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Equilibrium field theory of magnetic monopoles in degenerate square spin ice: Correlations,
entropic interactions, and charge screening regimes
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We describe degenerate square spin as an ensemble of magnetic monopoles coupled via an emergent entropic
field that subsumes the effect of the underlying spin vacuum. We compute their effective free energy, entropic
interaction, correlations, screening, and structure factor, and find that they coincide with the experimental
ones. Unlike in pyrochlore ices, a dimensional mismatch between real and entropic interactions leads to weak
singularities at the pinch points and algebraic correlations at long distances. This algebraic screening can be,
however, camouflaged by a pseudoscreening regime.

DOI: 10.1103/PhysRevB.102.220401

Introduction. Magnetic monopoles [1,2] provide an emer-
gent description of the low-energy physics of rare-earth spin
ices [3–5] and have raised considerable interest, in particular,
in regard to “magnetricity” [6–9]. Spin ices can be mod-
eled [4,10,11] as systems of Ising spins on a pyrochlore lattice,
impinging on tetrahedra such that their low-energy state obeys
the Bernal-Fowler ice rule [12–14]: two spins point in, two out
of each tetrahedron, realizing a degenerate manifold of con-
strained disorder [15,16] and residual entropy [3,14]. Then,
violations of the ice rule can be interpreted as sinks or sources
of the magnetization, i.e., charges, and the low-energy physics
of spin ice can be described in terms of mobile deconfined
magnetic monopoles, interacting via a Coulomb law in a dis-
ordered spin vacuum. Spin ice is, thus, a prominent platform
in which monopole physics can be investigated.

Although experimental probes of monopoles in crystal-
grown spin ices are necessarily indirect and at low tempera-
tures, magnetic monopoles can now be characterized directly
in real time, real space [17–20] at the desired temperature, and
fields in artificial spin ices [21–25]. These two-dimensional
(2D) arrays of magnetic, frustrated nanoislands are fabricated
in a variety of geometries, often for exotic behaviors not found
in natural magnets [26–33].

Here we study the monopoles of degenerate artificial
square ice [34,35], recently realized in nanopatterned mag-
nets [20,36,37] and in a quantum annealer [38]. Square
ice provides a direct 2D analog of three-dimensional (3D)
pyrochlore spin ice where monopole excitations can be di-
rectly characterized. Heuristic field theories of rare-earth
pyrochlores [10,11,15,16] have dealt only with the ice man-
ifold via a coarse-grained solenoidal field that describes the
spin texture. We propose instead a framework where magnetic
monopoles are the constitutive degrees of freedom, whereas
the underlying spin ensemble is subsumed into entropic forces
among these topological defects.

We show that, in the absence of physical interaction [38],
monopoles interact entropically via a 2D-Coulomb loga-
rithmic law, leading to (2 + 1) electromagnetism, Bessel

correlations of finite screening length for T > 0, and, thus, a
conductive phase [39,40] where monopoles are unbound. The
correlation length diverges at least exponentially as T ↓ 0,
signaling the criticality of the ice manifold. Then, inclusion
of the monopole-monopole 3D-Coulomb interaction leads,
unlike in 3D spin ice, to algebraic correlations and weak
singularities in the structure factor at T �= 0. Its interplay with
the entropic interaction drives screening regimes of effectively
bound and unbound monopoles.

(1) Field theory. Square ice is a set of Ne classical binary
spins �Se aligned on the edges e of a square lattice of unit
vectors ê1, ê2 of Nv = Ne/2 vertices labeled by v. The 16
spin configurations of a vertex are classified by four topolo-
gies [22,36] as t-I,..., t-IV (Fig. 1). Of each vertex, the charge
Qv = 2n − 4 is equal to the number n of spins pointing in mi-
nus the 4 − n pointing out. Then, Q = 0 for ice-rule obeying
vertices (t-I and t-II). The following:

H[Q] = ε

2

∑
v

Q2
v + μ

2

∑
v �=v′

QvVvv′Qv′ (1)

is a suitable Hamiltonian for a variety of degenerate square ice
realizations: ε is the cost of monopoles and Vvv′ = 1/2π |v −
v′| is their 3D-Coulomb interaction; we take the lattice con-
stant a = 1, and, thus, μ is an energy. When μ/ε < 2π/M� �
3.9 (where M� � 1.6155 is our Madelung constant [41]) the
ground state is a disordered tessellation of the six ice-rule
vertices (Fig. 1) of known Pauling entropy [42,43]. Above that
threshold, the ground state becomes unstable toward the for-
mation of a monopole ionic crystal.

In magnetic realizations [20,36,37], Eq. (1) corresponds to
the dumbbell model of Ref. [2] (then ε is the coupling of the
dumbbell charges in the vertex), the 3D-Coulomb interaction
comes from the usual truncated multipole expansion, and,
therefore, μ = μ0 p2/l2

d , with p as the magnetic moment and
ld < a as the dumbbell length. Then, μ/ε � 1 − ld/a < 1.
Equation (1) does not describe the standard nondegenerate
square ice [19,22,44–47] in which monopoles are confined by
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FIG. 1. Left: the four vertex configurations, ice-rule ones at
the top (Q = 0) and the monopole at the bottom (multiplicities in
parentheses). Right: portion of spin ice with monopoles of different
charges circled.

the tension of magnetic Faraday lines [48–53]. Finally, even
in realizations where ice-rule vertices are degenerate [34–38],
the long-ranged dipolar interaction favors antiferromag-
netic ordering [36] at T � ε, an effect that we consider
elsewhere.

The partition function is

Z[H] =
∑

S

exp

(
−βH + β

∑
e

�Se · �He

)
, (2)

(β = 1/T ) such that 〈�Se1 · · · �Sen〉 = ∂β �He1 ···β �Hen
ln Z .

To sum over the spins, we insert the tautology [54]
1 = ∏

v

∫
dqvdφv exp[iφv (qv − Qv )]/(2π )Nv obtaining

Z[H] =
∫

[dq]e−βH[q]�̃[q], (3)

where [dq] = ∏
v dqv/(2π )Nv and the density of states,

�̃[q] =
∫

[dφ]�[φ] exp

(
i
∑

v

qvφv

)
(4)

is the Fourier transform of the partition function for φ,

�[φ] = 2Ne
∏
〈vv′〉

cosh(−i∇vv′φ + βHvv′ ) (5)

(edges 〈vv′〉 are counted once, ∇vv′φ := φv′ − φv, Hvv′ :=
�He · ˆvv′). By construction, 〈Qv1 · · · Qvn〉 = 〈qv1 · · · qvn〉.

We have obtained a theory of continuous charges con-
strained by an “entropy” S[q] = ln �̃[q] conveying the effect
of the spin ensemble. Equivalently, monopoles are coupled to
an entropic field [55] Ve = iT φ, of “free energy,”

F[φ] = −T ln �[φ]. (6)

From Eqs. (3)–(5) we have

〈Svv′ 〉 = 〈tanh(βHvv′ − i∇vv′φ)〉, (7)

implying that whereas Ve = iT φ correlates charges, Be =
iT ∇φ correlates spins that would be trivially paramagnetic
in its absence. Note that Vev := 〈Ve,v〉 = iT 〈φv〉 is real [56].
In fact, the standard Gaussian gymnastic in the Supplemental

Material [57] shows

Ve,v = εqv + μ

2π

∑
v′ �=v

qv′

|v − v′| ,
(8)

q =
∑
α=x,y

∂αtanh(β ∂αVe − βHα ),

with the second equation following from the definition of Q
and from Eq. (7) in the continuum limit.

(2) Approximations. Equations (8) allow to compute the
charge under boundary conditions in various approximations.
For μ = 0 their linearization returns screened-Poisson equa-
tions for q,Ve, of screening length,

ξ0 =
√

ε/T . (9)

(A similar screening length had been found in different
geometries via other methods [10,58], and, as we show else-
where, holds for a general graph [59]). This approximation
corresponds to a high-T limit. From Eqs. (3) and (4), by
integrating over qv one obtains 〈φ2〉 � ε/T : as T increases
the system loses correlation, and the entropic field decreases.

We can, therefore, legitimately expand F[φ] in small φ.
Then, Fourier transforming on the Brillouin zone (BZ) [60],
we obtain the approximate partition function,

Zeff =
∫

[dq dφ] exp

(
−

∫
BZ

βFeff [q, φ](k)
d2k

(2π )2

)
, (10)

of the free-energy functional at second order,

Feff [q, φ] = ε + μṼ

2
|q̃|2 + T

2
γ 2|φ̃|2 − iT q̃∗φ̃

−φ̃∗ �γ · �̃H − β

2
| �̃H |2, (11)

where γα (�k) := 2 sin(kα/2) and Ṽ (�k) is the Fourier transform
of V on the lattice. Integrating Zeff over φ̃ returns the effective
free energy for monopoles at quadratic order,

Feff [q] = 1

2

(
ε + μṼ + T

γ 2

)
|q̃|2. (12)

The last term implies an entropic interaction among
charges that at long distances (γ 2 � k2) is

Ve(�r1 − �r2) � −T
q1q2

2π
ln ‖�r1 − �r2‖, (13)

i.e., 2D Coulomb. Instead, in 3D, from Eq. (12) the entropic
interaction would be 3D Coulomb, or ∼1/r, thus, merely
altering the coupling constant μ → μ + T of the real inter-
action as indeed found numerically [61,62]. The origin of
the entropic interaction is the following: a charge assignation
changes the degeneracy of the spin configurations compatible
with it and, thus, the entropy. That the change in entropy can
be written as the sum of pairwise logarithmic interactions is
not obvious.

Equation (12) implies the charge correlations in k space,

〈|q̃(�k)|2〉 = γ (�k)2χ̃‖(�k), (14)

with χ̃‖(�k) given by

χ̃‖(�k)−1 = 1 + ξ0
2γ (�k)2

[
1 + μ

ε
Ṽ (k)

]
. (15)
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FIG. 2. Plots of structure factor �m obtained from Eq. (17) for
ξ0 = 0, 3, μ/ε = 0, 0.3, 0.5 (kx, ky in units of 1/a); μ > 0 leads to
sharper pinch points even at high T . Bottom row: Structure factor
cuts on the line kx = 2π demonstrate discontinuity in the first deriva-
tive of the intensity when μ > 0.

Note that 〈|q̃(�k)|2〉 peaks on the K points of the BZ.
These peaks diverge when μ ↑ (2π/M�)(ε + T/8), sig-
naling the aforementioned instability toward an ionic
crystal of ±4 monopoles [63]. Note also that 〈q2〉 =∫

BZ〈|q̃(�k)|2〉d2k/(2π )2 ↑ 4 as T ↑ ∞, which is correct, as
it can be verified by considering only vertex multiplicities
(22/2 + 42/8 = 4).

By performing the integral in Eq. (10) we obtain

ln Zeff = 1
2 (β �̃H∗) · (γ̂ γ̂ χ̃‖ + ⊥γ̂ ⊥γ̂ ) · (β �̃H ) (16)

(γ̂ := �γ /γ , ⊥γ̂ := ê3 ∧ γ̂ ), showing that χ̃‖(�k) is the longi-
tudinal susceptibility (multiplied by T ). Thus,

〈S̃∗
α (�k)S̃α′ (�k)〉 = γ̂αγ̂α′ χ̃‖ + ⊥γ̂α

⊥γ̂α′ (17)

are the spin correlations, whose structure factor �m(�k) =⊥

�k · 〈 �̃S(�k) �̃S(�k)〉 ·⊥ �k we plot in Fig. 2. In the limit T ↓ 0 and,
thus, ξ0 ↑ ∞, correlations in Eq. (17) become purely transver-
sal. When T > 0, μ = 0, pinch points are smoothened by
a Lorentzian of width ξ0. Instead, for μ �= 0 the profile is
sharper with weak singularities controlled by the Bjerrum
length 2lB := μ/T ,

�m(2π, ky) � 1 − 2lb|ky| at ky � 0, (18)

due to the aforementioned dimensional mismatch.

To gain insight on how to proceed at low T [64], one could
perturbatively expand F[φ]. Instead, we make the reasonable
ansatz that the effective theory has the same functional form
as Feff in Eq. (12) but with constants “dressed” by the interac-
tions among fluctuations at low T . Note that ξ0 ↑ ∞ as T ↓ 0
and Eq. (14) implies

ξ0 � 1/
√

〈q2〉 for T ↓ 0, (19)

and, therefore, ε is dressed as ε → ε(T ) ∼ T/〈q2〉.
Then, if we approximate 〈q2〉 by assuming uncorrelated

vertices, we obtain ξ0 � exp (ε/T ). This exponential diver-
gence of the correlation length (consistent with experimental
findings [65]) points to the topological nature of the crit-
ical ice manifold at T = 0. Note that ξ0 in Eq. (19) is
exactly the Debye-Hückel [66] length for a Coulomb poten-
tial of coupling constant proportional to T as is the case of
our entropic potential. In the Supplemental Material [57],
a Debye-Hückel [61,67] approach inclusive of the entropic
field [55] leads to the very same Eq. (14) yet with ξ0 given
by Eq. (19), corroborating our ansatz.

When μ = 0, Eq. (12) reduces to a 2D-Coulomb gas with
purely entropic interactions. From Eqs. (14) and (15) the
charge correlations at long distances are〈

q�r1 q�r2

〉 � − 1

2πξ 4
0

K0(‖�r1 − �r2‖/ξ0), (20)

as recently experimentally verified [38], showing that ξ0 is
indeed the correlation length. ξ0 is also the screening length:
A charge Qpin pinned in v0 elicits a charge distribution,

qv = Qpin〈qvqv0〉/〈q2〉. (21)

A finite screening length implies that the system is conduc-
tive. There is no BKT transition [39,40] to an insulating phase
at finite T (i.e., algebraic correlations and bound charges)
because the interaction among charges is purely entropic, has
coupling constant proportional to T , and, thus, no interplay
between entropy and energy can drive a transition. The lack
of such a transition can be shown, in general, from the model,
regardless of our formalism [68]. Yet, when μ > 0 the system
is always insulating as we show now.

(3) Monopole interactions and algebraic correlations. Con-
sider now μ > 0. At small k, Ṽ (k) ∼ 1/k and Eq. (21) reads

q̃(k) � k2

1 + 2lBk + ξ 2
0 k2

Qpin

〈q2〉 , (22)

which is not analytical at �k = 0, leading to the aforementioned
weak singularities at the pinch points. In 3D it would be
analytical because Ṽ (k) ∼ 1/k2, the poles of q̃(k) would be
purely imaginary [k± = ±i/ξ3D with ξ−2

3D = ξ−2
0 (1 + μ/T )],

and, thus, ξ3D would be a screening length. But in 2D the poles
are k± = −k̄ ± i/ξμ with

ξ 2
μ

ξ 2
0

= ξ 2
0

ξ 2
0 − l2

B

= T

T − T×
, (23)

and they always have a real part k̄ = lB/ξ 2
0 = μ/2ε.

Above the crossover temperature T× = μ2/4ε, ξ0 >

lB, ξμ is real, and poles have imaginary parts i/ξμ. Thus, one
could heuristically consider ξμ a screening length, and say that
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above T× monopoles are unbound, and the phase is conducive.
Below T×, ξμ is imaginary, and one could say that there is no
screening length, and monopoles are bound by the strength
of the magnetic interaction (ξ0 < lB) in an insulating phase.
However, things are more complicated than this naive picture
would suggest.

In fact, mathematically speaking, there is never a finite
screening length. To demonstrate it, consider a charge Qpin

pinned in the origin. From Eqs. (12) and (13), Ṽe(k) =
T q̃(k)/k2, and, thus, we obtain

βṼe(k) = ξμ

2iξ 2
0

(
1

k − k+
− 1

k − k−

)
Qpin. (24)

Using 2/c = ∫ ∞
−∞ exp(−|z|c)dz for Re(c) > 0 on each frac-

tion in Eq. (24) and Fourier transforming, we have

βVe(r) = lB
2π〈q2〉

∫ +∞

−∞

λ(z)

(r2 + z2)3/2
dz, (25)

where λ(z) can be interpreted as a linear charge density,

λ(z) = ξμ

2ξ 2
0 lB

|z|sin(|z|/ξμ)e−k̄|z|Qpin, (26)

for which
∫

λ(z)dz = Qpin. Therefore, the entropic potential
can be represented as if generated by an image charge [69],
spread along a line (of coordinate z) perpendicular to the 2D
system, and of total charge Qpin.

Crucially, λ(z) is exponentially confined by a length l .
When T > T×, l = 1/k̄. When T < T×, the sine in Eq. (26)
becomes hyperbolic, and l = 1/k+. For r � l the charge is
seen as pointlike, and the potential scales as

V e(r) � lB
2π〈q2〉

Qpin

r3
, (27)

and, by taking its Laplacian, q(r) scales as

q(r) � − 9lB
2π〈q2〉

Qpin

r5
. (28)

Remarkably, long-distance screening—and, thus, spin
correlations—are algebraic at any T [Figs. 3(a) and 3(b)]. In
3D spin ice, instead, spin correlations are algebraic only at
T = 0 even with monopole interaction. Algebraic screening
from a 3D-Coulomb potential in the polarizability of quantum
or classical 2D charge systems has been rediscovered multiple
times [70–73]. In fact, it is not merely a 2D feature but can
happen in any dimension for the same dimensional mismatch
in the Coulomb interaction [74]. Importantly, unlike electrical
charges, magnetic monopoles are emergent particles of a spin
ensemble and interact entropically. The interplay between the
correlation length at zero interaction (ξ0) and the Bjerrum
length (lB) leads to a crossover at T× between effectively
conductive and insulating regimes.

To see that, consider

Qalg/Qpin � −3lB/〈q2〉l3, (29)

the fraction of the charge screened algebraically, obtained by
integrating Eq. (28) for x > l . When it is very small, and l
is large, the algebraic nature of the screening might not be
detectable.

FIG. 3. Screening behavior at different T, μ’s. (a) Log-log plots
of the screening entropic potential V e(x) (numerically integrated)
of Eq. (25) for different temperatures at relatively strong monopole
interaction μ = 0.65ε leading to l � 3 and T× = 0.1ε where our
approximation should still apply. Note the algebraic 1/r3 decay.
However, at high T the potential drops by 99% before becom-
ing algebraic. (b) For μ = 0.65 and T/T× = 10−3, V e(x) shows a
pseudoalgebraic decay ∼1/r for most of its measurable tail (in the
inset a higher-T case T/T× = 0.1). (c) At low monopole interaction
(μ = 0.2ε) T×/ε = 0.01 is very low, most of the charge is screened
before the algebraic regime (l = 10). Effectively, the screening is
exponential, and Ve(x) ∝ e−x/ξμ/x0.45 provides a good fit [in the inset,
logarithmic plot of x0.45Ve(x)]. (d) Plot of k̄l as a function of T and
schematics of the screening at different distances.

When T � T×, |Qalg/Qpin| � 10−2 or less, and, thus, the
algebraic screening might not be experimentally detectable.
Moreover, as Fig. 3(c) shows, the screening within l is well
fitted by an exponentially screened function. Thus, above T×
there is a “pseudoscreening length” ξμ > lB.

When T � T× we can take k+ ∼ 0 and from Eq. (24)
Ṽe(k) ∼ 1/k, and, thus, V e(r) ∼ 1/r for r � l = 1/k+ [as
confirmed by the numerical plot in Fig. 3(b)]. In this regime
the insulating phase is easily detectable.

Considering l, T×, and Qalg, we can sketch heuristic
regime diagrams, which are necessarily somehow arbitrary
as they depend on practical specifications. Clearly, when l
is smaller than, say, 2, the behavior is completely algebraic.
When l is instead large, there might be pseudoscreening for
x < l if T > T× and if most (we choose 99% in figure) of the
charge is screened within a radius l (left side of the dashed
line in Fig. 4). If l � 2 and Qalg/Qpin is not small, an ini-
tial exponential screening for r < l is followed by algebraic
screening for r � l . Finally, note that ε gets dressed at low
temperatures. At low μ/ε, the algebraic screening might be
extremely hard to detect.
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FIG. 4. Heuristic regime diagram. The solid line is T×(μ). The
dashed line corresponds to 99% of the charge being screened within
the radius l . On the right of the dotted line, l � 2, and there is,
therefore, algebraic screening [〈q(r)q(0)〉 ∼ r−5]. On the left of the
dashed line 99% of the charge is screened within l , and because
T > T×(μ), the regime is pseudoscreened. In the pseudoscreened,
then the algebraic regime, the behavior is effectively screened for
x < l , but more than 1% of the charge is algebraically screened at
x > l . In the double algebraic region 〈q(r)q(0)〉 ∼ r−3 for x � l and
〈q(r)q(0)〉 ∼ r−5 for x � l . Note that in nanomagnetic realizations
the dumbbell model imposes μ/ε < 1.

Conclusion. We have developed a field theory for
monopoles in degenerate square ice. In the absence of a real

monopole interaction the system is a 2D-Coulomb gas where
monopoles interact entropically, are always screened and,
thus, in an unbound, conductive phase. This case has been re-
cently realized in quantum dots [38]. When the 3D-Coulomb
interaction among monopoles is considered, reduced dimen-
sionality prevents full screening, and a dimensional mismatch
between Green’s functions of the Laplace operator drive dif-
ferent effective screening regimes.

Our results, obtained via approximations on a simpli-
fied model, invite experimental tests which are, however,
nontrivial: The algebraic behavior can be camouflaged by
pseudoscreening if the monopole-monopole interaction is
small. Algebraic correlations might be experimentally de-
tectable in weak singularities near the pinch points from which
the Bjerrum length can be extracted.

In the future, more precise expressions for various quanti-
ties can be computed by Feynman diagram expansion of F[φ].
The spirit of our approach can be applied also to 3D spin
ice and to honeycomb/kagome spin ice [19,75] and can be
extended to include topological currents beside charges, thus,
underscoring the gauge-free duality of the square geometry.
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