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Metallization of dense fluid helium from ab initio simulations
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We examine the metallization of fluid helium with molecular dynamics simulations based on density func-
tional theory. The insulator-to-metal transition is studied at densities between 1 and 22 g/cm3 and temperatures
between 10 000 and 50 000 K. We calculate the equation of state, the band gap dependent on density and
temperature by using different definitions, the DC conductivity, the reflectivity, and the ionization degree for
which a novel method has been proposed recently [see M. Bethkenhagen et al., Phys. Rev. Research 2, 023260
(2020)]. We find no indication of a first-order phase transition in any of the properties studied here and therefore
conclude that the metallization of fluid helium is continuous. For instance, we do not observe jumps in the
DC conductivity and/or the reflectivity when the band gap closes. However, the ionization degree increases
continuously from below 10% at the lowest to over 99% at the highest densities which reflects the continuous
insulator-to-metal transition. The increase is almost exclusively driven by pressure ionization and shows only a
weak temperature dependency. We discuss the high-pressure phase diagram of helium and the implications of
our results on the structure of astrophysical objects like gas giant planets and brown dwarfs.

DOI: 10.1103/PhysRevB.102.224107

I. INTRODUCTION

Helium is generated by primordial nucleosynthesis in the
early universe [1] or by hydrogen burning in stars [2]. After
hydrogen, it is the second most abundant element and makes
up about 23% of the baryon density in the universe. For a com-
prehensive understanding of many astrophysical processes the
properties of hydrogen and helium have to be known for a
wide range of densities and temperatures. Especially, this is
the case for the formation and evolution as well as for the
structure and composition of astrophysical objects like stars,
brown dwarfs, and gas giant planets, where hydrogen and
helium typically amount to about 98% of their mass. Of par-
ticular importance are the equation of state (EOS) data, optical
properties like absorption, and the DC conductivity. The latter
is a key input in dynamo simulations for the structure of the
magnetic fields of these objects [3].

Therefore, the behavior of hydrogen and helium un-
der extreme conditions has been in the focus of plasma,
astro- and high-pressure physics for decades; for reviews,
see Refs. [4–7]. Both hydrogen and helium are insulators at
ambient conditions. The prediction of an insulator-to-metal
transition (IMT) at high pressures, i.e., the metallization
of molecular hydrogen and of atomic helium represents an
intriguing problem in this context: How can their metallic-
like electrical conductivities be traced back to their atomic
properties? How do these change along the transformation
pathway from ambient conditions to pressures of several
megabar? These questions have inspired fundamental contri-
butions to early quantum theory and solid state physics by,
e.g., Herzfeld [8] and Mott [9]; for a review, see Ref. [10].

Wigner and Huntington [11] were the first to predict
the transition from insulating molecular solid hydrogen to

metallic atomic solid hydrogen at 25 GPa at T = 0 K in
1935. Since then, enormous progress in understanding dense
hydrogen has been made. Yet, the exact location of the IMT
in the pressure-temperature diagram and the character of this
transition is not precisely known, neither for the solid [6,12]
nor the fluid domain [13–15]. A full understanding of the
IMT in hydrogen still poses a great challenge, both for
high-pressure experiments (e.g., measurement of temperature,
interpretation of an increased reflectivity as signature for met-
allization) and ab initio simulations (e.g., treatment of nuclear
quantum effects and of latent heat; see Ref. [16]). However,
it is now consistently predicted to occur at few megabars
(1 Mbar=100 GPa); see, e.g., Refs. [12,17] for recent surveys.

Consequentially, the assumption that helium transforms
to a metal upon sufficient compression has triggered many
studies, although by far not as many as for hydrogen,
see Refs. [18–21]. While the band gap (BG) of solid he-
lium at zero temperature has been calculated with various
approaches [22–25], ionization in dense helium plasmas
has been treated within chemical models since the late
1980s [26–30]. Landau and Zeldovich [31] evaluated such
ionization phenomena first. They concluded that the phase
transition might be of first-order in a certain region of the
phase diagram. This so-called plasma phase transition (PPT)
would be connected with latent heat and a density jump be-
tween the two phases. Since then, a lot of effort has been made
towards the prediction of the slope of the coexistence line of
the PPT and the location of its critical point for hydrogen and
other elements and compounds; see, e.g., Ref. [21]. Some of
the models for helium predict two distinct phase transitions
at high pressures: the first due to the ionization of neutral
helium to He+, the second one due to a subsequent ionization
of He+ to He2+. For instance, Förster et al. [26] locate the
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critical point for the corresponding coexistence curve between
the neutral and singly ionized fluids at around 35 000 K
and 620 GPa (first PPT). They further predict a coexistence
curve between the singly and twofold ionized fluids (second
PPT) which ends in a second critical point at 114 000 K and
9 100 GPa.

Since the mid 2000s, the application of density functional
theory (DFT) allowed for a more intricate description of the
metallization transition in solid helium [32]. DFT coupled
with classical molecular dynamics (MD) led to further in-
vestigations of the metallization transition of fluid helium in
the physical picture [19,33–35]. Those studies could reach
densities that are beyond the range of the most recent exper-
iments on dense helium [20,36,37]. However, they did not
exhibit any features of a thermodynamic instability, i.e., a
PPT, that was predicted by chemical models as mentioned
above.

In this study, we examine the metallization of fluid helium
with DFT-MD and calculate the EOS, the DC conductivity, the
reflectivity, and the ionization state for a broad range of den-
sities (1–22) g/cm3 and temperatures (10 000–50 000) K. In
particular, we study the evolution of the electronic BG and of
the ionization degree as function of density and temperature.
We search for jumps in the EOS, the DC conductivity, and the
optical reflectivity, indicative of a first-order phase transition.
The ionization degree is calculated with a novel method pro-
posed recently [38]. Furthermore, we investigate whether or
not metallic helium can exist at the extreme conditions in the
interior of gas giant planets like Jupiter or in brown dwarfs
like KOI 889b. We then discuss further implications of our
results for astrophysics.

Our paper is organized as follows. In Sec. II, we introduce
the computational methods for the EOS, the band gaps, the
DC conductivity, the reflectivity, and the ionization degree.
We then display and discuss the results in the same order in
Sec. III, outline implications on the high-pressure phase dia-
gram of helium and illustrate consequences for the behavior
of dense helium in astrophysical objects.

II. METHODS

We apply a consistent approach for the calculation of the
thermophysical properties of dense helium by treating the
electrons with DFT [39,40] and combining this quantum-
statistical description with classical MD for the ions. We
employ the plane wave code VASP(Vienna ab initio simu-
lation package) [41–45], in which the electronic bands are
occupied according to Fermi-Dirac statistics. We adjust the
number of bands as well as the size of the time step for each
density and temperature under consideration in the same way
as documented in Preising et al. [46]. We control the tem-
perature of the ions with a Nosé-Hoover thermostat [47–49]
and sample the Brillouin zone with different k-point sets: the
� point, the Baldereschi Mean Value Point (BMVP) [50],
or a more elaborate Monkhorst-Pack set [51]. We use the
Perdew-Burke-Ernzerhof (PBE) exchange-correlation (XC)
functional [52] and employ pseudopotentials in the plane
augmented wave (PAW) description [53] as well as the full
Coulomb potential where necessary. The PAW pseudopoten-
tials both treat two valence electrons. The difference between

the standard PAW and the hard PAW potential is the distance
at which the augmentation of the wavefunction begins; it is
smaller for the hard PAW (0.6 Å) than for the standard PAW
(1.1 Å). Most important for the determination of precise ther-
mophysical properties are careful checks of the convergence
of the DFT-MD simulations; details are outlined in Ref. [54].

A. EOS

The pressure and internal energy are evaluated from
DFT-MD runs after they have achieved thermodynamic equi-
librium. We ensure that the total simulation time is at least 5
ps at every density and temperature grid point in this study.

B. Band gaps

It is known that DFT-based methods underestimate the
band gap systematically depending on the number of atoms
and the XC functional [30,34,35,55]. Nevertheless, we can
gain valuable insight in the evolution of the BG dependency
on density and temperature.

We examine and compare different definitions of the BG
that were used in recent work on the behavior of dense helium,
namely the HOMO-LUMO definition [33,35], the broadened
method [34], and the histogram technique [32]. The latter is
from our perspective best suited to identify the BG. Details of
these methods are outlined in Ref. [54] (see, also, Refs. [26,27
and 32] therein).

C. DC conductivity

The dynamic electrical conductivity is calculated with the
Kubo-Greenwood formula [56–60]:

σ tot(ω) = 2πe2

3ω�

∑
k

W (k)
N∑

j=1

N∑
i=1

3∑
α=1

[F (εi,k ) − F (ε j,k )]

× |〈	 j,k|v|	i,k〉|2δ(ε j,k − εi,k − h̄ω). (1)

Here, the Fermi-Dirac occupation F (εi,k ) of the ith band that
corresponds to the energy εi,k and the wave function 	i,k at
k-point k is summed up over the spatial directions α and the
bands i and j. The prefactor contains the electron charge e, the
frequency ω, and the supercell volume �.

The DC conductivity is the low-frequency limit of the
dynamic electrical conductivity:

σDC = lim
ω→0

σ tot (ω). (2)

D. Reflectivity

We calculate the reflectivity R at 532 nm as in Preising
et al. [46] via the Fresnel formula,

R(ω) = [n0(ω) − n(ω)]2 + [k0(ω) − k(ω)]2

[n0(ω) + n(ω)]2 + [k0(ω) + k(ω)]2
, (3)

with the complex index of refraction, n + ik. The subscript
0 denotes the material at the reflecting boundary. The com-
plex index of refraction results from the complex dielectric
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function ε(ω) = ε1(ω) + iε2(ω) as

n(ω) + ik(ω) =
√

ε(ω), (4)

ε1(ω) = σ2(ω)

ε0ω
, (5)

ε2(ω) = 1 − σ1(ω)

ε0ω
. (6)

Here, we obtain the real part of the dynamic conductivity
σ1(ω) from the Kubo-Greenwood formula (1) and calculate
the imaginary part σ2(ω) from σ1(ω) with a Kramers-Kronig
relation; see Refs. [58,60–63] for further details. The testing
regime for for the optical reflectivity at 532 nm was identical
with that of the DC conductivity.

E. Ionization

Bethkenhagen et al. [38] proposed a new method to cal-
culate the ionization degree of high-density plasmas via the
dynamic electrical conductivity obtained from DFT-MD sim-
ulations and an evaluation of the Kubo-Greenwood formula,
Eq. (1). Former work instead relied on the DOS to analyze the
ionization degree [64–66]. We provide a brief summary of the
approach; for details, see Refs. [38,54].

The dynamic electrical conductivity has to satisfy the
Thomas-Reiche-Kuhn (TRK) sum rule [67–70],

Z tot = N tot
e

Ni
= 2m�

πe2Ni

∫ ∞

0
dω σ tot(ω), (7)

with the total charge state Z tot, the total number of electrons
N tot

e and ions Ni, and the dynamic electrical conductivity
σ tot(ω). For helium, Eq. (7) is fulfilled if Z tot = 2. We then
partition the TRK sum rule into different electronic contribu-
tions and calculate the ionization state α from the number of
electrons of each contribution as

α = Zc-c

Z tot
, (8)

where Zc-c is the effective number of electrons per ion that
contributes to electronic transition within the conduction
band.

III. RESULTS

If the IMT of helium is a first-order phase transition we
should observe discontinuities in the thermodynamic func-
tions due to latent heat. The IMT should then be accompanied
by BG closure and abrupt changes (jumps) of the DC con-
ductivity, the reflectivity, and the ionization degree. Similar
studies on the metallization in dense fluid hydrogen have
shown that the discontinuities are generally more pronounced
at lower temperatures [71–73].

In order to constrain our study to the fluid regime we
only consider temperatures starting from 10 000 K and densi-
ties below the corresponding melting density of (21.3 ± 0.7)
g/cm3; see Ref. [74].

A. EOS

We calculate pressures P and internal energies u for given
densities ρ and temperatures T from the DFT-MD runs. In
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FIG. 1. (Top) Pressure P (black, left y axis) and internal energy
per atom u (red, right y axis) for fluid helium at 10 000 K as function
of density ρ. (Bottom) P/ρ (black, left y axis) and u/ρ (red, right
y axis). The insets depict P and u over the density range where the
BG closes according to the histogram method. The density range of
interest is further highlighted by dashed ellipses.

case of a first-order phase transition, we should observe a
plateau in P (density jump) and a jump in u (latent heat).
The upper panel of Fig. 1 displays the pressure P and inter-
nal energy u at the lowest temperature considered here, i.e.,
10 000 K. In order to illuminate the influence of correlation
effects which should change considerably at the IMT, we
show P/ρ and u/ρ in the lower panel. The insets left and right
zoom into the density region where metallization occurs.

We do not observe a plateau-like structure in P or a jump
in u in the entire density range but find some faint features in
the raw data of u/ρ in the density range where the BG closes
according to the histogram approach. However, the statistical
fluctuations of u/ρ under these conditions are larger than ±4
eV/atom/(g/cm3) in our MD runs. We therefore conclude
that no noticable behavior of P, u, P/ρ, and u/ρ occurs when
the BG closes in fluid helium at 10 000 K. Furthermore, we
do not find any features at higher temperatures or at densities
where the BG closes according to the broadened method.

B. Band gaps

In order to determine the location of the band gap closure,
we calculate isotherms at Tx = 10x with x=4, 4.1, ..., 4.7 at
a density grid of 1 g/cm3 width. By progressively decreasing
the density interval we iteratively find the density at which the
BG closes within 0.1 g/cm3 according to the histogram and
broadened method. We then compare our results for the BG
with values from Refs. [33–35] in Fig. 2.

While we reproduce the results of the broadened method
of Ref. [34] at 20 000 K, we obtain different results at higher
and lower temperatures. The reason for this descrepancy is
most likely due to the use of a different XC functional.
While Ref. [34] performed the DFT-MD simulations with the
PBE [52] XC functional, they then determined the BGs using
snapshots and the PW91 [75] XC functional. We performed all
calculations with the PBE XC functional and used data from
MDs to calculate the BG.

Our results reproduce the HOMO-LUMO results of
Refs. [33,35] for all conditions of our study within the error
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FIG. 2. Evolution of the BG with density for a set of isotherms
(color-coded). Results of this work are always depicted as closed cir-
cles. (a) on the upper left shows the results of the broadened method
of Ref. [34] as dashed lines as well as the broadened results of this
work. (b) on the upper right displays the results of the histogram
approach of this work. The dashed line represents the conditions
where the BG is equal to kBT . (c) compares results of this work with
those of Refs. [33,35] within the HOMO-LUMO approach to the BG
as open diamonds and upper triangles, respectively.

bars. However, as we discuss in Ref. [54], we could not
obtain converged results with the snapshot-based methods
of Refs. [33,35], even with a greater number of atoms and
better k-point sampling. Essentially, the BG results with the
HOMO-LUMO method can be shifted by an arbitrary energy
offset, depending on the chosen number of atoms, see Fig.
S4 in Ref. [54]. Our calculations show that converged BGs in
dense helium can only be obtained via MD simulations and
by using the histogram or broadened technique, see Ref. [54].

C. DC conductivity

The DC conductivity σDC has been calculated from the
Kubo-Greenwood formula, Eq. (1), for every isotherm and
at least five corresponding densities. We increased the num-
ber of density points at lower temperatures, see Fig. 3. For
the determination of σDC, we averaged over up to 20 ionic
snapshots of the MD simulations; see Ref. [54] for further
details. Due to the results of Sec. III B, we know the densities
at which the BG closes according to the histogram method,
see Fig. 2. If necessary, we interpolate σDC between the two
most close-lying points and include this interpolated DC con-
ductivity at conditions where the BG closes in Fig. 3. In
a similar fashion, we interpolate the density where kBT is
identical to the BG for every isotherm. We then interpolate
the σDC at these densities in order to study whether the slope
of the band gap over density changes when kBT approaches
the BG. Additionally, we compare to the minimum metallic
Mott conductivity σMott = 0.2 × 106 S/m and to values given
in Refs. [33–35,55].

At the lowest temperatures, we observe a strong increase
of the DC conductivity with the density that tends to become
more flattened out at densities above the BG closure, i.e., in
the metallic region. We do not see this feature in the results of
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FIG. 3. DC conductivity as a function of density for different
isotherms (color-coded). The upper panel shows the results of this
work as filled circles. Open black symbols along the dashed line
denote the interpolated DC conductivity at conditions where the
BG closes according to the histogram method. Open black sym-
bols along the dotted line denote the interpolated DC conductivity
at conditions where the BG equals the thermal energy kBT , see
Fig. 2(b). The thin dashed line represents the minimum Mott con-
ductivity at T = 0 K [10]. The lower panel compares our results
(filled circles) for selected isotherms with the results of Kowalski
et al. [33], Stixrude et al. [34], Soubiran et al. [55], Zhang et al. [35],
and Preising et al. [46] that are denoted as open diamonds, lower
triangles, squares, upper triangles, and filled circles without error
bars, respectively.

Ref. [35]. The strong increase with density does not correlate
strongly with the BG closure. Instead, it more strongly corre-
lates with the conditions where the thermal energy approaches
the value of the BG and the minimum Mott conductivity of
0.2 × 106 S/m given in Ref. [10]. This indicates that thermal
excitations in this region lower the electronic resistance signif-
icantly and therefore increase the conductivity. Furthermore,
the increase of the DC conductivity becomes less pronounced
with increasing temperature due to these thermal effects. Note
that the behavior of the DC conductivity of dense fluid he-
lium as a function of density and temperature is very similar
to earlier results for the continuous nonmetal-to-metal tran-
sition observed in expanded fluid metals [76,77] and noble
gases [78,79].

We do not see jumps of the electrical conductivity in any of
the isotherms, contrary to the results obtained for the metal-
lization of dense fluid hydrogen [71,72]. In conjunction with
the results for the EOS shown in Fig. 1 this clearly indicates
that the metallization of dense fluid helium is a continuous
transition of higher order.

While we reproduce the results of Ref. [35] at higher tem-
peratures within the error bars, the strong increase of our DC
conductivity at 10 000 K occurs at higher densities compared
to Ref. [35]. This is likely due to the different implementa-
tions and codes used in Ref. [35] and in this study. At low
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temperatures, the results of Ref. [35] seem to exhibit a sim-
ilar change of slope around the minimum Mott conductivity,
although the change is not as pronounced compared to our
results. The low-density trends of our results reproduce all the
available literature values to the best of our knowledge. At
higher densities where no experimental results are available to
date, we concur with the results of Ref. [33]. The high-density
results of Ref. [34] are shifted toward higher DC conduc-
tivities compared to our results and those of Ref. [35]. We
attribute this difference to the use of different XC functionals
and finize size effects. Reference [35] employed the PW91 XC
functional and 64 atoms, we used PBE and at least 128 atoms.

The DC conductivity at which the BG closes according to
the histogram method (0.2–0.6 MS/m, see Fig. 3) is smaller
than the DC conductivity at which the BG closes according to
the HOMO-LUMO definition in Ref. [35] (0.7–1.0 MS/m).
This trend is reasonable considering the differences of the
results obtained for the HOMO-LUMO and the histogram
approach displayed in Fig. 2 as well as in Fig. S4 of Ref. [54].
We emphasize again in this context that the BG of the HOMO-
LUMO technique cannot be converged with respect to the
number of atoms; see Ref. [54].

D. Reflectivity

We calculate the optical reflectivity at 532 nm for every
isotherm at the same densities as in Sec. III C and perform
the same interpolations as we did for the DC conductivity
shown in Fig. 3. In a previous study [46], we calculated
the reflectivity with different XC functionals under the con-
ditions reported in Ref. [80]. We compare our results to
Refs. [33,35,80], and the results of the PBE XC functional
of Ref. [46], see Fig. 4.

Similar to the results for the DC conductivity (Fig. 3),
we obtain a strong increase of the reflectivity with the den-
sity at the lowest temperatures that tends to become more
flattened out at densities above the BG closure. As with our
our results for the DC conductivity, the strong increase with
the density does not correlate strongly with BG closure and
instead correlates more strongly with the conditions where
kBT approaches the value of the BG. The reason for this
correlation is most likely due to thermal excitation, see the
discussion in Sec. III C.

Our low-density reflectivity trends reproduce the results of
Refs. [33,80] as well as the results of Ref. [35] within the
error bars. Similar to the discussion of Fig. 3 the reflectivity at
which the BG according to the histogram method closes (30%
to 40%) is smaller than the DC conductivity at which the BG
according to the HOMO-LUMO closes in Ref. [35] (45% to
60%). In Ref. [35], the reflectivity at the BG closure increases
systematically with decreasing density, from 45% at 24 g/cm3

over 55% at 15 g/cm3 to somewhere below 60% at 7 g/cm3,
while our corresponding results fluctuate between 33%
and 41%.

E. Ionization

We utilize the TRK sum rule method and the DOS in-
tegration approach as discussed in Sec. II E to calculate the
ionization degree α via Eq. (8). Results are shown in Fig. 5.
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For the sake of completeness, we added the corresponding data in
black. The upper panel shows the results of this work: filled circles
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Consistent with our previous results, the ionization degree
obtained via the TRK sum rule method shows pressure ion-
ization, i.e., a significant increase from below 10% at 2 g/cm3

to more than 99% at the highest densities. The exact values
seem to be virtually independent of temperature within our
error bars and mostly depend on density. The interpolated α
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the dashed line show the interpolated α values at which the BG closes
according to the histogram approach.
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FIG. 6. Phase diagram of helium in the temperature-pressure
plane: the melting line from ab inito simulations of Preising et al. [74]
(bold blue line) and experimental data (dashed orange line and sym-
bols) of Refs. [81–88]. Shown are the P-T condictions where the BG
closes in fluid helium according to the broadened method (dotted
lines, results of Ref. [34] in orange and of this work in red), the
histogram technique of this work for the fluid (bold red line) and that
of Ref. [32] for the solid (bold orange line), and the HOMO-LUMO
definition of Ref. [35] (orange dash-dotted line). The black lines
display exemplarily P-T conditions for astrophysical objects which
contain substantial fractions of helium: an old white dwarf [89], the
brown dwarf KOI-889b [90], and the gas giant planet Jupiter [91].

at which the BG closes according to the histogram technique
therefore closely resembles the course of α over the density.
In contrast, the results of the DOS integration approach are
more temperature-dependent. The most striking result in this
context is that the DOS integration method fails to show
pressure ionization: the ionization degree is less than 15%
for all considered densities and temperatures. Actually, the
ionization seems to decrease slightly at the highest densities.
We therefore conclude that the DOS integration method is not
at all suited for the description of pressure ionization, at least
in high-density fluid helium.

Note that the ionization degree derived from the TRK sum
rule confirms the general trends predicted by chemical mod-
els, see, e.g., Ref. [26]: low ionization degree at low densities
though increasing with temperature, full ionization at high
densities. Note that we do not find any evidence for an in-
stability region (PPT) inbetween as characteristic of chemical
models.

F. High-pressure phase diagram of helium

Our results of neither the EOS, the DC conductivity, the
reflectivity or the ionization degree demonstrate hints where
the nonmetal-to-metal phase transition takes place. We instead
use the histogram BG closure as a marker for the IMT. We
summarize our findings for the IMT in dense fluid helium and
propose a new high-pressure phase diagram in Fig. 6, with
special emphasis on the region where the BG closes.

We consider the histogram method as most reliable in order
to locate the BG closure and the corresponding IMT in dense
fluid helium in P-T space. Therefore, the bold red line in

Fig. 6 separates the nonmetallic (left) from the metallic fluid
(right) according to our extensive DFT-MD simulations and
evaluations outlined in detail in Secs. III A to III E.

The IMT in solid helium from the histogram method in
Ref. [32] intersects the melting line of Ref. [74] at a few tens
of terapascals. Disorder as well as the movement of the atoms
shift the metallization transition in the fluid toward lower
pressures. Therefore our result for the IMT in the fluid with
the histogram approach is consistent with the corresponding
IMT of Ref. [32] in the solid. This agreement further increases
our confidence in the histogram technique for the prediction
of reliable BGs.

According to the broadened method, the BG closure occurs
at lower densities than predicted by the histogram approach.
This is expected as the BG of the broadened technique is
smaller than that of the histogram method at high densities,
see Fig. 2 and Ref. [54] At lower pressures, however, the
pressure difference between the BG closure as predicted by
the two methods decreases.

Our result derived from the broadened approach (dotted
lines) is quite similar to that of Ref. [34]. The origin of the
different slopes for the BG closure curves is most likely due
to the use of different XC functionals and numbers of atoms.
We used PBE and at least 128 atoms, while Ref. [34] used
PW91 and 64 atoms.

The BG closure according to the histogram method is
located between the HOMO-LUMO results of Ref. [35] and
our results using the broadened approach. This behavior is
expected and reproduces the trends shown in Fig. 2.

Based on our results, we can infer consequences for the
interior composition of astrophysical objects like gas giant
planets, brown dwarfs, or the atmosphere of old and cool
white dwarfs which contain large fractions of helium. For
instance, the P-T conditions inside Jupiter [91], the largest
gas giant planet in our Solar System, do not intersect our
results for BG closure according to the histogram method
(bold red line in Fig. 6) which we consider as most reli-
able. Therefore Jupiter probably does not contain metallic
helium in its deep interior. Since hydrogen is metallic under
these conditions [5,71], the consequences for H-He demixing,
the solubility of heavier elements in H-He (core erosion),
and its actual structure near the core have to be studied,
see Refs. [7,92] for recent surveys. However, extrasolar gas
giant planets that are larger and hotter than Jupiter (hot
Jupiters) [93] reach more extreme P-T conditions in their
interior and could, therefore, contain metallic helium. This
has consequences for the calculation of their interior profiles,
evolution scenarios, and magnetic field structure [3]. The
brown dwarf KOI-889b intersects the metallization lines of
all methods shown in Fig. 6 and therefore probably contains
metallic helium in its deep interior. The representative white
dwarf model [89] has a higher temperature than the scope of
this study. However, unless the slope of the band gap closure
lines changes drastically, this particular white dwarf should
contain metallic helium.

The higher-order nature of the nonmetal-to-metal phase
transition in dense fluid helium results in a continuous behav-
ior of all properties under study. Around the histogram BG
closure the DC conductivity fluctuates around 0.4 × 106 S/m,
the reflectivity is within 30 to 40%, and the ionization degree
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increases continuously from below 10% at the lowest density
to more than 99% at the highest densities.

IV. CONCLUSION

We simulated dense fluid helium with DFT-MD simu-
lations in order to investigate the metallization transition
in detail. We were especially interested whether the metal-
lization leads to a first-order phase transition as predicted
earlier [26,27]. Hence, we calculated the EOS, the BG clo-
sure with different methods, the DC conductivity, the optical
reflectivity, and the ionization degree from the DFT-MD sim-
ulations for a wide range of densities and temperatures. We
found no indications for jumps or discontinuities in any of our
results. In particular, the ionization calculated from the TRK
sum rule method clearly shows a continuous transition to full
ionization of 2.0, see Fig. 5. Therefore, we conclude that the
metallization transition in dense fluid helium is driven by BG
closure and continuous or of higher order, see Fig. 6.

The conventional DOS integration method for the cal-
culation of the ionization degree did not capture pressure

ionization, contrary to the TRK sum rule method. We there-
fore recommend to use the TRK sum rule method for the
calculation of the ionization degree in high-density plasmas
where pressure ionization is significant.

In a future study, we will investigate whether the DC con-
ductivity, the reflectivity, and the ionization degree obtained
from the TRK sum rule can reproduce temperature ionization
at densities below the scope of this study. It is known that
the DOS integration method describes temperature ionization
reasonably well, in contrast to the pressure ionization that we
investigated in this study. We will also employ different XC
functionals in order to study their influence on the evolution
of the BG.
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