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Solitary wave excitations of skyrmion strings in chiral magnets
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Chiral magnets possess topological line excitations where the magnetization within each cross section forms a
skyrmion texture. We study analytically and numerically the low-energy, nonlinear dynamics of such a skyrmion
string in a field-polarized cubic chiral magnet, and we demonstrate that it supports solitary waves. These waves
are in general nonreciprocal, i.e., their properties depend on the sign of their velocity v, but this nonreciprocity
diminishes with decreasing |v|. An effective field-theoretical description of the solitary waves is derived that is
valid in the limit v → 0 and gives access to their profiles and their existence regime. Our analytical results are
quantitatively confirmed with micromagnetic simulations for parameters appropriate for the chiral magnet FeGe.
Similarities with solitary waves found in vortex filaments of fluids are pointed out.
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Manifestations of one-dimensional topological objects can
be found in diverse systems such as domain walls in mag-
netic films, vortex filaments in classical as well as quantum
fluids, or cosmic strings in the universe [1,2]. Usually, these
stringlike objects can elastically bend and twist, and this
elasticity also determines their dynamical behavior at low
energies. This results in collective low-amplitude excitations,
for example, Kelvin waves [3] that propagate along vortex
filaments and play a key role in the decay of superfluid
turbulence [4]. Certain filaments can also support nonlinear
solitary waves, which are spatially confined excitations that
maintain a constant amplitude. For vortex filaments in fluids,
solitary waves were theoretically predicted by Hasimoto [5]
and subsequently observed experimentally [6].

Topological strings of a different kind arise in cu-
bic chiral magnets such as MnSi, FeGe, or Cu2OSeO3.
Here, the competition between exchange and Dzyaloshinskii-
Moriya interactions stabilizes magnetic skyrmions, i.e., two-
dimensional topological textures of the magnetization [7].
These skyrmions extend along the third direction forming
topological strings. Skyrmion strings align with the applied
magnetic field H , and, under certain conditions, they con-
dense into a hexagonal lattice forming a thermodynamically
stable phase [8–10].

The nontrivial topology of two-dimensional skyrmion
textures has direct consequences for their magnetization dy-
namics. It is reflected by their Thiele equation of motion
that predicts an efficient coupling to spin currents with in-
teresting spintronic applications [13,14] (for recent reviews,
see Refs. [12,15–18]). It also leads to an emergent electrody-
namics for electrons as well as spin waves, that scatter off
skyrmions, resulting in topological Hall effects [19–23]. In

addition, skyrmions possess characteristic internal degrees of
freedom such as a breathing mode, that can be studied with
magnetic resonance spectroscopy [24–30].

Even richer is the dynamics of three-dimensional skyrmion
strings due to their additional degrees of freedom. Recently, it
was demonstrated that spin waves generally propagate along
these strings in a nonreciprocal fashion [31–33]. The elastic
response of skyrmion strings gives rise to a nonreciprocal,
nonlinear Hall effect [34,35]. Moreover, the merger of strings
is necessarily accompanied with singular Bloch points that
play the role of magnetic monopoles in the emergent elec-
trodynamics [36–38]. In chiral magnets polarized either by
a magnetic field or a uniaxial anisotropy, single skyrmion
strings exist as topologically stable line excitations. Focusing
on cubic chiral magnets, we demonstrate in the present Rapid
Communication that solitary waves can propagate along such
isolated strings (see Fig. 1), efficiently transmitting energy,
linear, and angular momentum.

When damping is neglected, the magnetization dynamics
is described by the Landau-Lifshitz equation ∂t n = −γ (n ×
Beff ) for the orientation of the magnetization represented by
the unit vector n where γ = gμB/h̄ is the gyromagnetic ratio.
The effective magnetic field, Beff = − 1

Ms

δV
δn , derives from the

potential V = ∫
drV; for cubic chiral magnets the potential

density is given by

V(n, ∂in) = A(∂in)2 + Dn(∇ × n) − μ0MsHnz, (1)

with the exchange stiffness A, the Dzyaloshinskii-Moriya
interaction D, the magnetic constant μ0, the saturation
magnetization Ms, and the magnetic field H = ẑH that
defines the z axis. Dipolar interactions are neglected for
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FIG. 1. Solitary wave excitation of an isolated skyrmion string,
that is aligned with the magnetic field H = ẑH , propagating in
a direction parallel (v > 0) and antiparallel (v < 0) to H . The
figure is produced by micromagnetic simulation with parameters
ωc2/(2π ) = 10.4 GHz and 2π/Q = 70 nm typical for the chiral
magnet FeGe [11,12]. The dimensionless field is h = 2.16 corre-
sponding to μ0H ≈ 0.8 T for g ≈ 2 resulting in a skyrmion string
radius of approximately 5 nm. Solitary waves with amplitude R0 ≈
5.8 nm are created at time t = 0 and propagate with velocity |v| ≈
1 km/s. Periodic boundary conditions are employed, and the red
line is defined according to Eq. (2). Lengths in the (x, y) plane are
upscaled by a factor of 5 for visualization.

simplicity. The scales for frequency and wave vectors are
given by ωc2 = γ D2/(2AMs) and Q = D/(2A), respectively,
and the theory (1) only depends on a single dimensionless
parameter h = γμ0H/ωc2 parametrizing the strength of the
magnetic field.

For h > 1, the ground state of the theory (1) is field po-
larized, nz = 1, and we focus on this parameter regime in
the following. This field-polarized state possesses a static
skyrmion string excitation aligned with the field H [39].
This is a smooth magnetic texture with a quantized topolog-
ical charge Ntop = ∫

dxdy ρtop = −1 for all values of z, i.e.,
for each cross section perpendicular to H . Here, ρtop(r) =

1
4π

n(∂xn × ∂yn) is the topological charge density within the
(x, y) plane.

We first discuss the dynamical excitations of the skyrmion
string on the level of linear spin-wave theory. The excita-
tion spectrum of the skyrmion was studied analytically in
Refs. [28,29]. Extending this analysis to the skyrmion string,
one obtains the spectrum as a function of wave vector kz along
the field [32]—see Fig. 2 and the Supplemental Material [40]
for details (see also Refs. [41–51] therein). The spectrum lacks
mirror symmetry with respect to kz, i.e., it is nonreciprocal due

states

(b)
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modescattering
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FIG. 2. (a) Linear spin-wave spectrum of a skyrmion string for
wave vectors kz along the string and an applied magnetic field h =
2.16. The spectrum of the low-energy translational mode has the
form ω(kz )/ωc2 ≈ a1(kz/Q)2 + a2(kz/Q)3 + · · · for small kz. The
nonreciprocity due to a2 is small for wave vectors |kz| � k∗ where
k∗ = a1Q/a2 (k∗/Q = 22.02 for h = 2.16). (b) Field dependence of
the parameters a1 and a2. The dashed lines in (a) as well as the points
marked in (b) refer to Figs. 3 and 4.

to the Dzyaloshinskii-Moriya interaction. The shaded region
contains the scattering states, that are gapped for any h > 1. In
addition, there are magnon-skyrmion bound states with wave
functions localized to the skyrmion string. For the range of kz

shown in Fig. 2, there exist two dispersive bound states: the
breathing mode, that possesses a finite energy at kz = 0, and
the translational Goldstone mode. The spectrum of the latter
is gapless, ω(kz ) ∝ k2

z for |kz| � k∗, due to the translational
invariance of the theory (1) [52]; for the definition of k∗, see
Fig. 2.

The degree of freedom associated with the Goldstone mode
is the linear momentum of the skyrmion texture within the
(x, y) plane. This linear momentum corresponds to a col-
lective coordinate R = X x̂ + Y ŷ, and it is given by the first
moment of the topological charge density [28,29,53],

R(z, t ) = 1

Ntop

∫
dxdy(xx̂ + yŷ)ρtop(r, t ). (2)

We demand that the skyrmion string does not bend back so
that its linear momentum is uniquely defined for each value
of z. The dynamics of R is governed by the Thiele equation
[13] that reads in the absence of damping G × ∂t R = F. The
gyrocoupling vector G = ẑ4πNtopMs/γ is proportional to the
topological charge Ntop, and F is a force that acts on the string
[40].

In the following, we limit ourselves to the low-energy limit
where the force, in the absence of external forces, is expected
to be generated by the skyrmion string itself, F = − δVeff

δR .
The effective potential Veff = ∫

dzVeff with a local density
Veff can be phenomenologically constructed using symmetry
considerations. Due to translational invariance Veff cannot
depend on R itself but only on its derivatives with respect
to z, i.e., ∂zR, ∂2

z R, etc. We will limit ourselves to the case
of small |∂2

z R|/|∂zR| � k∗ so that second- and higher-order
derivatives can be omitted. Moreover, due to invariance of
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FIG. 3. Nonlinear spin waves of the skyrmion string stud-
ied with micromagnetic simulations for h = 2.16. The en-
ergies of low-energy waves, X + iY = R0eikzz−iωt , with fixed
wave vector kz = 0.87Q but for various amplitudes R0 between
0.1 and 10 nm are fitted to ω/ωc2 = a1(kz/Q)2 + a2(kz/Q)3 −
(kzR0)2[b1(kz/Q)2 + b2(kz/Q)3], and we obtain a1 ≈ 0.903, a2 ≈
0.041, b1 ≈ 0.467, b2 ≈ 0.071. The values for a1 and a2 are in good
agreement with linear spin-wave theory [see dots in the inset of
Fig. 2(b)]. The coefficients a2 and b2 account for the leading non-
reciprocal corrections, that are small for |kz| � k∗ and are omitted in
Eq. (4). The amplitude for both simulation snapshots shown in the
insets is R0 = 8 nm where lengths in the (x, y) plane are upscaled by
a factor of 5.

the theory (1) with respect to combined rotations of real and
spin space around the z axis, the effective potential is only a
function of (∂zR)2. Assuming analyticity, we can approximate
the potential for small (∂zR)2 by its Taylor expansion, and we
obtain Veff ≈ 1

2 K1(∂zR)2 − 1
4 K2(∂zR)4.

The elastic coefficient K1 quantifies the stiffness of the
string, and it is positive in order to guarantee stability. Impor-
tantly, the leading-order nonlinearity possesses a coefficient
K2 > 0. In the framework of nonlinear spin-wave theory, this
nonlinearity arises from fluctuations of the stiffness K1 that,
in second-order perturbation theory, gives rise to a positive
K2. Here, we determine both K1 = a1|G|ωc2/Q2 and K2 =
b1|G|ωc2/Q2 numerically with the help of micromagnetic
simulations of nonlinear spin waves (see Fig. 3). For a mag-
netic field h = 2.16 we obtain a1 ≈ 0.903 and b1 ≈ 0.467.

In the following, it is convenient to introduce the dimen-
sionless wave function

ψ =
√

2b1

a1
Q(X + iY ). (3)

Using dimensionless time, x0 = 2a1tωc2, and length, x1 = zQ,
the Thiele equation reduces to the Euler-Lagrange equation
for the Lagrange density,

L = i

2
(ψ∗∂0ψ − ψ∂0ψ

∗) − 1

2
|∂1ψ |2 + 1

8
|∂1ψ |4. (4)

We arrive at the result that the low-energy dynamics of
the skyrmion string is described by a nonlinear Schrödinger
equation with an attractive interaction |∂1ψ |4 involving the
derivative of the wave function.

Now, we demonstrate that the theory (4) possesses solitary
waves, and its elementary conservation laws are sufficient to
derive their properties. The particle density j0 = |ψ |2 obeys
the conservation law ∂μ jμ = 0 with the associated current j1
along the z axis. The density |ψ |2 ∝ R2 is in fact proportional
to the angular momentum of the skyrmion within the (x, y)
plane [28,53] so that the total density measures the total an-
gular momentum of the string Jz ∝ ∫

dx1|ψ |2. In addition, the
energy-momentum tensor is conserved, ∂μTμν = 0 [40].

We look for solitary wave solutions,

ψ (xμ) = 
(x1 − vx0)ei[v(x1−vx0 )+ v2

2 x0]e−iωx0 , (5)

that can be expressed as the Galilean transform of a wave
function 
 oscillating with frequency ω. As the interaction
|∂1ψ |4 breaks Galilean invariance, we expect that the function

 will depend on the velocity v. The conserved densities re-
duce for Eq. (5) to functions of the variable ξ ≡ x1 − vx0 only,
so that Tν ≡ −vT0ν + T1ν as well as J ≡ −v j0 + j1 become
independent of both space and time. In fact, the three con-
stants are linearly dependent as one finds T0 = (ω − v2

2 )J −
vT1.

Moreover, for a localized solitary wave with boundary
conditions |
(ξ )| → 0 for ξ → ±∞ these constants vanish,
Tν = 0. Decomposing 
(ξ ) = A(ξ )eiφ(ξ ) into magnitude and
phase we can solve these two equations for A and its derivative
A′. Remarkably, we find that they are simply parametrized by
the derivative of the phase, φ′ = ∂ξφ,

A(ξ ) = 1

|v|√1 + α
f1

(
φ′(ξ )

v

)
, (6a)

A′(ξ ) = ± 1√
1 + α

f2

(
φ′(ξ )

v
, α

)
, (6b)

where α ≡ −2ω/v2 represents the frequency. The two
functions are f1(p) = √

p(2 − p)/(1 + p) and f2(p, α) =√
p(2α − p + p2)/

√
1 + p. A closed curve in the (A, A′)

plane, that converges to the origin for |ξ | → ∞, is obtained
for 0 < α < 1

8 . This constraint yields a two-parameter family
of solitary wave solutions parametrized by α and the velocity
v (see Ref. [40] for details).

Taking the derivative of Eq. (6a) and comparing with
Eq. (6b) yields a first-order ordinary differential equation for
φ′, that is easily solved. One obtains a wave function where
both derivative φ′ and magnitude A are locally confined (see
Fig. 4). Their extremal values are

φ′
max = v

2
(1 − √

1 − 8α), (7a)

Amax =
√

2

|v|

√
4α + 1 − √

1 − 8α√
1 + α(3 − √

1 − 8α)
, (7b)

and both vanish for α → 0+. For small α we can approximate
f1(p) ≈ √

2p and f2(p, α) ≈ √
p(2α − p), and we obtain ex-
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(a) (b)
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FIG. 4. Profile parameters of solitary waves extracted from micromagnetic simulations at h = 2.16 (symbols) for various values of
dimensionless velocity v (in units of 1310 m/s). The profiles generally depend on the sign of v, but this nonreciprocity decreases with
decreasing |v| and the profiles approach the analytical predictions of Eq. (7) (lines) valid for v → 0. The insets show a full numerical profile
(red lines) for α ≈ 0.04 (marked by dashed circles in the main panels) with a comparison to the solution of Eq. (6) (dashed lines).

plicitly the profile for a solitary wave centered at ξ = 0,

φ(ξ ) ≈ 2
√

α tanh(
√

αvξ ), A(ξ ) ≈ 2

|v|
√

α

cosh(
√

αvξ )
, (8)

up to a constant phase shift. From these expressions we can
read off the spatial width ξw ∼ 1

|v|√α
that diverges in this limit.

Note that the amplitude Amax in Eq. (7b) diverges for small
velocities v but this does not invalidate the theory. The Taylor
expansion of the effective potential Veff is controlled as long
as the derivative |∂zR| ∝ |∂1ψ | remains small. Its maximal
value is attained at the center of the solitary wave, that is, small
|∂1ψ |2|max ∼ α, for α → 0+. Moreover, nonreciprocal correc-
tions associated with the second derivative |∂2

1 ψ |/|∂1ψ | ∼ v

are negligible as long as the velocity is small, and, therefore,
the theory (4) is under control for small v and α. As shown
in Ref. [40], the lifetime of the solitary wave due to a finite
Gilbert damping is also large in this limit, τ ∼ 1/v2. We note
that nonreciprocal corrections can, in principle, be taken into
account, spoiling, however, the simplicity of Eqs. (6).

The solitary wave carries energy, linear, and angular mo-
mentum along the string. In the limit of small α, the total
energy is on the order E ∼

√
α

|v| , and it diverges for small

velocities due to the large width of the wave, ξw ∼ 1
|v|√α

. The
energy density, however, remains small, E/ξw ∼ α. For the
total linear and angular momentum we obtain, respectively,
P ∼

√
α

|v|v and Jz ∼
√

α

v3 . Both are even more singular than E
due to the large amplitude [Eq. (7b)]. As discussed above,
the corresponding total currents are obtained by multiplying
with v.

Our micromagnetic simulations confirm the presence of
stable solitary waves (see Fig. 1). We have extracted numer-
ically their profiles for various values of v and α (see Fig. 4
and Ref. [40]). The profiles are found to be nonreciprocal, i.e.,
they depend on the sign of the velocity v. This nonreciprocity,
however, decreases with decreasing |v|, and we find that they
approach for v → 0 the analytical predictions for this limit.
As the width as well as the amplitude of the solitary wave di-
verges for v → 0, finite-size effects of our simulation hamper
the study of velocities smaller than the values listed in Fig. 4.

Solitary waves are confirmed to exist for α within the full
range between zero and 1/8. For larger α, the skyrmion string
becomes unstable and breaks, at least, for the discretization
used in our micromagnetic simulation.

Finally, we compare with the dynamics of vortex filaments
in superfluids. Vortices are singular defects of the superfluid
order parameter in contrast to skyrmions that are smooth
textures. As a consequence, the dynamics of vortex filaments
are in general governed by a nonlocal Biot-Savart law. This
nonlocality is at the origin of the nonanalytic dispersion,
ω(kz ) ∼ k2

z log kz, of Kelvin waves and it leads to stretching
instabilities such as the development of hairpins in the fila-
ment [2].

Only when this nonlocality is neglected within the local-
ized induction approximation (LIA), is the dynamics of the
vortex filament also described by a local Schrödinger equation
with a Hamiltonian proportional to its length, H = ∫

dx1H

with H =
√

1 + |∂1ψ |2 [4]. As a consequence, its length is
conserved and stretching is neglected within the LIA. Interest-
ingly, the resulting Schrödinger equation is integrable [54] and
its solitons were first discussed by Hasimoto [5]. In the limit
of small intrinsic curvature κ of the filament, |∂1ψ | remains
small and after Taylor expanding H the theory approximately
coincides with that of Eq. (4) [55]. Hasimoto’s soliton solution
indeed reduces to Eq. (8) in this limit.

This has interesting consequences for the solitary waves
studied here. Whereas the theory (4) itself is claimed to be
nonintegrable [55], it is very close to an integrable theory
in the limit of its applicability. This implies that the solitary
waves of the skyrmion string are expected to be approximate
solitons that almost retain their shape in collisions. Using
the solitary waves as carriers, the skyrmion string therefore
serves as a transmission line that allows for the simultaneous,
though nonreciprocal, information transfer in both directions.
Experimentally, solitary waves could be created, e.g., by in-
homogeneous spin-transfer torques [12].
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