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Dynamically induced doublon repulsion in the Fermi-Hubbard model probed
by a single-particle density of states
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We investigate the possibility to control dynamically the interactions between repulsively bound pairs of
fermions (doublons) in correlated systems with off-resonant ac fields. We introduce an effective Hamiltonian
that describes the physics of doublons up to second order in the high-frequency limit. It unveils that the doublon
interaction, which is attractive in equilibrium, can be completely suppressed and then switched to repulsive by
varying the power of the ac field. We show that the signature of the dynamical repulsion between doublons
can be found in the single-fermion density of states averaged in time. Our results are further supported by
nonequilibrium dynamical mean-field theory simulations for the half-filled Fermi-Hubbard model.
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The ability to control matter by strong laser pulses has
always intrigued researchers in many areas of physics. The
recent development of femtosecond laser sources allows one
to perform experiments on a timescale of the dominant mi-
croscopic interactions in materials. These experiments offer
an outstanding possibility to selectively excite different col-
lective modes, which has led to intriguing results, such as
light-induced magnetism [1–8], superconductivity [9,10], and
topological states of matter [11–16]. The investigation of
field-driven effects in fermionic systems is also motivated by
inspiring results of ultracold atom physics [17–19], where
the effect of the applied perturbation can be mimicked by a
modulation of the position (shaking) of the lattice [20–24],
or through the engineering of photon-assisted hopping ampli-
tudes [19,25].

Among different light-induced collective excitations, a
large amount of attention of experimental [26–29] and the-
oretical [30–38] condensed matter physics is devoted to
repulsively bound pairs of fermions that occupy the same
lattice site. Effects related to these composite bosonic objects,
known as doublons, are also actively discussed in the con-
text of cold atoms [17,18,39–43]. Interestingly, the concept
of doublons has been introduced as early as in the 1930s,
within the so-called “polar model” [44] (for a more modern
presentation, see Refs. [45,46]). Theoretically, the dynamics
of doublons can be studied in the Mott-insulating regime of
the Fermi-Hubbard model, where these bosonic quasiparticles
have an exponentially large lifetime due to a strong repulsive
on-site Coulomb interaction [47–49]. In this case, a fingerprint
of doublon excitations is contained in a fermion density of
states (DOS), where states related to doubly occupied lattice
sites form upper and lower Hubbard subbands. The latter

can be efficiently observed in (inverse) photoemission spec-
troscopy experiments [50–52].

One of the main interests in doublons is associated with
the effect of Bose-Einstein condensation (BEC) [40,53–56]
and a phase transition from an insulating to a superfluid state
[57,58]. In equilibrium, the interaction between doublons is
attractive [59–62]. Since the pioneering work by Valatin and
Butler [63], it is known that the Bose gas with attractive
interactions has a tendency to a phase separation (see also
Refs. [64–67]). However, the BEC can be achieved intro-
ducing a short-range repulsion in the system [68–70]. Thus,
the dynamical control of the doublon interaction can com-
pletely change the properties of the system and may allow
for the precise control of these effects. For example, it has
been shown that the local Coulomb interaction in the Fermi-
Hubbard model can be effectively switched from repulsive
to attractive by applying a periodic perturbation. This can
be achieved by creating a population inversion in electronic
bands through a sign change of the hopping amplitude [71,72],
or by a properly chosen pulse shape [73]. Later, this result
has been used to modify an effective interaction between
doublons, which resulted in the change of the superfluidity
pairing from s wave to η pairing [74–77].

Here, we propose a different nonequilibrium mechanism
to switch the doublon interaction from attractive to repulsive
with an ac field. We derive an effective time-independent
Hamiltonian that describes the doublon physics up to second
order in the high-frequency limit of the field. It reveals that, in
contrast to the works mentioned above, the repulsion between
doublons is induced without a population inversion and also
for considerably smaller powers of the field. Importantly, we
argue that this interaction switch can be detected experimen-
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tally in a simple way via the single-fermion density of states
(DOS) averaged in time. Such an observable does not require
the use of time-resolved techniques and, therefore, could be
routinely measured in experiments. We further support these
findings numerically with nonequilibrium dynamical mean-
field theory (DMFT) simulations [78]. Our result suggests
that for the detection of Floquet interactions in solids the
doublon channel may be a good alternative to the spin ex-
change interaction. The control of the spin exchange has been
demonstrated in cold atoms [79], but a measurement in the
solid would require the use of a much more complicated
time-resolved resonant inelastic x-ray scattering technique.
On the contrary, the DOS can be measured even when the
system is highly excited by photodoping, which suppresses
spin correlations.

High-frequency doublon Hamiltonian. We consider the
time-periodic Fermi-Hubbard Hamiltonian on a square lattice,

H =
∑
〈i j〉,σ

ti j (τ )c†
iσ c jσ + U

∑
i

ni↑ni↓. (1)

Operator ciσ annihilates an electron on site i with spin σ ,
niσ = c†

iσ ciσ is the electron number operator, and U the re-
pulsive on-site Coulomb potential. The time periodicity arises
from a uniform ac perturbation of frequency �, directed along
the square lattice diagonal e = {1, 1}, as implemented, for ex-
ample, with an electric field driving the electrons of a material,
or a shaken lattice of cold atoms [20–24]. The field is incor-
porated via a vector potential A(τ ) = Ae cos(τ ), where time
τ is given in units of �−1. The hopping amplitude between
nearest neighbors 〈i j〉 then accumulates a Peierls phase and
satisfies ti j (τ ) = te−iA(τ )·Ri j , where Ri j is the unit real-space
vector between neighboring sites.

In equilibrium, the Fermi-Hubbard Hamiltonian (1) maps
via a Schrieffer-Wolff transformation onto an effective model
that describes the low-energy physics of doublons in the limit
U � t [59–62]. The presence of an external time-dependent
field complicates this task. So, we first perform a Magnus-
like expansion in the spirit of Refs. [14,15,74,76,80–83]. This
allows us to derive an effective time-independent Hamiltonian
that captures the field renormalization of the fermion hopping
and interaction up to the second order in the high-frequency
limit U � �,

H ′(A) =
∑
〈i j〉, σ

t ′(A)c†
iσ c jσ + U ′(A)

∑
i

ni↑ni↓

+
∑
〈i j〉

(
J ′(A)d†

i d j + 1

2
V ′(A)nin j + 1

2
I′(A)Si S j

)
.

(2)

Here, the electron hopping t ′(A) and the local Coulomb inter-
action U ′(A) explicitly depend on the amplitude of the applied
field through A. In addition, the high-frequency field induces
purely nonequilibrium two-particle processes described by
the nonlocal Coulomb potential V ′(A), exchange interaction
strength I′(A), and doublon hopping amplitude J ′(A), for
which we introduced the doublon operator dj = c j↓c j↑ that
annihilates a pair of fermions on site j. Their explicit ex-
pressions are in the Supplemental Material (SM) [84]. Local
charge and spin densities are defined as ni = ∑

σ niσ and

FIG. 1. Doublon parameters of the effective Hamiltonian (3) as
a function of the field strength A for � = 10.5 and U = 3. The inset
shows a field range for both frequencies � = 10.5 and � = 21 in
which the nonlocal doublon interaction V changes signs, whereas
the doublon hopping amplitude J does not.

Si = 1
2

∑
σ,σ ′ c†

iσ σσσ ′ciσ ′ , respectively. σ = {σ x, σ y, σ z} is a
vector of Pauli matrices.

Single-particle hopping processes that change the number
of doubly occupied sites also change the total energy of the
system. Here, we focus on the low-energy physics of dou-
blons and disregard such processes in the Schrieffer-Wolff
transformation of Hamiltonian (2). This leads to an effec-
tive Hamiltonian that describes the doublon subsystem in the
nonequilibrium steady state,

Hd (A) =
∑
〈i j〉

J (A)d†
i d j −

∑
〈i j〉

V (A)ρi ρ j , (3)

where ρi = d†
i di = ni↑ni↓ is the local double occupancy op-

erator. The hopping amplitude J (A) and nonlocal interaction
potential V (A) of doublons depend on the strength of the
external field as [84]

J (A) = 2t2

U

(
J2

0 (A) − 2U 2

�2

∑
m>0

(−1)m

m2
J2

m(A)

)
, (4)

V (A) = 2t2

U

(
J2

0 (A) − 2U 2

�2

∑
m>0

1

m2
J2

m(A)

)
, (5)

where Jm(A) is the mth-order Bessel function of the first
kind. The zeroth-order contribution in the limit U � � renor-
malizes the doublon hopping and interaction in the same
way, J (A) = V (A) = J2

0 (A)2t2/U + O(U/�). As noticed in
Ref. [74], the field-dependent factor J2

0 (A) simply acts as an
overall scaling parameter and results in trivial physics. Thus,
the doublon hopping and interaction both remain positive, as
in equilibrium. Here, we go further and consider the second-
order contributions in the high-frequency limit [84]. We find
that these contributions of order U 2/�2 in Eqs. (4) and (5)
now lift the degeneracy between J and V . In particular, this
effect becomes important for field amplitudes near A 	 2.4,
where the zeroth-order contribution vanishes. Figure 1 shows
that this even allows the doublon interaction V to become
repulsive out of equilibrium, while the hopping amplitude J
does not change sign. This shows that an independent control
of V and J is not only possible in the vicinity of the resonance
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FIG. 2. Time-averaged fermionic DOS obtained for � = 21 and
various field strengths A = 2.16 (blue), A = 2.23 (red), and A = 2.33
(green). Colored points mark the top of the Hubbard subbands.
Vertical dashed lines at E = ±U/2 = ±1.5 are a guide for the eyes.
Shaded blue areas indicate the time-averaged population of the upper
and lower subbands at the field A = 2.16. The inset shows the time
profile of the vector potential. The time averaging is performed over
the last eight periods highlighted in gray.

� = U [74], but also in the high-frequency limit (where en-
ergy absorption is well controlled).

Nonequilibrium Hubbard subbands. The switch of
the doublon interaction may in principle be observed in
experiment through a measurement of the doublon-doublon
susceptibility. However, the latter is hardly accessible, as it
corresponds to a four-fermion response function. Instead,
we now show that signatures of the doublon interaction
can also be revealed through the single-fermion density
of states (DOS), as routinely measured in experiments
[50–52]. To illustrate this point, we perform time-dependent
DMFT simulations for the half-filled Hubbard model (1)
[33]. We consider the local Coulomb interaction U = 3,
so that the driven system for the range of fields A when
the doublon interaction V (A) changes sign lies in a
Mott-insulating state. Values � = 10.5 and � = 21 for
the frequency of the field are taken to justify the requirement
(U/�)2 � 1 for the high-frequency expansion. The energy
is given in units of the electron hopping amplitude t .
The ac field is turned on up to the maximum value
Amax = √

2A following the exponential ramp
exp {−(t − t0)2/(2σ 2)} in order to avoid heating [72,85].
Here, σ = d

2
√

2 ln 2
and d is a full width at half maximum of

a pulse. The time profile of the field is shown in the inset
of Fig. 2. We then determine the fermion DOS given by the
spectral function AR(t, E ) defined as (see, e.g., Ref. [86])

Aα (t, E ) = − 1

π
Im

∫ smax

0
ds eiEsGα

loc(t, t − s), (6)

where for Gα
loc(t, t ′) we take the local retarded Green’s func-

tion GR
loc(t, t ′) = −iθ (t − t ′)〈{ci (t ), c†

i (t ′)}〉. We perform the
numerical time-dependent DMFT calculations within the it-
erative perturbation theory (IPT) [86] on a 32 × 32 k grid
starting with the inverse temperature β = 5. We finally aver-
age over the last eight periods of time (gray area in the inset of
Fig. 2), for which the behavior of time-resolved observables,
such as the double occupancy presented in Fig. 4 (left), indi-

FIG. 3. Position of the top of the upper Hubbard subband as
a function of the applied light A. Results are obtained for two
frequencies � = 10.5 (blue color) and � = 21 (red color). Solid
lines correspond to the estimation Ueff/2 obtained from the effective
local Coulomb interaction. Points correspond to the nonequilibrium
DMFT result. Vertical dashed lines indicate fields at which the
doublon-doublon interaction V (A) changes sign. The horizontal line
E = U/2 = 1.5 serves as a guide for the eyes.

cates that the system is in a nonequilibrium steady state. This
will allow us to compare the numerical simulations with the
effective time-independent description in Eq. (2).

Figure 2 shows the single-fermion DOS resulting from the
nonequilibrium DMFT simulations for � = 21 and various
field amplitudes. The two spectral peaks below and above
the Fermi energy (E = 0) are the lower and upper Hubbard
subbands that correspond to doublon and holon (fully unoc-
cupied site) states, respectively. This structure of the DOS
confirms that, for the range of field amplitudes we consider,
the interacting fermion system is indeed a Mott insulator.
An occupation function can be obtained as a time-averaged
spectral function A<(t, E ) (6) of the lesser Green’s function
G<

loc(t, t ′) = i〈c†
i (t ′)ci (t )〉. The shaded blue areas in Fig. 2

show that the upper Hubbard subband is only slightly popu-
lated upon driving. An effective temperature of the system can
be estimated from the nonequilibrium distribution function
A<(t, E )/AR(t, E ), and gives an effective inverse temperature
of order β = 2.

We find that varying the field amplitude results in the
energy shift of the Hubbard subbands. It is not surpris-
ing, since the position of the subbands is determined by
the local Coulomb interaction as E 	 ±U ′(A)/2, which ex-
plicitly depends on the field amplitude. Points in Fig. 3
represent the peak energy of the upper Hubbard subband as
a function of A obtained from nonequilibrium DMFT simu-
lations for two different frequencies. While A increases, we
observe that the subbands first move closer to the Fermi
level as if they attract each other. Above a critical field,
the interaction between peaks switches to repulsive, and the
distance between them increases again. As we now show,
this behavior of Hubbard subbands is a manifestation of
an attractive-repulsive transition of the interaction between
doublons.

Detection of repulsive doublon interactions. We find that
the local Coulomb potential U ′(A) alone cannot explain
the behavior of Hubbard subbands obtained from DMFT
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FIG. 4. Left: Doublon density as a function of time obtained for
three different values of the vector potential A = 2.16 (blue line),
A = 2.44 (red line), and A = 2.65 (green line). Right: Time-averaged
doublon density as a function of vector potential obtained for two
frequencies � = 10.5 (blue line) and � = 21 (red line).

simulations in Fig. 3. As shown in the SM [84], U ′(A) < U
for any field amplitude A. Then, the peak of the upper Hubbard
subband, if given by U ′(A)/2, cannot exceed the equilibrium
value of U/2. For this reason, we further account for the
effects of the nonlocal interactions and hopping processes
in Hamiltonian (2) on the position of the subbands. We first
map the nonlocal Coulomb potential onto an on-site potential
through the Peierls-Feynman-Bogoliubov variational princi-
ple [87–89]. This leads to the local Coulomb interaction
U ∗(A) = U ′(A) − V ′(A) [90]. The effect of other terms in
Hamiltonian (2) can be taken into account perturbatively. In
particular, we find that only the two-hopping processes con-
tribute to the effective local Coulomb potential Ueff [84]. This
finally results in

Ueff (A) = U + 2t2

U

(
1

〈ρ〉J
2
0 (A) − 9U 2

�2

∑
m>0

1

m2
J2

m(A)

)
.

(7)

Thus, the behavior of Hubbard subbands as the function
of field can be approximated by the following relation:
E = Ueff (A)/2. The mean value of the double occupancy 〈ρ〉
that enters Eq. (7) can be extracted from Fig. 4, which rep-
resents the nonequilibrium DMFT result. For two different
frequencies � = 10.5 and � = 21 we find 〈ρ〉 	 0.11 and
〈ρ〉 	 0.10, respectively. Remarkably, the solid lines in Fig. 3
show that this simple estimation for the position of the sub-
bands based on the effective time-independent description of
the problem (2) accurately reproduces the result of nonequi-
librium DMFT simulations for the initial time-dependent
model (1). This fact suggests that the introduced Hamiltonian
(2) correctly describes properties of the nonequilibrium steady
state of the system. In addition, the relation (7) can also
serve as the measure for the average double occupancy of the
lattice site 〈ρ〉.

We can further relate the effective local Coulomb potential
Ueff to the doublon interaction V (A) in Hamiltonian (3). In
equilibrium, the mean double occupancy 〈ρ〉 per lattice site
does not exceed 1/4 at half filling. Larger values of 〈ρ〉 indi-
cate a population inversion. This can occur out of equilibrium
but for much stronger fields and smaller frequencies of the
field (� ∼ U close to a resonant driving between Hubbard
subbands) than the ones we are dealing with here [71,76,91].

In our case, Fig. 4 shows that the double occupancy does
not exceed 1/4. Thus, the attraction-repulsion transition of
doublon interactions in Fig. 1 does not involve any population
inversion, in contrast to a previous proposal [73]. Besides,
if we consider the maximum value of the mean double oc-
cupancy, i.e., 〈ρ〉 = 1/4, the energy shift of the Hubbard
subbands with respect to their equilibrium position in the
atomic limit (±U/2) is

�(A) = [Ueff (A) − U ]/2 	 2V (A). (8)

Therefore, this shift � is a single-fermion measurement of
the strength of the doublon-doublon interaction V (A) for
〈ρ〉 = 1/4. For smaller values of 〈ρ〉, we more generally
find �(A) � 2V (A). It follows that the negative value of
�(A) < 0 obtained in the nonequilibrium DMFT simulations
in Fig. 3 is an indirect indication that the doublon interac-
tion, initially attractive at zero field, has become repulsive
out of equilibrium. The value of the field at which the inter-
action between doublons changes sign is depicted in Fig. 3
by vertical dashed lines. Importantly, the total suppression
of the doublon interaction V (A) = 0 happens at a consider-
ably smaller power of the field A compared to the regime
of dynamical localization, determined by the first root of
the Bessel functionJ0(A) = 0. Therefore, the high-frequency
driving provides a unique possibility to explore the regime of
a weakly interacting doublon liquid, whereas in equilibrium
doublons are strongly interacting J (0) = V (0) as follows from
Eqs. (4) and (5).

Conclusions. To conclude, in this Rapid Communication
we have studied the effect of the applied high-frequency
perturbation on the doublon subsystem of the fermion
Hubbard model. First, we have introduced an effective
time-independent Hamiltonian that describes a time-averaged
dynamics of doublons. We have shown that the hopping
amplitude and nonlocal interaction of this effective model
can be controlled by the value of the vector potential.
Moreover, in a certain range of fields, a possibility for
a dynamical attraction-repulsion transition of doublons has
been investigated. Further, we have shown that the sig-
nature of this transition can be found in the behavior of
Hubbard subbands of the single-fermion density of states.
We have proposed a simple explanation of the observed
effect based on the renormalization of the local Coulomb
potential via hopping processes and a nonlocal Coulomb in-
teraction. The obtained result provides a clear criterion for
the experimental confirmation of the repulsive interactions
between doublons that involves only a local single-fermion
observable.
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