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In frustrated magnetic systems with competing interactions fluctuations can lift the residual accidental
degeneracy. We argue that the state selection may have different outcomes for quantum and thermal order
by disorder. As an example, we consider the semiclassical Heisenberg fcc antiferromagnet with only the
nearest-neighbor interactions. Zero-point oscillations select the type 3 collinear antiferromagnetic state at T = 0.
Thermal fluctuations favor instead the type 1 antiferromagnetic structure. The opposite tendencies result in
a finite-temperature transition between the two collinear states. Competition between effects of quantum and
thermal order by disorder is a general phenomenon and is also realized in the J1-J2 square-lattice antiferromagnet
at the critical point J2 = 1

2 J1.
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Introduction. As counterintuitive as it may seem, fluctu-
ations are not always destructive of order, but can actually
stabilize broken symmetry states. One prominent example is
the isotropic-nematic transition in liquid crystals consisting
of hard-rod molecules that, according to Onsager, can be
driven entirely by entropy gain in the ordered state [1]. In
high-energy physics, vacuum fluctuations are the hallmark of
the Coleman-Weinberg mechanism of spontaneous symmetry
breakdown in the electrodynamics of massless scalar mesons
[2]. The concept of fluctuation-induced ordering has also
gained a lot of attention in the field of magnetism. Frustrated
magnets with competing interactions often exhibit accidental
degeneracy between classical or mean-field ground states that
is not dictated by symmetry [3–5]. Their low-temperature
behavior and the ultimate ground state selection is sensitive
to weak residual interactions but can also be determined
solely by fluctuations. In the past, several authors have in-
dependently shown that accidental degeneracy in frustrated
spin models can be lifted either by quantum or by thermal
fluctuations [6–11]. Nowadays, such a fluctuation mechanism
is commonly referred to as the effect of order by disorder
[12–31].

The early theoretical works have typically found selection
of the ‘most collinear’ states for both quantum (T = 0) and
classical (T > 0) versions of the same frustrated spin model,
supporting the perception that the two types of fluctuations
play a similar role in the state selection process. Being correct
for many weakly frustrated magnets, this assertion is, how-
ever, not guaranteed in general; see examples in [22,25,30].

A further limitation of the current picture of thermal order
by disorder is that it is mostly based on studies of classical
spins. This is, in part, because only the classical Monte Carlo
algorithms have proved efficient for frustrated models. The
role of thermal fluctuations in quantum spin models attracted

much less attention. The available works on this problem
[12,17,24] have documented a distinct role of thermal fluc-
tuations for a few specific spin models, but generality of the
obtained results remain unclear.

The difference between quantum and thermal order by
disorder is easily recognized by considering two standard
expressions. At T = 0, the zero-point (vacuum) energy is
given by

E0 = 1

2

∑
k

εk, (1)

where εk are energies of bosonic magnon modes. At the same
time, their free energy is (kB = 1)

�F = T
∑

k

ln(1 − e−εk/T ) . (2)

Both types of fluctuations favor states with soft excitations,
but the “softness” criterion appears to be different in each
case. Minimization of the zero-point energy (1) picks the
states with the smallest average magnon energy. Thermal
fluctuations (2) instead select states with the largest density
of low-energy excitations εk ∼ T . In frustrated magnets the
low-energy excitations include the pristine Goldstone modes
determined by the broken symmetry and the so-called pseudo-
Goldstone modes. The latter appear due to an accidental
degeneracy of the classical ground states and have a distinct
structure for each of the ground states. Since the two selection
mechanisms rely on magnons with different energies, their
outcomes can also vary.

The thermal effects vanish as T → 0, hence, a natu-
ral question is whether the thermal contribution (2) can
overcome the zero-temperature splitting (1). In our paper
we demonstrate that the semiclassical Heisenberg antiferro-
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FIG. 1. Type 1 (left) and type 3 (right) antiferromagnetic struc-
tures on an fcc lattice.

magnet (AFM) on a face-centered cubic (fcc) lattice with
nearest-neighbor interactions exhibits a finite-temperature
transition within magnetically ordered state determined by
competition between the two fluctuation mechanisms. A com-
petition between thermal and quantum order by disorder
effects is also predicted for the frustrated square-lattice an-
tiferromagnet showing that such a behavior is ubiquitous
among frustrated models.

FCC antiferromagnet, T = 0. The Heisenberg AFM on an
fcc lattice is one of the oldest frustrated spin models [32–37].
It keeps attracting significant interest because of numerous
experimental realizations [38–45]. We consider the Heisen-
berg model with spins of length S and the nearest-neighbor
exchanges of strength J:

H = J
∑
〈i j〉

Si · S j . (3)

Each spin couples to 12 nearest neighbors located at
(0,±a/2,±a/2), (±a/2, 0,±a/2), (±a/2,±a/2, 0), where
a is the linear size of a cubic cell.

The lowest-energy classical states of (3) are coplanar spin
spirals with the propagation vectors belonging to the line

Qs = 2π

a
(1, q, 0) (4)

and other equivalent directions in the cubic Brillouin zone.
Their classical energy Ecl = −2JS2 does not depend on the
pitch parameter q. For each degeneracy line there are two
special commensurate wave vectors

Q1 = 2π

a
(1, 0, 0) and Q3 = 2π

a

(
1,

1

2
, 0

)
(5)

that accommodate collinear states called respectively the type
1 (AF1) and type 3 antiferromagnetic (AF3) structures; see
Fig. 1. The two collinear states become unique ground states
in the presence of a weak second-neighbor exchange either
of FM (type 1) or AFM (type 3) sign [36]. This makes them
natural candidates for the order by disorder selection in the
nearest-neighbor case [46].

Significant efforts were previously devoted to investigation
of thermal order by disorder for the classical fcc anti-
ferromagnet [46–51]. Large-scale Monte Carlo simulations
clearly demonstrated the presence of the AF1 state below the
first-order transition at Tc ≈ 0.446JS2 [51]. Surprisingly, the
quantum selection for the Heisenberg fcc antiferromagnet (3)

was not addressed in detail apart from one early work [34],
which came, as is shown below, to an incorrect conclusion.
The main focus of more recent theoretical studies [52–62] was
on the effect of further-neighbor exchanges, anisotropies, etc.

We consider semiclassical spins S � 1 and use the linear
spin-wave theory (LSWT) to study the ground state selection
by quantum fluctuations. Spin operators are bosonized via
the Holstein-Primakoff transformation applied in the rotating
local frame and only quadratic terms in boson operators are
kept. The quadratic form is diagonalized by the Bogolyubov
transformation, allowing one to compute the magnon disper-
sion εk and the ground-state energy per spin

Eg.s. = −2JS(S + 1) + 1

2

∑
k

εk, (6)

where summation is taken over the first Brillouin zone. All
steps are completely standard—see, e.g., [63]—and below we
present only the final expressions.

For an arbitrary spin spiral on the degeneracy line (4) the
magnon energy is

εsk = 4JS [1 + cxcy + cxcz + cycz]
1/2

× [1 − cxcz + cy(cz − cx ) cos(πq)]1/2. (7)

To simplify formulas we define cα = cos(kαa/2), sα =
sin(kαa/2) for α = x, y, z. The excitation spectrum for the
AF1 state is obtained by taking q → 0 in the above equation:

ε1k = 4JS
√

s2
x (cy + cz )2 + s2

ys2
z . (8)

For q = 1/2, Eq. (7) describes magnons in the noncollinear
spiral state with the propagation vector Q3 and 90◦ angle
between neighboring spins. The spectrum of the collinear AF3
state cannot be described in a simple rotating basis. One has
to include two sites in the unit cell and introduce two types
of bosons. Accordingly, there are two magnon modes for each
wave vector,

(
ε±

3k

4JS

)2

= 1 − c2
xc2

z ± [
c2

y (cx + cz )2(1 − cxcz )2

+ s4
y

(
c2

x − c2
z

)2 + s2
xs2

ys2
z (cx − cz )2

]1/2
, (9)

which both contribute to the zero-point energy, but the
momentum summation is now performed over half of the Bril-
louin zone. The dispersion relation (9) was previously derived
by Swendsen [37]. However, the early work by ter Haar and
Lines [34,35] gave εk equivalent to Eq. (7) with q = 1/2,
which applies to the Q3 spiral rather than to the collinear
AF3 state [64]. The magnon dispersion in the collinear states
is illustrated in Fig. 2. Apart from the normal Goldstone
modes at the momenta k = 0 and k = Q1 or Q3 the excitation
spectra contain the line nodes that appear due to the classical
degeneracy.

The zero-point energy for degenerate classical ground
states has been computed numerically using the magnon
spectra (7)–(9). Results quoted below contain all significant
digits. Combining E0 with the state-independent negative
shift, Eq. (6), we obtain for the ground-state energy of the
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FIG. 2. Color intensity map for the magnon dispersion in two
collinear antiferromagnetic states with fixed ky = 2π/a: AF1 (top
panel) and AF3, lower branch (bottom panel).

AF1 state

E (1)
g.s. = Ecl

(
1 + 0.488056

2S

)
, (10)

where Ecl = −2JS2. The first three digits of the 1/S correc-
tion agree with the result of Ref. [52]. For the AF3 structure
the integration yields

E (3)
g.s. = Ecl

(
1 + 0.491106

2S

)
, (11)

which is lower than E (1)
g.s.. The inset of Fig. 3 shows the quan-

tum energy correction �E = E (s)
g.s. − Ecl for the spin spirals

(4), which is always above �E (1) [64]. Thus, at variance
with [34] we find that the LSWT gives the lowest energy
for the AF3 state albeit with a rather small energy difference
�E0 ≈ 0.003JS. This conclusion is further supported by the
numerical exact-diagonalization study of the spin-1/2 model
[65], which found enhanced spin-spin correlations at the wave
vector Q3 in comparison to Q1. Still, a small size of the
employed cluster (N = 32) prevents us from making any def-
inite statement about the state selection in the S = 1/2 case.
Therefore, it will be interesting to check how the higher-order
spin-wave corrections modify the ground-state energies of the
AF1 and AF3 spin structures.

We conclude the T = 0 case with results for the or-
dered moments. Due to the additional pseudo-Goldstone
modes the spin reduction �S = S − 〈S〉 is substantial for both
states:

�S1 = 0.338 75, �S3 = 0.366 30. (12)

In agreement with the fluctuation mechanism, the lowest en-
ergy state exhibits a larger spin reduction.

FCC antiferromagnet, finite T . The free energy (2) has been
computed in the low-temperature region T 	 JS2 using the
bare magnon spectra. We normalize temperature to JS and
drop the classical energy, which leaves the same JS scaling for
both contributions (1) and (2). Figure 3 shows the total free
energy F = E0 + �F for the two collinear states. Remark-
ably, curves cross at T ∗ ≈ 0.21JS, indicating the first-order
transition into the AF1 state above T ∗. This is an interesting
example of competition between thermal and quantum order
by disorder. Clearly, the transition is possible because of a
small initial difference in the zero point energies of the com-
peting states.

To further understand the thermal vs quantum competition,
we derive analytically the low-temperature asymptotes for
�F (T ) in the two states. Let us begin with the AF1 struc-
ture. The energy (8) has two types of line nodes: (i) Lx line
k = (kx, 2π/a, 0) and (ii) Lz line k = (0, 2π/a, kz ). All other
zero-energy excitations fall in one of the above categories. The
difference between Lx and Lz nodes is prominent already from
Fig. 1. The small momentum expansion around the Lx line
gives

ε1k ≈ JSa2
√

k2
y k2

z + 1
4 s2

x

(
k2

y − k2
z

)2 � k2
⊥, (13)

whereas for the Lz line ε1k � k⊥. The softer Lx magnons dom-
inate at low temperatures and yield the power law asymptote

�F1 ∝ −T 2 (14)

and C ∝ T behavior of the specific heat. These should be
contrasted with a much weaker thermal effect �F ∝ −T 4

(C ∝ T 3) in nonfrustrated 3D antiferromagnets.
The magnon dispersion for the AF3 state also has

line nodes, but they have a linear dispersion and play
only a secondary role. The dominant contribution

FIG. 3. Main panel: temperature dependence of the free energy
in the AF1 and AF3 states. Inset: the quantum correction �E to the
ground-state energy for the degenerate classical spirals vs pitch q
(full line). �E for the AF3 state is marked with a cross.
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into �F3 comes from the crossing points of such
lines; see Fig. 1. In the vicinity of the crossing point
(0, 2π/a, 0) the lowest magnon branch (9) is anomalously
soft,

ε−
3k ≈ JSa2

√
2

√
k2

y

(
k2

x + k2
z

) + 1
16 k2

x k2
z

(
k2

x + k2
z

)
, (15)

where both the leading and the subleading terms are necessary
for deriving the correct asymptote. A lengthy analytic calcu-
lation gives in this case

�F3 ∝ −T 7/3. (16)

The two power laws (14) and (16) fully agree with the nu-
merical results in Fig. 3. Thus, the different thermal response
in the two states is determined by a different structure of the
pseudo-Goldstone modes.

Generally, the higher-order 1/S corrections renormalize
the harmonic spectrum and induce a small quantum gap
�g = O(1/S) for the pseudo-Goldstone modes. Such calcu-
lations have been carried out before in a few simple cases
[31,53,66,67]. The normal three-dimensional behavior �F ∝
−T 4 is recovered at ultralow temperatures T 	 �g, leav-
ing almost intact the T dependences (14) and (16) in the
intermediate regime �g 	 T � JS. Note that the nonlinear
effects also remove the divergent finite-T contribution to the
sublattice magnetization, which was regarded as an indication
of the absence of a long-range order at finite temperatures in
the fcc antiferromagnet [33,34].

The predicted transition at T ∗ ≈ 0.21JS occurs away from
the classical regime T ∼ JS2, where a large-S model behaves
essentially as a classical spin system. Hence, the thermal order
by disorder effect discussed here is not directly related to the
similar selection in the classical model. Indeed, the harmonic
excitation spectra are identical for the classical AF1 and AF3
states and the thermal selection relies on the nonlinear pro-
cesses [51].

Frustrated square-lattice antiferromagnet. We now briefly
consider the Heisenberg J1-J2 antiferromagnet on a square
lattice (FSAFM); for a review see [68]. Depending on the ratio
of two exchanges the model has the following classical ground
states: the Néel state with Q = (π, π ) for J2/J1 � 1/2 and the
stripe state with Q = (π, 0) or Q = (0, π ) for J2/J1 � 1/2.
We focus on the critical point J2/J1 = 1/2, where the classical
degeneracy of FSAFM is reminiscent of the fcc antiferro-
magnet. Apart from the two degenerate collinear states, there
is an infinite number of spin spirals of equal energy with
Q = (π, q) and Q = (q, π ).

We perform the LSWT calculations at J2/J1 = 1/2 in the
two collinear states of FSAFM [69], and obtain the magnon
dispersion in the Néel state as

εk = 2J1S| sin kx|| sin ky|, (17)

whereas in the stripe phase [Q = (π, 0)] the dispersion is

εk = 2J1S| sin kx|(1 + cos ky). (18)

The excitation spectra possess the line nodes in accordance
with the classical degeneracy, but the asymptotic behavior
of εk in their vicinity is markedly different between the two
states. An elementary integration yields for the zero-point

energy

ENeel
0 = 4

π2
J1S < E stripe

0 = 2

π
J1S, (19)

with the Néel state having a lower energy because of a more
narrow magnon bandwidth. Thus, at J2 = 1

2 J1, the quantum
fluctuations stabilize the Néel state in full agreement with the
numerical evaluation of two spin-wave contributions [70].

At low temperatures the leading contributions to the free
energy are also straightforwardly computed as

�F Neel = −T 2 ln T, �F stripe = −T 3/2. (20)

The stripe phase is favored by the thermal fluctuations due to
its softer pseudo-Goldstone modes (εk ∼ k2

y ). Hence, FSAFM
provides another example of the thermal-quantum com-
petition, though a finite-temperature transition (crossover)
between the two competing state is precluded due to a fairly
large energy difference �E0 ≈ 0.23J1S at zero T . It will
be interesting to check how the interlayer coupling present
in possible experimental realizations of FSAFM affect this
competition.

Conclusions. The difficulties in the spin-wave theory for
the fcc antiferromagnet were recognized more than half a
century ago [33], but not really resolved. By making a full
linear spin-wave analysis of the Heisenberg model we have
elucidated a number of interesting points: we find a quali-
tative difference between the effects of quantum corrections
and thermal excitations and predict a phase transition be-
tween two collinear states, each favored by specific type
of fluctuations. We relate the differences to the structure of
zero-frequency (pseudo-Goldstone) magnons that are respon-
sible for the anomalous power laws in the free energy as
a function of temperature. These should be visible in the
temperature dependence of the specific heat and may serve
as an experimental hint of order by disorder in real materi-
als. A similar transition due to competing order by disorder
effects has been found for the Heisenberg-Kitaev model on
a hyper-honeycomb lattice [24], though the role played by
pseudo-Goldstone modes was not investigated.

The obtained results are valid for the fcc antiferromagnets
with large spins S � 1. For small spins, the higher-order
quantum corrections may become important and it is nec-
essary to investigate their effect both analytically and
numerically.

Competition between quantum and thermal order by dis-
order must be ubiquitous among frustrated magnets. The
primary candidates are spin systems with degeneracy along
lines in the momentum space similar to the fcc and FSAFM
models considered here. Such spiral degeneracy naturally
appears from the frustrating further-neighbor Heisenberg
exchanges [71,72]. It can also arise from anisotropic nearest-
neighbor interactions on geometrically frustrated lattices
[23,27,62]. We hope that the presented results will stimulate
further interest in the role of thermal fluctuations in quantum
frustrated models.

Note added in proof. Recently, D. Kriese et al. [73] pre-
sented numerical FRG results that favor the AF3 state in the
spin-1/2 fcc AFM at zero temperature, in agreement with our
conclusion.
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