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Mean-field study of the Bose-Hubbard model in the Penrose lattice
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We examine the Bose-Hubbard model in the Penrose lattice based on inhomogeneous mean-field theory.
Since the averaged coordination number in the Penrose lattice is four, the mean-field phase diagram consisting
of the Mott insulator (MI) and superfluid (SF) phase is similar to that of the square lattice. However, the spatial
distribution of the Bose condensate in the SF phase is significantly different from uniform distribution in the
square lattice. We find a fractal structure in its distribution near the MI-SF phase boundary. The emergence of
the fractal structure is a consequence of the cooperative effect between quasiperiodicity in the Penrose lattice
and criticality at the phase transition.
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I. INTRODUCTION

Quasicrystals have aperiodic structure different from fully
disordered ones. Although translational symmetry is absent,
the presence of sharp spots in Bragg reflection indicates long-
range order [1,2]. Quasicrystals can be realized even in bilayer
graphene [3] and photonic lattices [4]. In addition to vari-
ous characteristics due to aperiodicity [5,6], recent findings
expand the field of quasicrystal to include superconductivity
[7–10], quantum criticality [11,12], and topology [13–17]. In
general, self-similarity in quasicrystals dictates fractal struc-
ture in wave functions and phase diagrams [18,19]. This
characteristic is justified by the presence of the inflation and
deflation rules to construct quasicrystals [20].

One of the well-known two-dimensional quasicrystals is
the so-called Penrose lattice [21,22]. One can construct the
lattice using inflation, projection, or multigrade rules. The
Penrose lattice has been studied intensively [23–32] and its
structure dictates thermodynamically degenerate states in the
energy spectrum [33,34].

Ultracold gases in optical lattices provide us an ideal
playground of strong correlation [35] and also quasicrys-
tals [36–41], which allows us to investigate the interplay
of strong correlation and aperiodicity. A typical strongly
correlated system in an optical lattice is the Bose-Hubbard
model, where a phase transition between the Mott insulator
(MI) to superfluid (SF) phase appears [42,43] as experi-
mentally observed [44,45]. The Bose-Hubbard model is also
used to describe the effective low-energy theory of super-
conducting films and arrays of Josephson junctions [46–48].
Recent achievements in establishing an eightfold rotationally
symmetric optical lattice attract attention [49] in connection
with theoretical investigation of an extended Bose-Hubbard
with quasicrystalline confined potential [50], where sponta-
neous breaking of underlying eightfold symmetry is observed.
However, the effect of aperiodicity in the Bose-Hubbard
model is not yet fully understood both theoretically and
experimentally.

In this paper, we investigate the phase diagram of the Bose-
Hubbard model in the Penrose lattice. We use a self-consistent
mean-field theory and find that the distribution of Bose con-
densate in the Penrose lattice exhibits a fractal structure near
the MI-SF boundary. We attribute the appearance of the fractal
structure to a consequence of the divergence of correlation
length seen in any phase transition. Therefore, the fractal
structure is a common signature of continuous phase transition
in quasiperiodic systems.

The arrangement of this paper is as follows. In Sec. II,
we describe our Bose-Hubbard model on the Penrose lattice
and mean-field treatment. The classification of lattice sites
(vertices) is also introduced. In Sec. III, we discuss the result
of phase diagram, local SF amplitude, and a critical behavior
of several quantities. A fractal structure near the phase tran-
sition in the perpendicular space in the Penrose lattice is also
discussed. Finally, a summary is given in Sec. IV.

II. MODEL AND METHOD

The Hamiltonian of the single-band Bose-Hubbard model
is defined by

HBH = −J
∑
〈i, j〉

(b̂†
i b̂ j + b̂†

j b̂i ) − μ
∑

i

n̂i + U

2

∑
i

n̂i(n̂i − 1),

(1)

where b̂i and b̂†
i are annihilation and creation operators of

bosons at site i and the number operator n̂i = b̂†
i b̂i. We refer

the site to vertex, which is denoted by circles in Fig. 1(a). The
summation 〈i, j〉 represents all pairs of vertices that form a
link in the Penrose lattice shown as short bar connecting two
vertices in Fig. 1(a). J , μ, and U in Eq. (1) are the hopping
energy of boson, the chemical potential, and on-site Coulomb
interaction, respectively. We note that hopping processes
with the shortest intervertex distance, for example, hopping
between numbers 8 and 9 in Fig. 1(a), are not included in
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FIG. 1. (a) Part of Penrose lattice. The number and color in each
vertex indicate the index α of vertices among 27 different kinds of
vertices. (b) Perpendicular space of Penrose lattice for Z = 1 and
(c) that for Z = 2. The number is the same as (a). Different colors in
(b) and (c) distinguish different sections in perpendicular space.

Eq.(1). This exclusion guarantees bipartite properties of this
Penrose lattice.

Because of the presence of the hopping term in Eq. (1),
the exact solution is inaccessible. Therefore, we use a mean-
field technique and decouple the hopping term using local SF
amplitude 〈b̂i〉. The resulting mean-field Hamiltonian is given
by HMF = ∑

i Hi + E0 with

Hi = −J
(
ψ∗

i b̂i + H.c.
) − μn̂i + U

2
n̂i(n̂i − 1), (2)

where ψi = ∑
j〈b̂ j〉 with summation over vertexes connected

to the vertex i by a link and E0 = J
∑

ψ∗
i 〈b̂i〉.

To obtain a self-consistent solution of Eq. (2) in the local
Hilbert space containing maximally nb bosons, we start with
an initial ψi and then calculate 〈n̂i〉 and 〈b̂i〉 using the ground-
state wave function for each vertex. We continue updating
ψi until the convergence of 〈n̂i〉 and 〈b̂i〉 is obtained within
a certain tolerance (10−9 in our case). This self-consistent
procedure gives rise to site-dependent distribution of 〈n̂i〉 and

〈b̂i〉 on the Penrose lattice. This technique is sometimes called
inhomogeneous mean-field theory [51,52], which gives equiv-
alent results with variational Gutzwiiler method [53–60]. We
note that this self-consistent procedure gives moderately con-
sistent results compared by quantum Monte Carlo simulations
in determining the phase diagram of the Bose-Hubbard model
with nearest neighbor repulsion interaction [61].

We take nb = 7. Within our mean-field theory, we gener-
ally find the MI and SF phases in the Bose-Hubbard model. In
the MI phase, all sites have equal integer number of bosons
and thus 〈b̂i〉 = 0. On the other hand, 〈b̂i〉 is nonzero for
the SF phase. In our method, we find order parameters on
all vertices. Therefore, we can check the existence of exotic
states like Bose-glass, supersolid, and density-wave phases.
We did not see these phases in our model. This is reasonable
because the Bose glass usually needs any disorders and a
lack of intervertex interactions in our model should make the
supersolid and density wave unstable [52,57,62]. To minimize
the boundary effects, we apply periodic boundary conditions
(PBC) in an approximant of Penrose lattice containing N =
167761 vertices (for details, see the Appendix) [63–65].

In the Penrose lattice, a classification of vertices based
on local environment is useful. For this classification, we
first label vertices with their coordination number M, i.e., the
number of different paths using one link from a given vertex.
This is shown in Figs. 2(a) and 2(b) by numbers on vertices
of Penrose lattice. We can find that M ∈ {3, 4, 5, 6, 7}. There-
fore, all vertices can be classified into five different classes
using their coordination number. Next, we define m(l )

k=1 as the
number of one-linked path (k = 1) connecting from a given
vertex to vertices labeled with l ∈ {3, 4, 5, 6, 7}. For instance,
consider central vertex highlighted by a blue disk in Fig. 2(a).
It is easy to check that there are (is) six vertices (one vertex)
labeled with 3 (5) connected by one link from the central
vertex, which are highlighted by blue color for both links and
vertices in Fig. 2(b). Using a set of m(l )

1 , we can subdivide
vertices of the same coordination number M. For this propose,
we relabel all vertices with(

m(3)
1 , m(4)

1 , m(5)
1 , m(6)

1 , m(7)
1

)
,

leading to 14 kinds of vertices with different sets of m(l )
1 :

(0, 0, 3, 0, 0), (0, 1, 1, 1, 0), (0, 1, 1, 0, 1), (0, 0, 2, 1, 0),
(0, 0, 2, 0, 1), (2, 0, 2, 0, 0), (5, 0, 0, 0, 0), (4, 0, 1, 0, 0),
(4, 0, 0, 1, 0), (3, 1, 0, 1, 0), (2, 2, 0, 0, 1), (0, 0, 5, 0, 0),
(3, 0, 3, 0, 0), (6, 0, 1, 0, 0).

(3)

For instance, the central vertex labeled with 7 (M = 7) in
Fig. 2(b) is relabeled with (6,0,1,0,0), and the M = 5 vertex
located the left hand side of the M = 7 vertex is relabeled with
(2,2,0,0,1). Other sets of m(l )

1 not listed in Eq. (3) are absent
in the Penrose lattice. Note that different sets of m(l )

1 mean
different local environments obtained by only one link.

We can further subdivide vertices by using longer paths.
For this, let us consider paths from a given vertex using two
links. We define m(l )

k=2 as the number of the two-link paths
that connect the given vertex to vertices with coordination
number M = l . As an example, we show in Fig. 2(c) all 23
paths obtained by using two links from the central vertex with
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FIG. 2. (a) Part of Penrose lattice. Vertices are labeled with coor-
dination number M. The central site with M = 7 is shown by a blue
disk. (b) The same as (a) but all one-link paths and their end vertices
from the central M = 7 vertex are highlighted with blue bars and
disks. (c) All possible two-link paths from the central M = 7 vertex.
There are 23 panels. The two links are denoted by blue bars. The red
and green dots indicate the central vertex and vertex accessed by the
one link, respectively. The number on vertices accessed by the two
links indicates the coordination number on the vertices. Panels in two
rows from the bottom represent the cases where the two links are the
same, i.e., the starting vertex and the end vertex are the same.

M = 7 in Fig. 2(a). Then we can introduce labeling using both
m(l )

k=1 and m(l )
k=2,(

m(3)
1 , m(4)

1 , m(5)
1 , m(6)

1 , m(7)
1 , m(3)

2 , m(4)
2 , m(5)

2 , m(6)
2 , m(7)

2

)
.

For instance, using Fig. 2(b) for m(l )
k=1 and Fig. 2(c) for m(l )

k=2,
we can label the central vertex with M = 7 in Fig. 2(a) with
(6,0,1,0,0,2,4,10,0,7). Performing this procedure for all ver-
tices in the supercell of Penrose approximant with PBC, we
find that there are 27 kinds of vertices with different sets of
m(l )

k=1 and m(l )
k=2, by which almost the whole system is covered.

This means that there are 27 types of vertices when we focus
on two-link paths. These 27 sets of ml

k�2 are listed in Table I,
where we define α(= 1, 2, . . . , 27) to label different sets.
The coordination number of each set, M, is presented in the
second row of Table I, while m(k)

1 are shown in the third to
seventh rows. It is easy to check that there is only 14 different
sets for ml

k=1 in Table I as in Eq. (3). Vertex configuration
using two-link paths, m(l )

k=2 is given in the eighth–12th rows of
Table I. We note that, in our approximant periodic lattice with
N = 167761 vertices, there are vertices that do not belong to
the 27 types around defects, but we can ignore them since the
total number of the defects is just 2.

Even for longer paths using more than two links, we can
also define m(l )

k for k > 2. Using these m(l )
k , we further classify

vertices with different types. We call the number of distinct
vertices for a given k the number of classes (NoC). For ex-
ample, NoC is equal to 5, 14, and 27 for k = 0, 1, and 2,
respectively. Note that NoC = 5 for k = 0 corresponds to
the five sets of the coordination number M. We draw a small
portion of Penrose lattice in Fig. 1(a), where each vertex
has an index α(= 1, 2, · · · , 27) and color indicating its class
obtained for k = 2. We can increase k as many as possible.
We find NoC ∝ k1.84 in the large k region (discussed below).
We will come back to this point later.

Vertex coordinates in the Penrose lattice can be found by
using the cut and projection method from five-dimensional
hypercubic lattice [28] (see the Appendix for more details). In
this method, we first distinguish two-dimensional real space
accommodating the Penrose lattice and three-dimensional
complementary space perpendicular to the real space. The
orthonormal unit vectors of these spaces are on the skew with
respect to the primitive vectors of five-dimensional hypercu-
bic lattice. With an appropriate skew, we can find every vertex
of the Penrose lattice in projected vertices of the hypercubic
lattice into the real space, while improper vertices are also
included. To eliminate these improper vertices, we use the
perpendicular space as follows. Before projecting a vertex
into the real space, we consider projection of the vertex into
the perpendicular space. If the projected vertex is not located
inside a specific rhombic icosahedron defined in the perpen-
dicular space (see the Appendix for the exact definition),
we exclude the vertex from the five-dimensional hypercubic
lattice. In this manner, we can eliminate the improper vertices
in advance. Therefore, every proper vertex corresponding to
the Penrose lattice is located inside the rhombic icosahedron
when we project it into the perpendicular space.

Interestingly, the projected vertices into the perpendicular
space are located on only four pentagonal planes in the rhom-
bic icosahedron, which we label with Z = 1, 2, 3, 4 along the
axis perpendicular to the planes [see Figs. 1(b) and 1(c) for
Z = 1 and 2, respectively]. Furthermore, the perpendicular
space, namely the four pentagons, can help us to classify the
vertices in the same manner explained above, i.e., the set of
m(l )

k as local environments of the vertices. We can divide per-
pendicular space into symmetric sections, where each section
represents vertices with a similar local environment or equiv-
alently m(l )

k . Therefore, one notices the index α in Fig. 1(a)
mapped to different sections in the perpendicular space [see
Figs. 1(b) and 1(c)]. We note that Penrose lattice’s bipartite
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TABLE I. Link configuration of distinct vertices in Penrose lattice. Listed are index α determined in the present work, coordination number,
M, the number of vertices having l links, to which one can access using k links, m(l )

k (l = 3, 4, 5, 6, 7).

α 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

M 3 3 3 3 3 3 3 3 3 3 3 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 7

m(3)
1 0 0 0 0 0 0 0 0 0 0 0 2 2 2 5 5 5 4 4 4 4 4 3 2 0 3 6

m(4)
1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0

m(5)
1 3 3 3 1 1 1 2 2 2 2 2 2 2 2 0 0 0 1 1 1 1 0 0 0 5 3 1

m(6)
1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

m(7)
1 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

m(3)
2 11 10 9 9 12 12 11 15 14 14 13 6 5 4 0 0 0 0 0 0 0 3 5 10 20 10 2

m(4)
2 2 3 4 0 0 0 0 0 0 1 1 4 5 6 0 0 0 2 2 2 0 2 0 0 0 4 4

m(5)
2 0 0 0 6 4 3 5 2 3 1 1 2 2 2 15 13 11 11 11 11 13 9 12 11 5 4 10

m(6)
2 2 1 0 0 0 1 0 0 0 1 2 4 2 0 0 0 0 4 2 0 0 0 0 0 0 6 0

m(7)
2 0 1 2 0 0 0 0 0 0 0 0 0 2 4 0 2 4 0 2 4 4 4 2 0 0 0 7

property leads to Z = 1, 3, and Z = 2, 4 belong to different
subsystems, though the same α is shared among them.

III. RESULTS

We first examine the phase diagram of the Bose-Hubbard
model on the Penrose lattice. From the calculation of two or-
der parameters per vertex, 〈n̂i〉 and 〈b̂i〉, for the Bose-Hubbard
model without disorder and/or inter-site interaction, we ex-
pect two phases: one is MI with 〈b̂i〉 = 0 and 〈n̂i〉 = n0 (n0 =
1, 2, · · · , corresponding to bosonic occupation number at each
vertex), and the other is SF with 〈b̂i〉 �= 0. In fact, we find
none of Bose-glass, density wave, and supersolid phases in
the phase diagram. Figure 3 shows the phase diagram, where
we find MI phases denoted by MIn0 and SF. Since averaged
coordination number in the Penrose lattice is z̄ = 4, which
is the same as the coordination number z = 4 in the square
lattice, the phase boundary between MI and SF is expected
to be similar to that of the square lattice. This is the case as
shown by the dashed orange curve along MI lobes in Fig. 3,
which is the mean-field phase boundary for the square lattice
given analytically [66,67] by

zJc/U = − μ

U − (
μ

U

)2 + s + 2 μ

U s − s2

1 + μ

U

, (4)

where s = round(μ/U + 1/2). The similarity indicates small
effect of aperiodicity on the phase boundary.

In the SF phase of square lattice, the local SF amplitude
〈b̂i〉 is uniform, i.e., independent of i, for any region in the
phase diagram. On the other hand, nonuniform distribution of
〈b̂i〉 in the Penrose lattice is easily expected from the presence
of different types of vertices as shown in Fig. 1(a). Then, an
arising question is how its nonuniform distribution changes
in the phase diagram. To see this, we define an α-dependent
average of 〈b̂i〉 as bα = N−1

α

∑
i∈α〈b̂i〉, where Nα is the num-

ber of α-type vertex in the whole lattice. This quantity can
distinguish the 27 classes of vertices. However, each class
should have further internal structure coming from possible
extension of NoC for k � 3. To recognize this structure, we

also define a mean deviation of local SF amplitude distribution

as δbα =
√

N−1
α

∑
i∈α (〈b̂i〉 − bα )2.

With approaching phase transition from the SF side, the
average value of local SF amplitude, b = ∑

i〈b̂i〉/N with N =∑
α Nα , reduces its value toward zero as shown in the inset

of Fig. 4(a). At the same time, both bα and δbα become
smaller. Therefore, we use δbα/b to evaluate the magnitude

FIG. 3. Phase diagram of the Bose-Hubbard model on the Pen-
rose lattice. The white area with the shape of lobes corresponds
to the MI phase with n0 bosons in all vertices, denoted by MIn0

(n0 = 1, 2, · · · ). In the SF phase, the number of gap (NoG) for a
threshold value of 10−7 defined in the text is plotted with color scale.
The analytical MI-SF mean-field phase boundary for the square
lattice in Eq. (4) is plotted by the orange dashed curve.
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FIG. 4. (a) Averaged order parameters bα/b and mean devia-
tion δbα/b as a function of z̄J/U along the horizontal dotted line
(μ/U = 0.8) in Fig. 3. The colored curves represent bα/b. The bars
centered at each curve represent δbα/b. The color scheme is the same
as Fig. 1(a) and the number denoted at the right-hand side indicates
each class α as shown in Fig. 1(a). Inset shows averaged order
parameter b. (b) Log-log plot of the number of gaps (NoG) defined in
the text as a function of z̄(J − Jc )/U along the horizontal dotted line
in Fig. 3. The brown, purple, blue, and red circles represent NoG for
threshold values of 10−5, 5 × 10−6, 10−6, 5 × 10−7, respectively. The
lines represent fitting function denoted by the corresponding color,
where x = z̄(J − Jc )/U . (c) Log-log plot of the number of classes
(NoC) as a function of the number of links k. The blue line represents
a fitting function shown in the figure.

of the mean deviation of δbα . Note that the larger δbα/b is, the
deeper the internal structure is.

In Fig. 4(a), we plot bα/b and δbα/b as a function of z̄J/U
along the horizontal dotted line (μ/U = 0.8) in Fig. 3. We
note that δbα/b is denoted by the length of bars for each
bα/b. At large z̄J/U far from the phase boundary, bα/b is
tend to be grouped accompanied by negligibly small δbα/b.
In the limit of z̄J/U → ∞, bα/b is grouped into five classes
equivalent to the coordination number, i.e., NoC for k = 1.
This means that, if correlation effect is small, the coordination
number controls physical properties as expected. On the other
hand, with approaching z̄J/U to the phase boundary, the mean
deviation δbα/b becomes large. This means that the number of
distinct vertices with different local SF amplitudes increases
with approaching the boundary. In other words, long-distant

correlation becomes important to obtain critical behaviors
near the phase transition.

To make critical behaviors visible, we introduce a new
quantity that can characterize distinct number of vertices
more than 27. We use 〈b̂i〉 itself for this purpose, and try
to find how many distinct values exist with approaching to
the phase boundary. For distinguishing different value of
local SF amplitude, we (i) make shifting and scaling for
〈b̂i〉 to be located within [0,1]. This is done by evaluating
(〈b̂i〉 − min[{〈b̂i〉}])/(max[{〈b̂i〉}] − min[{〈b̂i〉}]), where min
and max denote minimum and maximum among all values
of local SF amplitude, respectively. Then, we (ii) sort the
scaled 〈b̂i〉 from 0 to 1, (iii) calculate the difference of 〈b̂i〉
between i and i + 1 from i = 1 to i = N − 1, and (iv) count
the number of the difference (gap) whose magnitude is more
than a given small threshold value. We call this number the
number of gap (NoG). For example, NoG is zero for the
square lattice because 〈b̂i〉 is independent of i. In the Pen-
rose lattice, we have NoG = 4 in the large limit of z̄J/U
since there are five distinct values of 〈b̂i〉. We show log-log
plot of NoG in Fig. 4(b) along the horizontal dotted line in
Fig. 3, where four different threshold values, 10−5, 5 × 10−6,
10−6, and 5 × 10−7 are used. With approaching to the phase
boundary at z̄Jc/U ≈ 0.0835, NoG increases, indicating the
increase of distinct vertices with different local SF amplitude.
Interesting is that, with decreasing the threshold value, NoG
rapidly increases near the boundary and shows a diverging be-
havior with an approximate exponent around −0.9, i.e., NoG
∝ (J − Jc)−0.9. This resembles to a critical behavior toward
continuous phase transition as suggested from the vanishing
of averaged order parameter b̄ [see inset of Fig 4(a)].

To understand this diverging behavior more, we focus on
the fact that the increase of NoG corresponds to the increase of
distinct vertices with different local SF amplitude. The latter is
measured by NoC, whose large region is proportional to k1.84

as shown in Fig. 4(c). Therefore, diverging behavior in NoG
is directly connected to diverging behavior in NoC at large k.
Since k represents the number of links from a given vertex,
we may regard k as a measure of correlation length ξ from a
given vertex. Based on this reasoning, we have NoG ∝ NoC ∝
k1.84 ∝ ξ 1.84. Since ξ ∝ (J − Jc)−0.5 for the mean-field phase
transition, we finally expect that NoG ∝ (J − Jc)−0.92, whose
exponent is close to the calculated one in NoG, ≈ −0.9. This
indicates that diverging behavior in NoG is a consequence of
criticality in the mean-field phase transition. We note that this
critical behavior does not appear if μ/U = n0 and J/U → 0.
We suggest that the assumption of ξ ∝ k may change if we
alter the class of universality. We leave this to future work.

Usefulness of perpendicular space presentation has already
been found in considering magnetism on the Penrose lattice
[25,28]. Therefore, we show the perpendicular space repre-
sentation of 〈b̂i〉 in Fig. 5 for two sets of parameters at the
end of the red dashed line in Fig. 3. We recognize notable
differences in the two cases. For the parameter far from the
phase boundary, we find 14 distinct sections in Figs. 5(c)
and 5(d). The number corresponds to the number of distinct
vertices obtained by setting k = 1 as discussed above. On the
other hand, for the parameter close to the phase boundary, we
can see a fractal structure in Figs. 5(a) and 5(b). For example,
we find a various size of star structure inside stars. We can
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FIG. 5. Representation of vertex local superfluid amplitude in perpendicular space (Z = 1, 2) for (a,b) (μ/U, z̄J/U ) = (0.8, 0.084) and
for (c,d) (μ/U, z̄J/U ) = (0.8, 0.18). The numbers in color bars show extremes of local superfluid amplitude for given parameters.

understand the emergence of the fractal structure near the
phase transition as follows. Because of diverging behavior in
NoG near the MI-SF phase boundary, all distances become
relevant. We have found from the previous discussion that
tracing far distant links by increasing k enhances NoC dra-
matically. Therefore, we can expect further distinguishable
sections in the perpendicular space, resulting in fractal nature.
In other words, a combination of criticality leading to phase
transition and aperiodicity is a key for the emergence of fractal
structure.

IV. CONCLUSION

We have obtained a mean-field phase diagram in the
Penrose-Bose-Hubbard model. We have found that the Pen-
rose lattice does not change the MI-SF boundary drastically
in comparison with a square lattice. However, the spatial dis-
tribution of a Bose condensate is unequal, and indeed fractal
structure appears in the perpendicular representation of lo-
cal SF amplitude near the MI-SF phase transition. This is a
consequence of the cooperative effect of criticality leading to
phase transition and quasiperiodicity, which is expected to be
a common feature in aperiodic strongly correlated systems.
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APPENDIX: PERIODIC BOUNDARY CONDITION AND
PERPENDICULAR REPRESENTATION IN PENROSE

LATTICE

In this Appendix, we explain how to construct a two-
dimensional finite-size Penrose lattice with periodic boundary
condition systematically. To make a finite-size Penrose lattice,
a cut-and-projection method is well known and established. In
this method, we first consider a hypercubic lattice in a five-
dimensional space consisting of two-dimensional real space
and three-dimensional perpendicular space. Five primitive
vectors of the hypercubic lattice are given by

ei = (δi,1, δi,2, δi,3, δi,4, δi,5) (i = 1, 2, · · · , 5). (A1)

Thus, vertices on the hypercubic lattice are written by nk =∑5
i=1 nk,iei, where k is the vertex number and nk,i ∈ Z.

Here, we introduce the real (perpendicular) space as a two-
dimensional plane (three-dimensional space) constructed by
orthonormal vectors v1 and v2 (v3, v4 and v5) defined by

v1 =
√

2

5
(1, cos φ, cos 2φ, cos 3φ, cos 4φ), (A2)

v2 =
√

2

5
(0, sin φ, sin 2φ, sin 3φ, sin 4φ), (A3)

v3 =
√

2

5
(1, cos 2φ, cos 4φ, cos φ, cos 3φ), (A4)

v4 =
√

2

5
(0, sin 2φ, sin 4φ, sin φ, sin 3φ), (A5)

v5 =
√

1

5
(1, 1, 1, 1, 1), (A6)

with φ = 2π/5. To project five-dimensional vertices into the
real and perpendicular spaces, we use projection matrices,

Pr =
2∑

i=1

e(r)
i ⊗ vi, Pp =

3∑
j=1

e(p)
j ⊗ v j+2, (A7)

where unit vectors in real and perpendicular spaces are given
by e(r)

i = (δi,1, δi,2)r and e(p)
j = (δ j,1, δ j,2, δ j,3)p for i = 1, 2

and j = 1, 2, 3, respectively. By using the projection matri-
ces, the real- and perpendicular-space vertices are obtained
by v

(r)
k = Prnk = (nk · v1, nk · v2)r and v

(p)
k = Ppnk = (nk ·

v3, nk · v4, nk · v5)p. As confirmed easily, we can find all ver-
tices in a Penrose lattice as the vertices of hypercubic lattice
projected into the real space, e.g., five vertices nk = ek for
k = 1, 2, · · · , 5 give five apices of pentagon (star) located on
the origin.

However, the projected vertices obviously include un-
wanted vertices for a Penrose lattice. To exclude these
unwanted vertices, we use a three-dimensional window in
the perpendicular space. The window is a rhombic icosa-
hedron constructed by five vectors d (p)

i = Ppei; inner space
of the window is given by W = {∑5

i=1 rid
(p)
i | ri ∈ [0, 1)}. If

a projected vertex into the perpendicular space Ppnk is out
of the window, we ignore a projected vertex of nk into the
real space. Through this procedure, we exclude the unwanted
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FIG. 6. An approximant of Penrose lattice with an approximated
golden ratio τ ≈ τ3 = 3/2, including Nv = 76 vertices in a unit
cell. With periodic boundary condition, orange crosses on the up-
per (green stars on the right) boundaries are identified with purple
crosses on the lower (blue stars on the left) boundaries.

vertices for a Penrose lattice [68]. Note that the allowed ver-
tices nk are classified into four groups by an integer index
Z = √

5nk · v5 = 1, 2, 3, 4 corresponding to z component of
the perpendicular space, i.e., four planes in the perpendicular
space. Therefore, the four planes restricted in the window
include all vertices giving a Penrose lattice.

Next, we move to a Penrose lattice with periodic boundary
condition, which corresponds to an approximant of a Penrose
lattice. To obtain the approximant, we use a multigrid method
as follows [64]. In this method, we make a Penrose lattice or
its approximant in two steps: (i) find a five-dimensional inte-
ger vector n(x) as a function of two-dimensional real vector x
and (ii) make a vertex of the Penrose lattice or its approximant
with v(r)(x) = Prn(x) = ∑5

i=1 ni(x)d (r)
i where d (r)

i = Prei. As
explained above, if the integer vector n(x) includes all vectors
consisting of arbitrary integers ni ∈ Z, unwanted vertices are
also included in a Penrose lattice obtained by the step (ii) with
n(x). To exclude unwanted vertices, interestingly, we only

consider the integer vector given by

ni(x) = ⌊
x · d (r)

i − γi
⌋
, (A8)

where the floor function a� denotes the largest integer less
than or equal to a, and γi is an arbitrary real number satisfying∑5

i=1 γi ∈ Z. In this equation, the floor function gives an
integer indexing a neighboring vertex of x, and γi plays the
role of window [65]. Therefore, if we search all integer vectors
n(x) in a two-dimensional certain finite space x ∈ Sr , we
can obtain a finite-size Penrose lattice around the space Sr .
However, this procedure usually requires a careful searching
without dropping any vertices. To find the set of integer vec-
tors n(x) efficiently, we use a recursive algorithm proposed
in Ref. [69].

On the other hand, to approximate the Penrose lattice to
a periodic lattice, we substitute in Eq. (A8) for the quasiunit
vectors d (r)

i rewritten by

d (r)
1 =

√
2

5
(1, 0)r,

d (r)
2 =

√
2

5
(cos φ, sin φ)r,

d (r)
3 = −d (r)

1 + τ−1d (r)
2 ,

d (r)
4 = −τ−1

{
d (r)

1 + d (r)
2

}
,

d (r)
5 = τ−1d (r)

1 − d (r)
2 . (A9)

Here, the golden ratio τ = (1 + √
5)/2 is approximated by

a rational number τn ≡ Fn+1/Fn −→
n→∞ τ , where Fn is the nth

Fibonacci number. With the rational number τn, the quasiunit
vectors give a large unit cell with translational symmetry.
Therefore, we obtain an approximant of the Penrose lat-
tice as the unit cell including Nv = 4F2n+1 + 3F2n vertices.
Figure 6 represents an approximant with n = 3, which con-
tains Nv = 76 vertices as a unit cell. Note that the upper (right)
and lower (left) boundaries of this approximant are connected
with periodic boundary condition. In this paper, we consider
an approximant of Penrose lattice with n = 11, which results
in Nv = 167761 vertices at most.

[1] D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Metallic
Phase with Long-Range Orientational Order and no Transla-
tional Symmetry, Phys. Rev. Lett. 53, 1951 (1984).

[2] D. Levine and P. J. Steinhardt, Quasicrystals: A New Class of
Ordered Structures, Phys. Rev. Lett. 53, 2477 (1984).

[3] W. Yao, E. Wang, C. Bao, Y. Zhang, K. Zhang, K. Bao, C. Kai
Chan, C. Chen, J. Avila, M. C. Asensio, J. Zhu, and S. Zhou,
Quasicrystalline 30◦ twisted bilayer graphene as an incommen-
surate superlattice with strong interlayer coupling, Proc. Natl.
Acad. Sci. 115, 6928 (2018).

[4] W. Jin and Y. Gao, Optically induced two-dimensional pho-
tonic quasicrystal lattices in iron-doped lithium niobate crystal
with an amplitude mask, Appl. Phys. Lett. 101, 141104
(2012).

[5] W. Steurer, Quasicrystals: What do we know? What do we want
to know? What can we know? Acta Crystallogr. Sect. A 74, 1
(2018).

[6] D. V. Louzguine-Luzgin and A. Inoue, Formation and prop-
erties of quasicrystals, Annu. Rev. Mater. Res. 38, 403
(2008).

[7] K. Kamiya, T. Takeuchi, N. Kabeya, N. Wada, T. Ishimasa, A.
Ochiai, K. Deguchi, K. Imura, and N. K. Sato, Discovery of
superconductivity in quasicrystal, Nat. Commun. 9, 154 (2018).

[8] R. N. Araújo and E. C. Andrade, Conventional superconductiv-
ity in quasicrystals, Phys. Rev. B 100, 014510 (2019).

[9] S. Sakai, N. Takemori, A. Koga, and R. Arita, Superconductiv-
ity on a quasiperiodic lattice: Extended-to-localized crossover
of cooper pairs, Phys. Rev. B 95, 024509 (2017).

224201-7

https://doi.org/10.1103/PhysRevLett.53.1951
https://doi.org/10.1103/PhysRevLett.53.2477
https://doi.org/10.1073/pnas.1720865115
https://doi.org/10.1063/1.4754136
https://doi.org/10.1107/S2053273317016540
https://doi.org/10.1146/annurev.matsci.38.060407.130318
https://doi.org/10.1038/s41467-017-02667-x
https://doi.org/10.1103/PhysRevB.100.014510
https://doi.org/10.1103/PhysRevB.95.024509


GHADIMI, SUGIMOTO, AND TOHYAMA PHYSICAL REVIEW B 102, 224201 (2020)

[10] S. Sakai and R. Arita, Exotic pairing state in quasicrystalline
superconductors under a magnetic field, Phys. Rev. Res. 1,
022002(R) (2019).

[11] K. Deguchi, S. Matsukawa, N. K. Sato, T. Hattori, K. Ishida, H.
Takakura, and T. Ishimasa, Quantum critical state in a magnetic
quasicrystal, Nat. Mater. 11, 1013 (2012).

[12] J. Otsuki and H. Kusunose, Distributed hybridization model for
quantum critical behavior in magnetic quasicrystals, J. Phys.
Soc. Jpn. 85, 073712 (2016).

[13] L.-J. Lang, X. Cai, and S. Chen, Edge States and Topological
Phases in One-Dimensional Optical Superlattices, Phys. Rev.
Lett. 108, 220401 (2012).

[14] F. Matsuda, M. Tezuka, and N. Kawakami, Topological prop-
erties of ultracold bosons in one-dimensional quasiperiodic
optical lattice, J. Phys. Soc. Jpn. 83, 083707 (2014).

[15] A. Dareau, E. Levy, M. B. Aguilera, R. Bouganne, E.
Akkermans, F. Gerbier, and J. Beugnon, Revealing the Topol-
ogy of Quasicrystals with a Diffraction Experiment, Phys. Rev.
Lett. 119, 215304 (2017).

[16] S. Spurrier and N. R. Cooper, Theory of quantum oscillations
in quasicrystals: Quantizing spiral Fermi surfaces, Phys. Rev. B
100, 081405(R) (2019).

[17] H. Huang and F. Liu, Quantum Spin Hall Effect and Spin Bott
Index in a Quasicrystal Lattice, Phys. Rev. Lett. 121, 126401
(2018).

[18] R. Ghadimi, T. Sugimoto, and T. Tohyama, Majorana zero-
energy mode and fractal structure in Fibonacci-Kitaev chain,
J. Phys. Soc. Jpn. 86, 114707 (2017).

[19] M. A. Bandres, M. C. Rechtsman, and M. Segev, Topological
Photonic Quasicrystals: Fractal Topological Spectrum and Pro-
tected Transport, Phys. Rev. X 6, 011016 (2016).

[20] P. Ma and Y. Liu, Inflation rules, band structure, and localization
of electronic states in a two-dimensional Penrose lattice, Phys.
Rev. B 39, 9904 (1989).

[21] N. G. de Bruijn, Algebraic theory of penrose’s non-periodic
tilings of the plane. I, Indagationes Mathematicae (Proceedings)
84, 39 (1981).

[22] N. G. de Bruijn, Algebraic theory of Penrose’s non-
periodic tilings of the plane. II, Indagationes Mathematicae
(Proceedings) 84, 53 (1981).

[23] J. Oitmaa, M. Aydin, and M. J. Johnson, Antiferromagnetic
ising model on the Penrose lattice, J. Phys. A: Math. Gen. 23,
4537 (1990).

[24] Y. Liu and P. Ma, Electronic properties of two-dimensional
quasicrystals with near-neighbor interactions, Phys. Rev. B 43,
1378 (1991).

[25] A. Szallas and A. Jagannathan, Spin waves and local magneti-
zations on the Penrose tiling, Phys. Rev. B 77, 104427 (2008).

[26] P. Vignolo, M. Bellec, J. Böhm, A. Camara, J.-M. Gambaudo,
U. Kuhl, and F. Mortessagne, Energy landscape in a Penrose
tiling, Phys. Rev. B 93, 075141 (2016).

[27] N. Takemori and A. Koga, DMFT study of the local correla-
tion effects in quasi-periodic system, J. Phys.: Conf. Ser. 592,
012038 (2015).

[28] A. Koga and H. Tsunetsugu, Antiferromagnetic order in the
hubbard model on the Penrose lattice, Phys. Rev. B 96, 214402
(2017).

[29] N. Takemori, A. Koga, and H. Hafermann, Intersite elec-
tron correlations on inhomogeneous lattices: a real-space dual
fermion approach, arXiv:1801.02441.

[30] A. Jagannathan, Quasiperiodic heisenberg antiferromagnets in
two dimensions, Eur. Phys. J. B 85, 68 (2012).

[31] A. Szallas, A. Jagannathan, and S. Wessel, Phason-disordered
two-dimensional quantum antiferromagnets, Phys. Rev. B 79,
172406 (2009).

[32] Y. Murakami, D. Golež, T. Kaneko, A. Koga, A. J. Millis,
and P. Werner, Collective modes in excitonic insulators: Effects
of electron-phonon coupling and signatures in the optical re-
sponse, Phys. Rev. B 101, 195118 (2020).

[33] M. Arai, T. Tokihiro, T. Fujiwara, and M. Kohmoto, Strictly
localized states on a two-dimensional Penrose lattice, Phys.
Rev. B 38, 1621 (1988).

[34] T. Fujiwara, M. Arai, T. Tokihiro, and M. Kohmoto, Localized
states and self-similar states of electrons on a two-dimensional
Penrose lattice, Phys. Rev. B 37, 2797 (1988).

[35] I. Bloch, Ultracold quantum gases in optical lattices, Nat. Phys.
1, 23 (2005).

[36] K. Singh, K. Saha, S. A. Parameswaran, and D. M. Weld, Fi-
bonacci optical lattices for tunable quantum quasicrystals, Phys.
Rev. A 92, 063426 (2015).

[37] L. Guidoni, C. Triché, P. Verkerk, and G. Grynberg, Quasiperi-
odic Optical Lattices, Phys. Rev. Lett. 79, 3363 (1997).

[38] L. Sanchez-Palencia and L. Santos, Bose-Einstein condensates
in optical quasicrystal lattices, Phys. Rev. A 72, 053607 (2005).

[39] T. A. Corcovilos and J. Mittal, Two-dimensional optical qua-
sicrystal potentials for ultracold atom experiments, Appl. Opt.
58, 2256 (2019).

[40] J. Hou, H. Hu, K. Sun, and C. Zhang, Superfluid-Quasicrystal
in a Bose-Einstein Condensate, Phys. Rev. Lett. 120, 060407
(2018).

[41] S. Gopalakrishnan, I. Martin, and E. A. Demler, Quantum Qua-
sicrystals of Spin-Orbit-Coupled Dipolar Bosons, Phys. Rev.
Lett. 111, 185304 (2013).

[42] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher,
Boson localization and the superfluid-insulator transition, Phys.
Rev. B 40, 546 (1989).

[43] O. Dutta, M. Gajda, P. Hauke, M. Lewenstein, D.-S. Lühmann,
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