous parameters of the problem with the most critical
of them being the frequency of the precessional motion and
consequently the external magnetic field [29]. In contrast, in
the Bloch-Bloembergen formalism the losses are incorporated
through T1 and T ∗

2 and are generally independent of the ef-
fective field of the problem. The IH broadening that arises
from variations in local anisotropy fields can be added in our
model by taking variations in the effective bias field to the first
order [32]. Figure 1 highlights the differences between the two
models.

To calculate the Rabi flopping frequency, �σ and 	 can be
determined from Eq. (5):

�σ = γ

{
1

(α2 + 1)

((
αω

γ

)2

cos2θ0

+
(

H0 − ω

γ

)2

+
(

1

2
hrf

)2

cos2ϕ0

)}1/2

,

	 = γ
α

2(α2 + 1)

(
2ω

γ
cos θ0 +

(
H0 − ω

γ

)
cos θ0

+1

2
hrf sin θ0 cos ϕ0 + 1

2
hrf

cos ϕ0

sin θ0

)
. (5)

On resonance (H0 − ω
γ

) = 0 and the solutions for
(θ0, ϕ0) require θ0 = +90◦ or ϕ0 = −90◦. The solution θ0 =
+90 and ϕ0 = −90◦ corresponds to αω = 1

2γ hrf , which in-
dicates the transition from the overdamped to underdamped
dynamics.

FIG. 1. Geometrical representation of the damping and relax-
ation torques and the IH broadening of Bloch-Bloembergen and
Gilbert pictures. Blue arrows represent the lattice and transverse
relaxation torques, T1 and T ∗

2 , respectively. �H ′
eff is the effective mag-

netic field. The Gilbert damping torque is indicated by the orange
arrow and the IH broadening, � �H ′

IH , is modeled as variations in �H ′
eff .

In the underdamped regime in which Rabi oscilla-
tions are observable, αω < 1

2γ hrf , θ0 = 90◦, and ϕ0 =
−arcsin(2αω/γ hrf ), resulting in

�G
R = γ

√(
1

2
hrf

)2

cos2(ϕ0)

(
1

(α2 + 1)
− α2

(α2 + 1)2

)
,

	 = α

2(α2 + 1)
γ hrf cos(ϕ0), (6)

and when αω > 1
2γ hrf , ϕ0 = −90◦ and θ0 =

arcsin(γ hrf/2αω) and the response is overdamped with

�G
R = γ

√(
αω

γ

)2

cos2(θ0)

(
1

(α2 + 1)
− 1

(α2 + 1)2

)
,

	 = αω

(α2 + 1)
cos(θ0), (7)

The calculated results are presented in Fig. 2. The given
geometry is shown in Fig. 2(a). Figure 2(b) illustrates �G

R
and 	 for α = 0.01 and 10 GHz on resonance as a function
of the normalized field γ hrf

2αω
. The data resemble closely the

dependence of the resonance frequency of a FM on the applied
field when the external magnetic field is applied perpendicu-
larly to the easy axis. In this case the quantity 1

2 hrf fulfills the
same role as the static external field, αω

γ
plays the role of the

effective anisotropy field, and the easy axis is the rotation axis,
ẑ′. This effective anisotropy field arises from the projection
of the Gilbert damping torque into the rotating frame and
is hence dependent on both α and ω, and similarly to an
actual anisotropy field the torque that arises from it depends
on the angle between the magnetization and the easy axis.
For αω > 1

2γ hrf , 	 rapidly increases with decreasing hrf and
becomes more than two orders of magnitude greater than �G

R
as shown in the inset so that Rabi oscillations are not obtained.
When αω < 1

2γ hrf this behavior abruptly changes and �G
R

becomes much greater than 	 with increasing hrf giving rise
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FIG. 2. (a) Geometry of the rf EM-driven dynamics. (b) �G
R , 	 for zero detuning. Inset shows closeup of �G

R at γ hrf/2αω < 1. (c) �G
R −	

as a function of the detuning. The red zone indicates the overdamped region, while the blue zone is the underdamped region. (d) Normalized
and shifted temporal responses as a function of H0 calculated numerically for hrf = 20 Oe. The slight high-frequency modulation observed as
a background arises from the counter-rotating terms that are neglected in the model. Results are presented for α = 0.01 and 10 GHz.

to Rabi nutations. Figure 2(c) illustrates the difference �G
R −	

as a function of the detuning, (H0 − ω
γ

), and the normalized
field from which the oscillatory nature can be determined.
Starting from (H0 − ω

γ
) =∼30 Oe the behavior is always

oscillatory irrespective of hrf . Figure 2(d) shows a typical tem-
poral response for various H0 values for which the response is
overdamped at resonance and away from resonance becomes
oscillatory.

2. Interpretation of the Gilbert damping torque
in the rotating frame

In the rotating frame of reference, the damping torque can
be interpreted in a comprehensive manner providing further
insight to the nonadiabatic interaction. In Cartesian coordi-
nates Eq. (1) transforms to

d �M
dt

= −γ �M ×
((

�H0 − �ω
γ

)
+ �hrf

)
+ α

Ms

(
�M × δ �M

δt

)

− α

Ms

�M × ( �M × �ω), (8)

where �ω is the vector (0, 0, ω) and �hrf is the rf field.
The first term on the right-hand side of Eq. (8) is the effective
field ( �H0 − �ω

γ
) + �hrf which �M primarily precesses about. The

second term on the right-hand side of Eq. (8) is identical to the
Gilbert damping term in the LLG equation and is responsible
for the decay of the magnetic field towards the effective field.
The third term, − α

Ms
�M × ( �M × �ω), does not appear in the

LLG equation in the lab frame. It behaves as a nonconserving
torque that has the form of the antidamping STT term of the
Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation. This
term gives rise to the effective field α

Ms
( �M × �ω

γ
) and scales

with αω. In steady state, δ �M
δt = 0, it balances the primary

field ( �H0 − �ω
γ

) + �hrf and causes the system to decay towards
a new steady state different than the one dictated solely by the
primary field. Hence, this torque can be used as an additional
control in a coherent manipulation scheme. Before steady
state is reached its contribution to �σ and hence also to �G

R is
readily seen in Eq. (5) where it appears as an additional term in
the Euclidean norm of the fields consisting of �hrf , ( �H0 − �ω

γ
),

and α �ω/γ that eventually determine the Rabi frequency. This
STT-like torque can be enhanced by increasing the driving
frequency which is analogous to increasing the spin current
in the LLGS equation.

3. Large-angle nonadiabatic interaction

The analytical model addresses small deviations from
steady precessional state. For large deviations, the nona-
diabatic response becomes nonlinear, giving rise to the
generation of higher harmonics. We examine this nonlinearity
numerically [33–35]. A typical representative temporal re-
sponse in the lab frame of reference is presented in Fig. 3 at 10
GHz and hrf of 90 Oe on resonance (following the experiments
of Ref. [29]). In this example the magnetization was initialized
to the ẑ′ direction and traversed the full swing towards the
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FIG. 3. Large signal response calculated numerically. (a) Re-
sponse calculated at 10 GHz and α = 0.01. (b) Same simulation
presented in (a) at later times. (c) Same conditions as in (a) but with
α = 0.001.

−ẑ′ direction. Figure 3(a) shows the response for α of 0.01.
The figure depicts M ′

z which is proportional to the energy of
the system and M ′

y. A nonlinear response consisting of higher
harmonics is readily seen as well as an asymmetric behavior
as M ′

z evolves, namely, as energy is absorbed or emitted.
The “down” transition is slower than the “up” transition for
which �M ′ aligns with �H ′

0. This is also readily seen on the M ′
y

component which stretches or compresses in time depending
on the up or down transition. At later times, as the response
further decays and �M ′ precesses at small angles near the
steady state, the asymmetry vanishes and a harmonic response
is revealed [Fig. 3(b)]. This behavior is highly dependent on
the Gilbert damping as shown in Fig. 3(c). When α is reduced
to a value of 0.001 the nonlinearity vanishes and M ′

z oscillates
at a single frequency according to the analytical model. The
effect of the Gilbert damping on the nonlinear nature of the
response is understood by examining the acting torques. The
torque arising from the applied magnetic fields, namely rf and
DC fields, d �M ′

dt app.
, can be decomposed into two components: a

tangential component, d �M ′
dt‖

, responsible for the primary longi-

tudinal precessional motion, and a transverse component, d �M ′
dt⊥

,

responsible for the “downward”/“upward” transition of �M ′.
When �M ′ shifts towards −ẑ′, the transverse component, d �M ′

dt⊥
,

is balanced by the Gilbert damping torque and the transition
occurs at a slower rate. Likewise, when �M ′ shifts towards ẑ′

the transverse component, d �M ′
dt⊥

, is enhanced by the Gilbert
damping torque. Therefore, the Gilbert torque is responsible
for the asymmetry in the upward/downward transition rates.

FIG. 4. (a) Geometry of the rf EM-driven dynamics in a PMA
sample. (b) Temporal Mz responses as a function of hrf calculated
numerically for H0 = ω

γ
(quasiresonance), effective anisotropy field

of 120 Oe, and α = 10−4.

Finally, as �M ′ further decays towards steady precessional state
the applied torque is primarily tangential and the transverse
torque component d �M ′

dt⊥
is negligible, resulting in a harmonic

response. This behavior is more prominent the greater α is
[Figs. 3(a) and 3(c)]. Hence, changes in α can be readily seen
on the nonlinear nonadiabatic response, thereby providing an
additional way to investigate the loss mechanisms.

4. Inclusion of magnetic anisotropy

Practical magnetic systems exhibit magnetic anisotropy
fields such as demagnetization and/or crystalline anisotropies.
We focus on the case of a sample having PMA such as the
geometry studied in Ref. [29] which is usually more important
for technological purposes and allows high density and lower
crosstalk between devices in practical applications.

The modeled geometry is illustrated in Fig. 4(a). The easy
axis of magnetization is set along ŷ′. The effective anisotropy
is HKeff = 2Ku

Ms
− 4πMs, where Ku is the crystalline anisotropy

constant. The analysis was carried out under the condition
H0 > HKeff for which the precession takes place around the
ẑ′ axis in the lab frame. Under these conditions the problem
has a closed form analytical solution. Hence, Eq. (4) becomes

�θ̇ = −1

2
γ hrf cos ϕ0�ϕ − α sin θ0�ϕ̇ − αω cos θ0�θ

sinθ0�ϕ̇ = −γ HKeff

2
cos 2θ0�θ + γ

(
H0 − ω

γ

)
cos θ0�θ

+ 1

2
γ hrf cos θ0 sin ϕ0�ϕ

+ 1

2
γ hrf sin θ0 cos ϕ0�θ + α�θ̇ (9)

while (θ0, ϕ0) is found as before.
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The solutions for �σ and 	 are

�σ = γ

{
1

(α2 + 1)

((
αω

γ

)2

cos2θ0 − 1

2
hrf

1

2
HKeff

cos 2θ0 cos ϕ0

sin θ0
+ 1

2
hrf

(
H0 − ω

γ

)
cos θ0 cos ϕ0

sin θ0
+

(
1

2
hrf

)2

cos2ϕ0

)}1/2

,

	 = γ
α

2(α2 + 1)

(
2ω

γ
cos θ0 − HKeff

2
cos 2θ0 +

(
H0 − ω

γ

)
cos θ0 + 1

2
hrf sin θ0 cos ϕ0 + 1

2
hrf

cos ϕ0

sin θ0

)
. (10)

For small α, small hrf , and quasiresonance conditions
(H0 − ω

γ
) = 0, ϕ0 = −180◦ and the condition for θ0 is

sin θ0 = hrf/HKeff . Substituting the above conditions into the
�σ term in Eq. (10), we get

�G
R = γ

√(HKeff

2

)2

−
(

hrf

2

)2

. (11)

Equation (11) has the familiar form of resonance frequency
for the PMA case where the external field is applied per-
pendicular to the easy axis. Thus, in the rotating frame hrf

takes the role of DC field applied perpendicularly to the easy
axis. In comparison with the PMA case [36], 1

2 HKeff appears
as an effective anisotropy field in the rotating frame. The
dependence of �G

R on hrf in Eq. (11) is fundamentally different
from its general dependence in standard two-level systems.
Here �G

R decreases with increasing hrf whereas in conven-
tional two-level systems �G

R increases with the driving-field
amplitude. In conventional two-level systems the driving-field
amplitude determines the rate at which the occupation prob-
abilities evolve, therefore �G

R generally increases with hrf .
In contrast, in Eq. (11) �G

R decreases with hrf and is due
to the role played by the anisotropy field which effectively
acts as an additional oscillatory driving field. Therefore, the
observed response deviates from the conventional two-level
system behavior until hrf reaches the limit of 1

2 HKeff . The
numerical model shows this behavior as well. The temporal

responses presented in Fig. 4(b) show that �G
R decreases as hrf

increases up to 60 Oe ( 1
2 HKeff ). Above 60 Oe hrf overcomes

the anisotropy field and �G
R increases with hrf as expected.

C. Interaction in the presence of DC spin current

From a technological point of view, a static STT may play
an important role in the nonadiabatic interaction in magnetic
systems because it can be used to actively tune the decay
rates according to the LLGS equation [22,23]. Specifically,
STT can be used to extend the coherence time of the sys-
tem making the FM system a versatile platform for coherent
control schemes. In the model derived hereon we consider
the antidamping-like STT and assume that the spin current
is generated by the SHE in a heavy metal-FM bilayer [37].
Hence, a DC charge current of magnitude JDC

c is applied along
the x̂′ direction and generates a spin current density Jsŷ′ with
spin angular momentum aligning in the ẑ′ direction. Figure 5
illustrates the modeled geometry. The presence of spin current
introduces the torque γ HSHE, DC

Ms
( �M ′ × ( �M ′ × ŝ′)) into Eq. (1).

Here ŝ′ is a unit vector in the direction of the injected spin an-
gular momentum and HSHE, DC is the SHE parameter defined

by HSHE, DC = h̄θSHJDC
c

2eMstFM
where h̄ is the reduced Planck constant,

e is the electron charge, θSH is the spin Hall angle (SHA), and
tFM is the thickness of the FM layer into which the spin current
is injected. With these substitutions Eq. (4) becomes

�θ̇ = −1

2
γ hrf cos ϕ0�ϕ − α sin θ0�ϕ̇ − (αω − γ HSHE, DC) cos θ0�θ

sin θ0�ϕ̇ = γ

(
H0 − ω

γ

)
cos θ0�θ + 1

2
γ hrf cos θ0 sin ϕ0�ϕ + 1

2
γ hrf sin θ0 cos ϕ0�θ + α�θ̇, (12)

resulting in �σ and ��:

�σ = γ

{
1

(α2 + 1)

((
HSHE, DC − αω

γ

)2

cos2θ0 +
(

H0 − ω

γ

)2

+
(

1

2
hrf

)2

cos2ϕ0

)}1/2

	 = γ
1

2(α2 + 1)

(
2

(
αω

γ
− HSHE, DC

)
cos θ0 + α

(
H0 − ω

γ

)
cos θ0 + α

1

2
hrf sin θ0 cos ϕ0 + α

1

2
hrf

cos ϕ0

sin θ0

)
. (13)

Equation (13) shows that the spin current compensates
the Gilbert damping term according to the difference αω

γ
−

HSHE, DC. Equation (13) reveals that for the critical case of
HSHE, DC = αω

γ
which may be achieved in realistic systems

having SHA of 0.15, e.g., Pt, W [12,13] the response is al-
ways underdamped, namely, 	 < �G

R , and Rabi oscillations
appear irrespective of the magnitude of hrf . Obviously, these

oscillations still decay as 	 	= 0. To examine the influence
of the injected spin current on the existence of Rabi os-
cillations and the damping rate we explored the interaction
under resonance conditions. Figure 6 illustrates the temporal
responses from which the transition between the overdamped
and underdamped regimes for various charge current levels is
seen. The figure shows Mz as a function of hrf with α = 0.01,
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FIG. 5. Geometry of the EM rf-driven dynamics in the presence
of DC spin current indicated by �J ′DC

c in the lab frame.

Ms = 300 emu/cm3, θSH = 0.15, and tFM = 11.5 Å corre-
sponding to Ref. [37]. Figure 6(a) presents the case with no
spin current. It is seen that the transition between the over-
damped and underdamped responses occurs at hrf = 71 Oe
above which Rabi oscillations take place. When the DC
current is increased the threshold reduces up to the point
of HSHE, DC = αω

γ
[Fig. 6(c)] in which the oscillations are

obtained for any value of hrf . As the DC current is further in-
creased, the threshold in hrf increases again [Figs. 6(d)–6(f)].
This behavior stems from the fact that when α <

γ HSHE, DC

ω

the term 2γ ( αω
γ

− HSHE, DC) cos θ0 in Eq. (13) adds a positive
contribution to the damping rate. Thus, at high DC currents
the Rabi oscillations eventually become overdamped. Most
importantly, Fig. 6 shows that when Rabi oscillations take

place the coherence times can be tuned by the DC spin current.
This is seen from the varying decay rates as marked by the
guiding red dashed lines in Figs. 6(a)–6(c). It is seen that as
JDC

c increases to the critical value (2.5 × 106 A/cm2 in our
case) the coherence times extend.

D. AC STT-driven nonadiabatic dynamics

Inclusion of AC charge current creates an AC STT which
serves as an alternative driving force. A driving force of this
kind is advantageous over the rf-driven case for scalability
purposes since it does not require a radiating microantenna
but only physical contact to the device. However, the AC
STT driving force has a different nature compared to the
ordinary Zeeman oscillatory magnetic field. We include the
AC STT by replacing �h′

rf in Eq. (1) with an AC charge
current density �J ′AC

c = J0 cos(ωt )ŷ′. The AC charge current
is converted by the SHE to an AC spin current density Jsẑ′
having ŝ′ in the x̂′ direction which introduce a STT term
of γ hSHE, AC

Ms
( �M ′ × ( �M ′ × ŝ′)) in Eq. (1). hSHE, AC is the SHE

parameter as in Sec. II C, that refers now to an AC current.
The geometry is presented in Fig. 7(a). The �J ′AC

c direction was
chosen such that ŝ′ is orthogonal to the static magnetization
equilibrium vector in the lab frame �M ′

0. Following lineariza-
tion, the AC STT in the lab frame equals approximately
γ hSHE, AC

Ms
( �M ′

0 × ( �M ′
0 × ŝ′)). Thus, if �M ′

0 and ŝ′ are collinear, the
AC STT vanishes. The time-dependent equations become

�θ̇ = 1

2
γ hSHE, AC cos θ0 sin ϕ0�ϕ + 1

2
γ hSHE, AC sin θ0 cos ϕ0�θ − α sin θ0�ϕ̇ − αω cos θ0�θ ,

sin θ0�ϕ̇ = γ

(
H0 − ω

γ

)
cos θ0�θ + 1

2
γ hSHE, AC cos ϕ0�ϕ + α�θ̇, (14)

and �σ and 	 for this case are given by

�σ = γ

{
1

(α2 + 1)

((
αω

γ

)2

+
(

H0 − ω

γ

)2

cos2θ0 +
(

1

2
hSHE, AC

)2

cos2ϕ0

)}1/2

	 = γ
1

2(α2 + 1)

(
αω

γ
cos θ0 + 2α

(
H0 − ω

γ

)
cos θ0 − 1

2
hSHE, AC sin θ0 cos ϕ0 − 1

2
hSHE, AC

cos ϕ0

sin θ0

)
. (15)

FIG. 6. Temporal responses as a function of hrf calculated numerically for JDC
c levels of 0 A/cm2 to 8 × 106 A/cm2 [(a) to (f)]. The red

dashed guiding lines indicate the varying decay rates.
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FIG. 7. FM system driven by AC STT. (a) Geometry of the AC STT driven nonadiabatic dynamics. (b) Response on resonance (H0 − ω

γ
) =

0 for AC charge current density �J ′AC
c with amplitude of J0 = 1 × 106 A/cm2 and α = 0.001. (c) Normalized and shifted temporal responses as

a function of H0 calculated numerically for the same J0 value as in (b) and α = 0.005.

To understand the general behavior of the solution we
assume very small α and resonance conditions. From Eq. (15)
it is seen that 	 takes a nonzero value even when α → 0;
thus, the AC STT contributes to the decay term. From steady
state we find (θ0, ϕ0) = (90◦, 180◦). Substituting (θ0, ϕ0)
into Eq. (15) we get �G

R = 0. Hence, the response is over-
damped [Fig. 7(b)] regardless of the hSHE, AC value even in the
absence of damping in contrast to the hrf -driven case. It can
be further verified that the overdamped response persists in
the vicinity of resonance as long as |(H0 − ω

γ
)| < 1

2 hSHE, AC.
This distinctly different behavior of the AC STT compared
to the rf magnetic field case can be understood by observing
Eq. (8) in the rotating frame in which �hrf appears in the
primary torque term −γ �M × (( �H0 − �ω

γ
) + �hrf ). In contrast,

when the system is driven solely by AC STT the primary
torque vanishes on resonance, leaving only the AC damp-
inglike STT. For this reason, an additional DC STT cannot
excite Rabi oscillations under resonance conditions, but only
change the steady state. Away from resonance conditions and
for |(H0 − ω

γ
)| > 1

2 hSHE, AC Rabi oscillations are observable.

When losses are included in addition, a DC STT applied in the
geometry of Sec. II C affects the losses in the same manner
as in the �hrf case where it extends the coherence time as
long as HSHE, DC � αω

γ
. When HSHE, DC > αω

γ
, the coherence

time decreases and for relatively high HSHE, DC values the
oscillations are totally suppressed. In the current analysis, the
fieldlike term of the AC STT was neglected since in many
material systems it is much smaller than the dampinglike term.
However, when the fieldlike term is not negligible, it can
excite Rabi oscillations even on resonance because its form is
identical to the �hrf torque and hence appears in the primary
precessional torque term of Eq. (8). Figure 7(c) shows the
temporal responses of Mz as a function of H0. It is readily seen
that despite the differences between the �hrf and the AC STT
cases especially on resonance, the AC STT-driven dynamics
qualitatively behave in the same manner as the �hrf -driven
interaction [Fig. 2(d)].

Finally, when the magnetic anisotropy is included, it can
be verified that for the same geometry introduced earlier
(Sec. II B 4), Eq. (15) takes the form

�σ = γ

{
1

(α2 + 1)

((
αω

γ

)2

− 1

2
hSHE, AC

(
H0 − ω

γ

)
cos2θ0 sin ϕ0

sin θ0

+ 1

2
hSHE, AC

1

2
Hkeff

cos 2θ0 cos θ0 sin ϕ0

sin θ0
+

(
1

2
hSHE, AC

)2

cos2ϕ0

)}1/2

	 = γ
1

2(α2 + 1)

(
αω

γ
cos θ0 + α

(
H0 − ω

γ

)
cos θ0 − α

1

2
Hkeff cos 2θ0

− α
1

2
hSHE, AC

cos θ0 sin ϕ0

sin θ0
− 1

2
hSHE, AC sin θ0 cos ϕ0 − 1

2
hSHE, AC

cos ϕ0

sin θ0

)
. (16)

For α → 0 and resonance conditions the steady-state
equations give ϕ0 = 90◦ and the condition for θ0 is
sin 2θ0 = hSHE, AC/0.5HKeff , for hSHE, AC < HKeff . Inserting
these conditions into Eq. (16), we get �G

R = √
�2

σ − 	2 =√
1
2γ hSHE, AC

1
2γ Hkeff

cos 2θ0 cos θ0
sin θ0

. Thus, when the anisotropy

fields are included, �G
R 	= 0 and Rabi oscillations take place

on resonance (quasiresonance).

III. SUMMARY

In this work we examined the nonadiabatic interaction
which is the basis for coherent control schemes in mag-
netic materials and relied on a hybrid two-level/adiabatic
interaction in FMs formalism. We explored the ordinary nona-
diabatic interaction driven by rf field and mapped the condi-
tions for reaching the Rabi oscillations for which coherent
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control is made possible. We studied the energy transfer
rates and showed that at large angles of precession and large
α values the absorption and emission rates become highly
nonsymmetric. Furthermore, this nonlinear nonadiabatic re-
sponse provided an additional way to investigate the loss
mechanisms. We demonstrated that it is possible to control
the effective coherence time by the injection of DC current
and explored the nonadiabatic interaction in a system driven
by an alternative driving source, namely, the AC STT, and
concluded that there are no Rabi oscillations on resonance, as
long as the AC STT fieldlike term is negligible. However, it is

possible to get on-resonance Rabi oscillations if the fieldlike
term is non-negligible and this can motivate the search for
magnetic materials that possess significant STT fieldlike term.
Extensions of our work include complementing the existing
experimental work to fully map the nonadiabatic regime in
FM systems as well as to discuss a truly coherent control
scheme that relays on the principles outlined here as well as
coherent spin current amplification schemes (to be discussed
in a follow-up paper). Further into the future, STT can be
utilized as a versatile platform for coherent control schemes
to be used in the manipulation of Qubits.
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