
PHYSICAL REVIEW B 102, 214514 (2020)

Electron cooling by phonons in superconducting proximity structures
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We investigate the electron-phonon cooling power in disordered electronic systems with a special focus
on mesoscopic superconducting proximity structures. Employing the quasiclassical Keldysh Green’s function
method, we obtain a general expression for the cooling power perturbative in the electron-phonon coupling but
valid for arbitrary electronic systems out of equilibrium. We apply our theory to several disordered electronic
systems valid for an arbitrary relation between the thermal phonon wavelength and the electronic mean-free
path due to impurity scattering. In addition to recovering the known results for bulk normal metals and BCS
superconductors, we consider two experimentally relevant geometries of superconductor-normal metal proximity
contacts. Both structures feature a significantly suppressed cooling power at low temperatures related to the
existence of a minigap in the quasiparticle spectrum. This improved isolation low cooling feature in combination
with the high tunability makes such structures highly promising candidates for quantum calorimetry.
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I. INTRODUCTION

In experiments on quantum thermodynamics, it is im-
portant to understand the ultimate limits of thermal energy
transfer in nanoscale systems. A prime candidate for ultralow
temperature detectors of single heat quanta are so-called prox-
imity thermometers, which consist of normal metals in contact
with a superconductor, offering a great variability by struc-
turing. An important limiting factor in heat control is the
unavoidable coupling of electronic systems out of equilibrium
to the phonon bath. A general description for proximity ther-
mometers is still missing and we close that gap in this paper.

At low temperatures, the electron-phonon coupling plays
an important role in the description of heat removal from
hot electrons [1]. Besides the theoretical importance, un-
derstanding this effect has a practical meaning in quantum
calorimetry [2–4]. Particularly, fluctuations of the electron-
phonon cooling power, related to the electron-phonon thermal
conductance by a Nyquist-like relation [4,5], provide a fun-
damental limitation for the minimum portion of energy which
can be detected by its electron heating effect. From the the-
oretical point of view, the problem of electron cooling by
phonons is intimately related to that of ultrasound attenuation
by electrons, since both problems are concerned with energy
exchange between electrons and phonons.

Numerous experiments on normal metals have shown that
the power (typically per unit volume) transferred from hot
electrons at temperature Te to cold phonons at Tph can be
written as Q(Te, Tph ) = Q(Te ) − Q(Tph), where Q(T ) ∝ T p.
The well-known result p = 5 for clean normal metals has
been proven experimentally [6–8] in agreement with theory
[8,9]. Electron scattering on impurities modifies the power p.
Due to the so-called Pippard ineffectiveness condition [10],
disordered metals with fully screened Coulomb interaction

have a power p = 6 at low temperatures, so the cooling power
is weaker than in the clean case [11–15], as has been verified
experimentally [16,17]. The crossover between the T 5 and T 6

behaviors occurs at a temperature when the thermal phonon
wavelength λph is of the order of the electronic mean-free path
� due to the impurity scattering.

The energy exchange between electrons and phonons has
also been studied in bulk BCS superconductors [13,18–21]
and superconducting proximity structures [22]. The presence
of a gap in the quasiparticle spectrum leads to a significant
suppression of the cooling power at low temperatures and
makes these systems advantageous for quantum calorimetry
applications. In Ref. [22], the authors studied the influence
of the proximity effect on the cooling power by solving the
kinetic equation with the electron-phonon collision integral in
the clean limit (i.e., � � λph).

In this paper, we calculate the energy current between
electrons and phonons, kept at temperatures Te and Tph, re-
spectively, in superconducting proximity structures for an
arbitrary relation between � and λph. We only assume � (i) to
be small compared to the superconducting coherence length
and to the typical size of the structure and (ii) to be large
compared to the Fermi wavelength, so the proximity effect
can be described by the quasiclassical diffusive Usadel equa-
tion. Under these conditions, the energy exchange between
electrons and phonons is local on the scale �. As a result, the
spatial dependence of the cooling power is disentangled from
its dependence on the phonon momentum. Interestingly, the
latter dependence is the same as for a normal metal [10,12,18].

The paper is organized as follows. In Sec. II, we first
specify the electron-phonon interaction in the comoving frame
of reference, and present a very general expression for the
cooling power in terms of the electronic stress response func-
tion. This expression is perturbative in the electron-phonon
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interaction, but valid for an arbitrary out-of-equilibrium elec-
tronic system. Then we show how this stress response function
can be found in a proximitized superconducting structure
using the quasiclassical Keldysh Green’s formalism. The cen-
tral result of this chapter is the cooling power expression
mentioned above. In Sec. III, we illustrate this approach by
applying it to several electronic structures. Besides recovering
the known results for a bulk normal metal and a bulk BCS
superconductor, we consider two geometries of mesoscopic
superconductor-normal metal proximity structures: a normal
metal tunnel-coupled to a bulk superconductor and a bilayer
of a normal metal in contact with a superconductor. We find a
strong suppression of the cooling power at low temperatures
that is related to the formation of a minigap in the spectrum.
Finally, in Sec. IV we summarize our work and give conclud-
ing remarks.

II. GENERAL FRAMEWORK

A. Electron-phonon interaction and cooling power

Since we are going to describe several structures with
normal and superconducting parts, we do not specify the
electronic Hamiltonian here. We assume the electrons to be
in the diffusive limit because of impurity scattering, and the
Coulomb interaction is assumed to be very strong. The elec-
trons are described by the usual fermionic field operators
ψ̂†(r) and ψ̂ (r). We omit the spin indices for compactness
(the spin multiplicity will give an additional factor of 2 in
the final result). Eventually, we will only need the electronic
quasiclassical Keldysh Green’s functions, built from these
electronic operators, and satisfying the Eilenberger equation
in the presence of impurities.

The acoustic phonons are described via the lattice displace-
ment field û(r), giving the displacement of an atom initially
located at the point r. In the standard quantization procedure
for lattice vibrations, the displacement operator takes the fol-
lowing form:

û(r) =
∑
qλ

eqλ

√
1

2ρ0L3ωqλ

(b̂qλ + b̂†
−qλ)eiqr, (1)

where b̂qλ (b̂†
qλ) is the annihilation (creation) operator of a

phonon with momentum q and polarization characterized by
a unit polarization vector eqλ, ωqλ is the phonon frequency
which in general depends on the momentum and polarization,
ρ0 is the mass density of the material and L3 is the sample
volume. For the polarization λ = l, t1, t2, we assume a de-
composition in one longitudinal and two transverse modes in a
standard manner: the longitudinal eq,l = q/q, while two trans-
verse vectors eq,t1, eq,t2 are chosen so eq,t1 · q = eq,t2 · q = 0
and eq,t1 · eq,t2 = 0. The dispersion relation is assumed to be
the usual relation for acoustic phonons, ωq,l = cl q, ωq,t1 =
ωq,t2 = ct q, where cl/t is the longitudinal/transverse speed of
sound in the material, respectively. For simplicity, we assume
an isotropic material where the two transverse modes have
the same velocity, i.e., ct1 = ct2 = ct . A general, anisotropic
case with ct1 �= ct2 can be easily implemented in our model
but we do not expect this to qualitatively affect the cooling
power. Also, since we restrict ourselves to low temperatures,
we can safely neglect optical phonons which, if exist at all,

have typical energies of the order of room temperature. The
lattice Hamiltonian is

Ĥph =
∑
qλ

ωqλ b̂†
qλb̂qλ. (2)

As discussed in Refs. [12,13,18–20], the electron-phonon
interaction in disordered systems is most conveniently de-
scribed in a comoving reference frame, i.e., attached to the
oscillating ions of the crystal lattice, since the impurities oscil-
late together with the lattice. The electron-phonon interaction
Hamiltonian is assumed to have the form

Ĥe−ph =
∫

dr σ̂i j (r) ûi j (r), (3)

where σ̂i j and ûi j are the stress and strain tensors, respectively,

σ̂i j (r) = 1

4m

(
∂

∂ri
− ∂

∂r′
i

)(
∂

∂r j
− ∂

∂r′
j

)
ψ̂†(r) ψ̂ (r′)

∣∣∣∣
r=r′

+ δi j

3

p2
F

m
ψ̂†(r) ψ̂ (r), (4)

ûi j (r) = 1

2

(
∂ ûi

∂r j
+ ∂ û j

∂ri

)
, (5)

and the summation over the repeated Cartesian indices i, j =
x, y, z is implied. The Coulomb interaction is assumed to
be very strong, so electronic charge density fluctuations are
completely suppressed. Formally, this is described by dressing
the electron-phonon vertex by the Coulomb interaction in the
random phase approximation [12,13,19,20] and results in the
subtraction from the first term in σ̂i j (r) of its projection on the
electron density. Here, pF is the electron Fermi momentum
defined via the average of p2 over the Fermi surface, pF =
(〈p2〉F )1/2, and m the free electron mass.

With the electron-phonon interaction at hand, we can de-
fine the operator for the total energy current flowing into the
phonons due to the electron-phonon interaction in the whole
sample:

˙̂Hph = i[Ĥe−ph, Ĥph] = i
∫

dr [ûi j (r), Ĥph] σ̂i j (r). (6)

We are interested in the cooling power when the phonons are
in thermal equilibrium at temperature Tph. Since the energy
current, Eq. (6), is linear in the phonon operators, it has zero
average over any density matrix of the direct product form,
ρ̂e ⊗ e−Ĥph/Tph , with an arbitrary electronic density matrix ρ̂e.
To obtain a nonzero value to leading order in the electron-
phonon coupling, one has to perturb such a phonon state to
the first order in Ĥe−ph. This amounts to calculating the linear
response of dĤph/dt to the perturbation Ĥe−ph, which can be
done using the Kubo formula,

P =
〈

dĤph

dt

〉
= −i

∫ t

−∞
dt ′ 〈[ ˙̂Hph(t ), Ĥe−ph(t ′)]〉0, (7)

where all the operators are represented in the interaction pic-
ture and the average is taken over the noninteracting density
matrix ρ̂e ⊗ e−Ĥph/Tph .

Since we are dealing with a nonequilibrium situation, it
is natural to use the Keldysh Green’s function formalism.
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Expanding the commutator in the Kubo formula and identi-
fying various Keldysh Green’s function components [23] (see
Appendix A), we end up with the following expression for the
cooling power:

P = 1

4

∫
dr dr′

∫ ∞

−∞

dω

2π
ω

× {
DK

i jkl (r, r′, ω)
[
�R

kli j (r
′, r, ω) − �A

kli j (r
′, r, ω)

]
− [

DR
i jkl (r, r′, ω) − DA

i jkl (r, r′, ω)
]
�K

kli j (r
′, r, ω)

}
, (8)

where �R,A,K
i jkl (r, r′, ω) and DR,A,K

i jkl (r, r′, ω) are the retarded,
advanced, and Keldysh components of Green’s functions built
from the bosonic operators, Eqs. (4) and (5), respectively. For
phonons in thermal equilibrium at temperature Tph,

DK
i jkl (ω) = [

DR
i jkl (ω) − DA

i jkl (ω)
]

coth
ω

2Tph
. (9)

Being mainly interested in various proximity structures,
we can make further assumptions about the spatial de-
pendence. Assuming the phonons to be unaffected by the

proximity effect, we take them to be spatially homogeneous,
Di jkl (r, r′, ω) = Di jkl (r − r′, ω). On the other hand, the situa-
tion for the electronic polarization operator, �i jkl (r, r′, ω) can
be rather complicated, due to the proximity effect. Still, we
assume the electrons to be in the quasiclassical regime, so we
pass to the Wigner (mixed) representation where the spatial
dependence of �i jkl (r, r′, ω) is decomposed into the center of
mass, R = (r + r′)/2, and the relative coordinate component,
x = r − r′. Fourier transform is, therefore, performed in the
following way:

Di jkl (r, r′, ω) =
∫

dq
(2π )3

Di jkl (q, ω) eiq(r−r′ ), (10)

�i jkl

(
R + x

2
, R − x

2
, ω

)
=

∫
dq

(2π )3
�i jkl (R, q, ω) eiqx.

(11)

In leading order of the quasiclassical approximation, the spa-
tial convolution becomes a simple product in the Wigner
representation. Then the total cooling power can be written
as a volume integral, P = ∫

dR Q(R), where the position-
dependent power per volume is given by

Q(R) =
∫

dq
(2π )3

∫ ∞

−∞

dω

2π

ω

4

[
DR

i jkl (q, ω) − DA
i jkl (q, ω)

]{[
�R

kli j (R, q, ω) − �A
kli j (R, q, ω)

]
coth

ω

2Tph
− �K

kli j (R, q, ω)
}
.

(12)

This formula is very general and applicable to an arbitrary electronic system out of equilibrium. Combining Eqs. (5) and (1), we
obtain the phonon spectral function explicitly:

DR
i jkl (q, ω) − DA

i jkl (q, ω) =
∑

λ

T qλ
i j T qλ

kl DR−A
λ (q, ω), (13a)

DR−A
λ (q, ω) = iπ

q

ρ0cλ

[δ(ω + cλq) − δ(ω − cλq)], (13b)

T q,l
i j ≡ qiq j

q2
, T q,tκ

i j ≡ eq,tκ
i q j + eq,tκ

j qi

2q
(κ = 1, 2). (13c)

B. Electronic polarization operator

Electrons in the proximitized superconductor are described
by the quasiclassical Green’s function ǧ(t, t ′; r, n) with n and
r being, respectively, the unit vector which indicates the direc-
tion of momentum and the center-of-mass coordinate [24,25].
The Green’s function has a 2 × 2 matrix structure in Keldysh
space,

ǧ =
(

ĝR ĝK

ĝZ ĝA

)
, (14)

where each component is itself a 2 × 2 matrix in the Gor’kov-
Nambu space [25]. The Green’s function is subject to the
constraint∫

ǧ(t, t ′′; r, n) ǧ(t ′′, t ′; r, n) dt ′′ = 1̌4×4 δ(t − t ′), (15)

and satisfying the Eilenberger equation [26],[
∂̌t ⊗ τ̂3 + �̌ ⊗ τ̂1 + iV̌ ⊗ τ̂0 + 〈ǧ〉n

2τ
, ǧ

]
+ vF n · ∇ǧ = 0,

(16)

where τ̂i are the Pauli matrices in the Gor’kov-Nambu space,
⊗ is the direct (Kronecker) product, and 〈. . .〉n, denotes the
average over the directions n. The electron-impurity scatter-
ing time τ and the Fermi velocity vF define the mean-free
path � = vF τ . The commutator in Eq. (16) includes the
convolution over time. Thus, the time derivative ∂̌t , the su-
perconducting gap �̌, and the perturbation V̌ should be
understood as integral operators in the time variables with
kernels δ′(t − t ′), �̌(r) δ(t − t ′), and V̌ (r, t, n) δ(t − t ′), re-
spectively.

In Keldysh space, ∂̌t and �̌ are proportional to the 2 × 2
unit matrix. The same is true for a classical perturbation V c,
in which case the left-lower corner of the Green’s function
ĝZ = 0. However, the goal of this subsection is to evaluate
the three components (retarded, advanced, and Keldysh) of
the electronic polarization operator, �R,A,K

i jkl (r, r′, ω), needed
in Eq. (12) for the cooling power. In a disordered supercon-
ductor, the calculation of the polarization operator involves
summation of ladder diagram series, which is rather cumber-
some [13]; in addition, here we are interested in a proximity
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system, lacking translational invariance. A more convenient
way, equivalent in the quasiclassical limit pF � � 1, is to
calculate the response of the electronic stress σi j to an applied
external classical strain uc

i j using the Eilenberger equation
[27]. Indeed, the average stress tensor, Eq. (4), in terms of
the quasiclassical Keldysh-Green’s functions reads

σi j (r, t ) = πN0

2

p2
F

m

〈
(nin j − δi j/3)Tr ĝK (t, t ; r, n)

〉
n, (17)

where N0 is the normal density of states at the Fermi level per
spin projection. If the Green’s function is found to first order
in the perturbing stress, the result determines the retarded
component of the polarization operator, �R

i jkl , since the latter
coincides with the Kubo susceptibility (up to the sign). Due
to certain symmetries [31], the advanced component of the

polarization operator, �A
i jkl , can be deduced from the retarded

one. On the other hand, if the goal is a description of nonequi-
librium situations we are required to calculate the Keldysh
component, �K

i jkl , as well. This can be done by introducing the
quantum component uq

i j of the strain. Thus, we shall consider

the perturbation V̌ with the following structure:

V̌ (t, t ′; r, n) = − p2
F

m
(nin j − δi j/3)δ(t − t ′) e−iωt

×
(

uc
i j (r) uq

i j (r)
uq

i j (r) uc
i j (r)

)
, (18)

and calculate the response of ǧ to first order in this perturba-
tion from Eq. (16). The three components of the electronic
polarization operator can then be determined as [27]

�R
i j,kl (r, r′, ω) = −πN (0)

2

p2
F

m

〈(
nin j − δi j

3

)
Tr

δĝK (t, t ; r, n) eiωt

δucl
kl (r

′)

〉
n

, (19a)

�A
i j,kl (r, r′, ω) = −πN (0)

2

p2
F

m

〈(
nin j − δi j

3

)
Tr

δ(ĝR + ĝA)(t, t ; r, n) eiωt

δuq
kl (r

′)

〉
n

, (19b)

�K
i j,kl (r, r′, ω) = −πN (0)

2

p2
F

m

〈(
nin j − δi j

3

)
Tr

δ(ĝK + ĝZ )(t, t ; r, n) eiωt

δuq
kl (r

′)

〉
n

. (19c)

Note that in the presence of the quantum component uq
i j , the

lower left corner of Eq. (14), ĝZ �= 0.
We assume to be in the dirty limit, ωτ � 1, �τ � 1, so

the unperturbed solution (at V̌ = 0) has the following angular
structure [28]:

ǧ(t, t ′; r,n) =
∫

dε

2π
e−iε(t−t ′ )[ǧ0(ε; r)

− vF τn · ǧ0(ε; r) ∇ǧ0(ε; r) + O((�∇g0)2)].

(20)

The isotropic part ǧ0(ε; r) satisfies the Usadel equation [28]
which should be solved in each specific geometry of the
proximitized system. In this subsection, we will assume that
ǧ0(ε; r) is known. Constraint Eq. (15) for ǧ implies

ǧ0(ε; r) ǧ0(ε; r) = 1̌4×4 + O((�∇g0)2). (21)

Usually, in the dirty limit it is sufficient to work with the
Usadel equation without invoking the full Eilenberger equa-
tion at all. It is the angular structure of the perturbation,
nin j − δi j/3, proportional to the second spherical harmonics,
that obliges us to work with Eq. (16).

Let us first assume that the perturbation is a smooth func-
tion of space and time. The linear in V̌ correction, δǧ, to the
leading order in τ�, τ∂tV̌ , �∇V̌ , satisfies

[ǧ0, δǧ − 〈δǧ〉n] = −2iτ [V̌ , ǧ0], (22)

ǧ0 δǧ + δǧ ǧ0 = 0, (23)

obtained by linearizing Eqs. (16) and (15), respectively. An-
gular averaging gives 〈δǧ〉n = 0 because 〈V̌ 〉n = 0. Adding
Eqs. (22) and (23), multiplying by ǧ0 on the left, and using
Eq. (21), we obtain the response, local in space on the scale �:

δǧ = iτ (V̌ − ǧ0V̌ ǧ0)[1 + O(τ�, �∇)]. (24)

Let us now consider ui j (r) ∝ eiqr−iωt assuming ωτ � 1,
�τ � 1, but not q� � 1. As just seen, the spatial scale of
the nonlocality in the response is �, while ǧ0, found from the
Usadel equation, depends on r on a longer scale. Then, to find
the response at q ∼ 1/�, one can neglect the r dependence of
ǧ0 and seek the correction δǧ in the form δǧ(r, n) = δǧ(n) eiqr.
The linearized Eilenberger equation becomes

[ǧ0, δǧ − 〈δǧ〉n] + 2i�(qn) δǧ = 2iτ [ǧ0, V̌ ], (25)

and the correction again satisfies Eq. (23). Multiplying it with
1 and (qn), averaging over the angles, and using 〈V̌ 〉n =
0, 〈nV̌ 〉n = 0, we obtain 〈(qn) δǧ〉n = 0, 〈(qn)2δǧ〉n = 0.
Adding Eq. (23) with its angular average subtracted, we obtain

ǧ0 δǧ + i�(qn) δǧ = ǧ0〈δǧ〉n + iτ ǧ0V̌ − iτV̌ ǧ0, (26)

i�(qn)ǧ0 δǧ + δǧ = 〈δǧ〉n + iτV̌ − iτ ǧ0V̌ ǧ0, (27)

where the second equation is obtained from the first by multi-
plying by ǧ0. This gives

δǧ = iτ
1 − i�(qn)ǧ0

1 + �2(qn)2

( 〈δǧ〉n

iτ
+ V̌ − ǧ0V̌ ǧ0

)
, (28)

〈δǧ〉n

iτ
=

〈
�2(qn)2

1 + �2(qn)2

〉−1

n

〈
V̌ − ǧ0V̌ ǧ0

1 + �2(qn)2

〉
n
. (29)

Bearing in mind the structure of the strain-strain spectral func-
tion, Eqs. (13), it is convenient to define three components of
the polarization operator:

�λ(q, ω) = T qλ
i j T qλ

kl �i jkl (q, ω), λ = l, t1, t2, (30)
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which can be found from Eq. (28) for the following perturbations:

V̌λ(t, t ′; r, n) = δ(t − t ′) eiqr−iωt �λ(n)

(
uc

λ uq
λ

uq
λ uc

λ

)
, (31)

�l (n) = (qn)2

q2
− 1

3
, �t1,t2(n) = (qn)(et1,t2n)

q
. (32)

As a result,

�
R/A
λ (q, ω) = 2N0

(
p2

F

m

)2[
Yλ(0) + iτ

8
Yλ(q�)

∫ ∞

−∞
dε Tr

{
ĝR/A

0 (ε+) ĝK
0 (ε−) + ĝK

0 (ε+) ĝA/R
0 (ε−)

}]
, (33a)

�K
λ (q, ω) = 2N0

(
p2

F

m

)2[
iτ

8
Yλ(q�)

∫ ∞

−∞
dε Tr

{
ĝK

0 (ε+) ĝK
0 (ε−) − ĝR−A

0 (ε+) ĝR−A
0 (ε−)

}]
, (33b)

where λ = l, t1, t2, ε± = ε ± ω/2 and ĝR−A
0 = ĝR

0 − ĝA
0. The

term with Yλ(0) is not captured by the quasiclassical theory
and is inserted by noting that the response at ω = 0 is de-
termined by the Fermi sea, and thus is (i) insensitive both to
disorder and to superconductivity and (ii) is local on the spa-
tial scale of the Fermi wavelength, so it can be evaluated for
a clean Fermi gas at q = 0 [27]. The factors Yλ(q�) coming
from angular averages (see Appendix B) are given by

Yl (ξ ) = −ξ − (1 + ξ 2/3) arctan ξ

3ξ 2(ξ − arctan ξ )
, (34a)

Yt1,t2(ξ ) = ξ (1 + 2ξ 2/3) − (1 + ξ 2) arctan ξ

2ξ 5
. (34b)

Remarkably, Eqs. (33) have a separable form: the dependence
on q and λ is factorized from the rest which contains the
frequency and coordinate dependence and all information
about the superconductivity and the proximity effect. The q, λ

dependence is entirely contained in the factors Yλ(q�), and is
the same as calculated for a normal metal [12].

C. Final expression for the cooling power

Having obtained Eqs. (33) for the polarization operator, we
can rewrite Eq. (12) for the cooling power per unit volume as
follows:

Q =
∑

λ

∫
dq

(2π )3

∫ ∞

−∞

dω

2π

ω

4
DR−A

λ (q, ω)

× 2N0

(
p2

F

m

)2( iτ

8

)
Yλ(q�)F (R, ω).

(35)

Here F (R, ω) denotes the factor

F =
∫ ∞

−∞
dεTr

{[
ĝR−A

0 (ε+) coth
ω

2Tph
− ĝK

0 (ε+)

]
ĝK

0 (ε−)

−
[

ĝK
0 (ε+) coth

ω

2Tph
− ĝR−A

0 (ε+)

]
ĝR−A

0 (ε−)

}
, (36)

whose frequency dependence comes from ε± = ε ± ω/2 and
the coordinate dependence from that of the Green’s function
ǧ0(R, ε±) whose spatial argument is omitted in Eq. (36) for
brevity. Since the q dependence of the electronic spectral
function is solely contained in Yλ(q�), the integration over q
is straightforwardly performed by resolving the δ functions in

Eq. (13b), which yields

Q = N0τ

8πρ0

(
p2

F

m

)2 ∫ ∞

0

dω

2π

∑
λ

ω4

c5
λ

Yλ(ω�/cλ)F (R, ω).

(37)

This very general formula is the main result of this paper and
it is applicable to a variety of electronic systems, including
superconducting proximity structures. If the electron-electron
relaxation is sufficiently fast we can assume the electrons to
be in thermal equilibrium at temperature Te [29], so ĝK

0 (ε) =
ĝR−A

0 (ε) tanh[ε/(2Te )], then Eq. (37) further simplifies adopt-
ing the form

Q(Te, Tph ) = N0τ

8πρ0

(
p2

F

m

)2 ∫ ∞

0

dω

2π

∑
λ

ω4

c5
λ

Yλ(ω�/cλ)

×
(

coth
ω

2Te
− coth

ω

2Tph

)
I (R, ω), (38)

where

I (R, ω) = 2
∫ ∞

−∞
dε [nF (ε−) − nF (ε+)]

× Tr
{
ĝR−A

0 (R, ε+) ĝR−A
0 (R, ε−)

}
, (39)

and nF (ε) = [exp(ε/Te ) + 1]−1 is the Fermi distribution. The
whole information about the electronic properties of the sys-
tem is contained in the function I (R, ω). Essentially, our task
from now on is to calculate it for various systems. Another
important quantity we are interested in is the thermal conduc-
tance per unit volume:

K (T ) = ∂Q(Te, T )

∂Te

∣∣∣∣
Te=T

. (40)

Equations (38) and (40) yield an expression for the thermal
conductance of the same form as Eq. (38), but with a replace-
ment:

coth
ω

2Te
− coth

ω

2Tph
→ ω

2T 2 sinh[ω/(2T )]
. (41)

In the following section, we shall make use of the developed
formalism to calculate the electron-phonon cooling power in
various electronic systems.
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III. APPLICATION TO SPECIFIC STRUCTURES

A. Bulk normal metal

In a bulk normal metal, the retarded and advanced com-
ponents of ǧ are just ĝR/A = ±τ̂3, so the function I (ω) from
Eq. (39) simply reads I (ω) = 16 ω. Plugging it into Eq. (38),
we obtain the cooling power per unit volume in the form
Q(Te ) − Q(Tph) with Q(T ) given by

Q(T ) = 2N0τ

π2ρ0

(
p2

F

m

)2 ∑
λ

∫ ∞

0
dω

ω5

c5
λ

Yλ(ω�/cλ)

eω/T − 1
. (42)

Since the functions Yλ(ξ ) [see Eq. (34)] are rather compli-
cated, the integral should be calculated numerically. Still, it
simplifies in two limiting cases.

At low temperatures, T � cλ/�, we employ Eqs. (B3a) and
(B3c) for Yλ(ξ ) and arrive at the well-known T 6 dependence
[12,13],

Q(T ) = 32π4

945

N0ctτ

ρ0�6

(
p2

F

m

)2(
1 + 2

3

c5
t

c5
l

)
T 6

T 6∗
, (43)

where the crossover temperature T∗ ≡ ct/�. At high temper-
atures, T � cλ/�, we use Eqs. (B3b) and (B3d) for Yλ(ξ )
and we end up with the following expression for the cooling
power:

Q(T ) = N0ctτ

ρ0�6

(
p2

F

m

)2(3 ζ (5)

3π

c4
t

c4
l

T 5

T 5∗
+ 4π2

45

T 4

T 4∗

)
, (44)

where ζ (x) is the Riemann zeta function. In the clean limit,
τ, � → ∞ with �/τ = vF , the second term ∝ T 4 vanishes,
while the first one gives the standard Q(T ) ∝ T 5 result for
clean metals [8,9].

The thermal conductance per unit volume, K (T ) =
dQ(T )/dT , is shown in Fig. 1. As can be seen from Eq. (42),

FIG. 1. Electron-phonon thermal conductance per unit volume in
a bulk normal metal as a function of temperature T for cl/ct = 0.5.
The dotted and dashed lines correspond to the high- and low-T limits,
respectively. The inset shows the same quantity as a function of ct/cl

for the temperature T/T∗ = 1.0.

K (T ) has a natural unit

K∗ = 2N0τ

π2ρ0�5

(
p2

F

m

)2

, (45)

so K (T )/K∗ is a dimensionless function of two dimensionless
parameters T/T∗ ≡ T �/ct and ct/cl (note that ct/cl < 1/

√
2

[30]). We numerically evaluate the integral in Eq. (42) and
plot K/K∗ as a function of T/T∗ for ct/cl = 0.5 in Fig. 1.
The low- and high-T limits are indicated by the dashed and
dotted lines, respectively. Their validity depends on ct/cl but,
roughly speaking, the two limits are reached for T/T∗ < 0.1
and T/T∗ > 1. The inset shows the cooling power as a func-
tion of the ct/cl ratio at temperature T/T∗ = 1.0. Estimation
of the crossover temperature in copper with � = 10 nm is
T∗ ≈ 1.8 K. The values taken for the longitudinal and trans-
verse speed of sound are, respectively, cl = 4.8 km/s and
ct = 2.3 km/s.

B. Bulk BCS superconductor

In a superconductor, the retarded and advanced compo-
nents of the quasiclassical Keldysh Green’s function ĝR/A(ε)
can be parameterized in terms of the normal, g, and the anoma-
lous, f , f †, Green’s functions (we omit the superscripts R, A
for compactness):

ĝ(ε) =
(

g(ε) f (ε)
f †(ε) −g(ε)

)
, g2(ε) + f (ε) f †(ε) = 1. (46)

Assuming the superconducting gap to be real, � = �∗,
we also have f = f †. Substituting the parametrization from
Eq. (46) into Eq. (39) and employing the relation ĝR =
−τ̂3(ĝA)†τ̂3 [31], we obtain

I (ω) = 16
∫ ∞

−∞
dε

[
nF (ε−, T ) − nF (ε+, T )

]
× [Re gR(ε+) Re gR(ε−) − Im f R(ε+) Im f R(ε−)].

(47)

We note that this expression is rather general and will be
applied to the bulk homogeneous superconductor immediately
below, as well as to other proximity structures in the following
subsections. We also note that since the Green’s functions
depend on the electronic temperature Te via the supercon-
ducting gap, the cooling power can no longer be represented
in the form Q(Te ) − Q(Tph). In the following, we will focus
on the thermal conductance per unit volume, Eq. (40), which
depends only on one temperature. It is given by

K (T )

K∗
=

∫ ∞

0

ω5 I (ω) dω

64T 2 sinh2[ω/(2T )]

×
[Yl (ω�/cl )

(cl/�)5
+ 2

Yt (ω�/ct )

(ct/�)5

]
. (48)

In a bulk homogeneous superconductor, the quasiclassical
Green’s functions are given by

g(ε) = −iε√
�2 − ε2

, f (ε) = f †(ε) = �√
�2 − ε2

. (49)

The retarded/advanced Green’s function is obtained by the
substitution ε → ε ± iη. The broadening parameter η can be
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taken to be infinitesimal, or finite, describing level broadening
due to some relaxation processes [32,33]. The temperature
dependence of the superconducting gap is assumed to be [34]

�(T ) = �0 tanh(1.74
√

Tc/T − 1), (50)

where �0 is the superconducting gap at zero temperature and
Tc is the critical temperature.

Plugging the Green’s functions from Eqs. (49) into
Eq. (47), we obtain I (ω) of a bulk BCS superconductor:

I (ω) = 16
∫ ∞

−∞
dε[nF (ε−, T ) − nF (ε+, T )]

× θ (|ε+| − �) θ (|ε−| − �)√
ε2+ − �2

√
ε2− − �2

× (|ε+ε−| − �2 sign ε+ε−). (51)

[θ (x) is the Heaviside step function], illustrated in Fig. 2(a)
for different temperatures. At T = Tc, the normal state de-
pendence I (ω) = 16 ω is recovered. The main difference
between the normal and superconducting cases is the presence
of a gap in I (ω) at ω < 2�. With increasing temperatures,
this gap shrinks and is not empty anymore due to thermal
quasiparticle population [see the blue line in Fig. 2(a) that
corresponds to T/Tc = 0.8]. At T � �,

I (0 < ω < 2�) = 16

√
2πω�T

ω + 2�
(1 − e−ω/T )e−�/T , (52a)

I (ω = 2� + 0+) = 16π�. (52b)

The thermal conductance per unit volume K (T ), besides
T/T∗ and cl/ct , now depends on another dimensionless pa-
rameter T∗/�0. For aluminum with the electronic mean-free
path of � = 10 nm, T∗/�0 ≈ 1.1. The values for the longitudi-
nal and transverse speed of sound are taken cl = 6.4 km/s and
ct = 3.0 km/s, respectively. Plugging Eq. (51) into Eq. (48)
and evaluating the integral numerically, we show K (T ) in
Fig. 2(b) for ct/cl = 0.5 and several values of T∗/�0. Increase
of T∗/�0 almost does not change the shape of the curves just
shifting them along the vertical axis. At low temperatures, the
cooling power in a BCS superconductor is exponentially sup-
pressed in comparison to the normal state [see the dashed blue
line in Fig. 2(b)] due to the presence of the superconducting
gap:

K (T � �)

K∗
= 693π

32
ζ

(
13

2

)(
1 + 2

3

c5
t

c5
l

)
T 5

T 5∗
e−�/T . (53)

This difference diminishes at higher temperatures and, finally,
at T = Tc the normal case is recovered. The same results can
be obtained from the nonlinear sigma model, whose saddle
point is the quasiclassical Green’s function ĝ [21].

C. Thin SN contact

Let us now consider a simple superconducting-normal
(SN) proximity structure consisting of a small island of nor-
mal metal coupled to a massive superconducting electrode via
a weak tunnel contact. Then we can neglect suppression of
superconductivity by the inverse proximity effect in the su-
perconductor and focus on the proximity effect in the normal

FIG. 2. (a) The I(ω) function of a bulk BCS superconductor
for various temperatures. At T = Tc, the normal state result I(ω) =
16 ω is recovered. (b) Electron-phonon thermal conductance per unit
volume of a bulk superconductor as a function of temperature T
for ct/cl = 0.5 and several values of T∗/�0. The dashed blue line
corresponds to the normal case with T∗/�0 = 0.5 (whose only role
in the normal state is to set the scale of the horizontal axis). The
dotted lines show the low-temperature asymptotics from Eq. (53).

part. In the zero-dimensional limit, it can be described by the
quantum circuit theory [35]. The quasiclassical Green’s func-
tion of the normal metal ĝR/A

N satisfies the zero-dimensional
analog of the Usadel equation [35–38],

−iε
[
τ̂3, ĝR/A

N (ε)
] + �

[
ĝR/A

S (ε), ĝR/A
N (ε)

] = 0, (54)

where ĝR/A
S (ε) is the solution for a homogeneous BCS super-

conductor given in Eqs. (49) and the first commutator denotes
the so-called leakage of coherence [see the inset in Fig. 3]. �

is half of the rate of electron escape from the island into the
bulk electrode, related to the tunnel contact conductance G
via G = 4e2N0V�, where V is the island volume, so 1/(N0V )
is the electronic orbital mean-level spacing in the island. �

must be small compared to the island Thouless energy ETh,
defined as the inverse time needed for an electron to cross the
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FIG. 3. The density of state N (ε) in a thin normal metal coupled
to a massive superconducting lead via a tunnel contact for several
values of �/�0, and temperature T/Tc = 0.01. The Dynes broaden-
ing parameter is η/�0 = 10−3. The inset shows a schematic view of
the structure.

island for the island to be in the zero-dimensional limit; at the
same time, we need � � 1/(N0V ) for the Coulomb blockade
effects to be negligible [39]. Equation (54) can also describe
a planar structure when both V and G are proportional to
the contact area, while � is independent of the area; in this
geometry, the normal layer thickness d should be larger than
the mean-free path but small enough so the time needed for an
electron to travel the distance d is smaller than 1/� (see the
next subsection for more details).

The solution of Eq. (54) reads

ĝN (ε) = aτ̂3 + bτ̂1√
a2 + b2

, (55)

a ≡ −iε

(
1 + �√

�2 − ε2

)
, b ≡ ��√

�2 − ε2
,

and the retarded and advanced functions are obtained by
substituting ε → ε ± iη, as in the previous subsection. Since
Eq. (55) has the same structure as for a bulk superconduc-
tor, Eqs. (49), we expect the presence of a minigap in the
quasiparticle spectrum [40,41]. This feature is clearly seen in
Fig. 3 that shows the density of states (DOS) per unit vol-
ume, N (ε) = N0 Re gR

N (ε) for the temperature T/Tc = 0.01
and several values of �/�0, with a finite Dynes broadening
parameter η/�0 = 10−3. The minigap is narrower than the
bulk gap � and for small � � �0 it is determined by � (see
the black line in Fig. 3 that corresponds to �/�0 = 0.1).

I (ω) from Eq. (47) is plotted in Fig. 4(a) for the tempera-
ture T/Tc = 0.01 and several values of �. Similarly to the bulk
superconductor case, it has a gap determined by the minigap
in the island DOS, strongly dependent on � [see Fig. 4(a)].
For � � �0, the gap is approximately 2� [the black line
in Fig. 4(a)]. Since we are at low temperature, the gap is
empty. The same function for various temperatures and the
�/�0 = 0.2 is shown in Fig. 4(b). Again, as in the bulk case,

FIG. 4. I(ω) function in a thin normal metal coupled to a mas-
sive superconducting lead for (a) different values of �/�0, and
temperature T/Tc = 0.01, (b) different temperatures and �/�0 =
0.2. The broadening parameter η/�0 = 10−5.

the gap is getting filled toward higher temperatures, finally
achieving the normal state at T = Tc.

Plugging this I (ω) into Eq. (48), one arrives at the thermal
conductance K (T ) per unit volume, shown in Fig. 5(a) for var-
ious values of �/�0, T∗/�0 = 1, and ct/cl = 0.5. All curves
lie between those for the bulk superconductor (the dashed blue
line) and the normal state (the dashed violet line) and K (T ) is
suppressed toward larger �. This clearly follows from the fact
that the minigap in the DOS grows with �, always remaining
smaller then �0 (Fig. 3). With increasing temperatures, all
curves tend toward the normal state which is recovered at
T = Tc. For small �, e.g., �/�0 = 0.1, the minigap is very
narrow and this case shows a similar behavior like the normal
metal even at low temperatures, T/Tc ∼ 0.07 [the black line
in Fig. 5(b)]. On the other hand, for �/�0 = 1.0 the minigap
is quite large (the blue line in Fig. 3), and the behavior of
the proximitized metal in this case is similar to the bulk
superconductor [the orange line in Fig. 5(a)].

To see the role of T ∗/�0, we plot K (T ) in Fig. 5(b) for
various values of the α parameter and �/�0 = 0.2, ct/cl =
0.5. Similarly to the bulk superconductor, increase of T ∗/�0

214514-8



ELECTRON COOLING BY PHONONS IN … PHYSICAL REVIEW B 102, 214514 (2020)

FIG. 5. Electron-phonon thermal conductance per unit volume
as a function of temperature T in a thin normal metal coupled to
a massive superconducting lead for ct/cl = 0.5 and (a) different
values of �/�0 and T∗/�0 = 1.0, (b) different values of T∗/�0 and
�/�0 = 0.2. The dashed violet and blue lines correspond to the
cases of a bulk normal metal and a bulk superconductor, respectively,
at T∗/�0 = 1.0 and 5.0 on panels (a) and (b), respectively.

does not change the shape of the curves, but just shifts them
downward.

D. Thin SN bilayer

Finally, let us consider a thin SN bilayer in the dirty limit
�0τ � 1, shown schematically in Fig. 6 and described in the
corresponding caption. The difference between this geometry
and the structure studied in the previous subsection is twofold:
(i) both the normal metal and the superconductor are thin
and (ii) the contact is not considered in the tunneling limit,
i.e., the interface conductance per unit area G is a measure
of imperfection of the SN interface which would be perfectly
transparent in the ideal case with G → ∞. Both these features
lead to the inverse proximity effect in the superconductor that
has now to be treated on equal footing with the proximity
effect in the normal layer.

The Green’s functions for this system were found in
Ref. [42]. Assuming the system to be homogeneous in the

FIG. 6. A schema of a thin SN bilayer consisting of a normal
metal (orange) of a thickness dN coupled to a superconductor (blue)
of a thickness dS . The nonideal SN interface is characterized by
the electric conductance G per unit area, whereas σN/S denotes the
normal state conductivity of the N/S layer material.

plane (x, y dimensions), we arrive at an one-dimensional
problem along the transverse (z) direction. Parametrizing the
Green’s function ĝ by the proximity angle θ such that ĝ =
τ̂3 cos θ + τ̂1 sin θ , we can write the Usadel equation in each
of the two materials as [25]

D

2

d2θ

dz2
= −iε sin θ − � cos θ, (56)

where D = vF �/3 is the diffusion coefficient of the corre-
sponding material, and � is superconducting gap that is
nonzero only for z < 0. In principle � has to be determined
self-consistently for a given geometry, which we neglect here
for simplicity. Eq. (56) should be supplemented by the bound-
ary conditions. At the SN interface, z = 0, we have [43]

σS
dθ

dz

∣∣∣∣
z=0−

= σN
dθ

dz

∣∣∣∣
z=0+

= G sin[θ (0+) − θ (0−)], (57)

where σN/S = 2e2N0,N/SDN/S is the normal state conductivity
of the normal metal/superconductor. At the free surfaces, z =
−dS , z = dN (Fig. 6), there is no current flow and the boundary
conditions are simply (dθ/dz)|z=−dS = (dθ/dz)|z=dN = 0.

Assuming the system to be thinner than the superconduct-
ing coherence length, dS + dN � ξ ≡ √

D/�, we can seek
the solution in the form

θ (z < 0) = θS + θ ′′
S

2
(z + dS )2 + . . . , (58a)

θ (z > 0) = θN + θ ′′
N

2
(z − dN )2 + . . . , (58b)

where the second term is small compared to the main one by a
factor ∼d2

S,N/ξ 2, and subsequent terms are even smaller. Then
boundary conditions, Eq. (57), lead to the following system of
nonlinear equations:

G
4e2N0SdS

sin(θS − θN ) = iε sin θS + � cos θS, (59a)

G
4e2N0N dN

sin(θS − θN ) = −iε sin θN . (59b)

The retarded and advanced solutions are obtained by shift-
ing ε → ε ± iη. Note that Eq. (59b) has exactly the same form
as Eq. (54), with � given by the coefficient on the left-hand
side of Eq. (59b). When the coefficient on the left-hand side of
Eq. (59a) is small compared to �, that is (Gξ/σS )(ξ/dS ) � 1,
then θS is close to its bulk value, and we recover the results
of the previous subsection. When � � �, the relevant energy
scale in the normal metal is ε ∼ �, so the length scale control-
ling the expansion in Eq. (58b) is

√
D/�, and the condition
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FIG. 7. Local DOS in the normal (solid lines) and supercon-
ducting (dotted lines) parts of a thin SN bilayer for various G, the
equal thicknesses of the layers dN = dS = 0.2 ξ and the temperature
T/Tc = 0.01.

dN � √
D/� is equivalent to � � ETh = D/d2

N . In the oppo-
site limit of a thick superconductor, dS � ξ , the correction
to θS is small and the results of the previous subsection are
recovered when Gξ/σS � 1.

The local DOS per unit volume can be obtained as
N (ε, z) = N0 Re cos θR

N (ε, z) [in fact, the z dependence is
weak in the regime of the expansion in Eqs. (58)]. We take
DN = DS = D, σN = σS = σ , T = 0.01 Tc, dN = dS = 0.2 ξ ,
and plot in Fig. 7 N (ε, dN ) (solid lines) and N (ε,−dS ) (dotted
lines) as a function of energy for various G. The main feature,
as in all gapped systems, is the minigap which is smaller than
�0 and shrinking as G decreases. The spectrum in both N and
S layers is smeared, due the inverse proximity effect, taken
into account here and neglected in the previous subsection.
More details on these results can be found in Ref. [42].

Having found the Green’s functions, we calculate I (z, ω)
from Eq. (47). We plot I (dN , ω) (solid lines) and I (−dS, ω)
(dotted lines) for different transparencies [controlled by G]
of the SN interface [Fig. 8(a)] and different temperatures
[Fig. 8(b)], other parameters being the same as in Fig. 7. As
before, I (dN , ω) exhibits a gap that strongly depends on G.
The edge of the gap is not sharp due to the smeared spectrum
previously shown in Fig. 7. Increasing temperature leads to
shrinking and filling of the gap until T = Tc, where we ar-
rive at the normal state in both layers. Plugging I (z, ω) into
Eq. (48), we obtain the electron-phonon thermal conductance
K (T ) in the normal metal and the superconductor per unit area
of the structure. In Fig. 9(a), we plot K (T ) on the normal side
for various transparencies of the SN interface for ct/cl = 0.5,
T∗/�0 = 1.0 and other parameters as in Fig 7. The minigap
suppresses the cooling power at low temperatures. With in-
creasing G the effect is stronger since the minigap is getting
larger. In Fig. 9(b), we present K (T ) on the superconducting
side for the same parameters as in Fig. 9(a). As in all super-
conducting structures, at T = Tc, all curves converge to the
normal state one. Since the minigap is always smaller than

FIG. 8. I(dN , ω) (solid lines) and I(−dS, ω) (dotted lines)
(a) for different G and T/Tc = 0.01, (b) for various temperatures and
Gξ/σ = 0.1. Other parameters are the same as in Fig. 7.

�, the low-temperature suppression of K (T ) is weaker than
in the bulk superconductor case [the dashed orange line in
Fig. 9(a,b)] but, depending on G, much stronger than in the
normal case [the blue line in Figs. 9(a) and 9(b)]. Figure 9(c)
shows K (T ) on the normal (solid lines) and the superconduct-
ing side (dotted lines) of a thin SN bilayer for various values of
T∗/�0 and the conductance of the SN interface Gξ/σ = 0.1.
As in the previous subsections, increasing T∗/�0 just shifts
the curves downward. One notes that the effect is stronger
in the S region due to the inverse proximity effect visible in
Fig. 7.

IV. CONCLUSIONS

We have studied electron cooling by phonons in su-
perconducting proximity structures. Using the quasiclassical
approximation and perturbation theory in electron-phonon
coupling, we obtained a rather general formula for the cooling
power and the thermal conductance, Eq. (37), that is applica-
ble to an arbitrary electronic system, even nonequilibrium. We
focused on situations when electrons and phonons are in equi-
librium among themselves, but have different temperatures.
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FIG. 9. Electron-phonon thermal conductance per unit area (a) on the normal and (b) superconducting side of a thin SN bilayer as a
function of temperature T for various G, ct/cl = 0.5, and T∗/�0 = 1.0. The dashed blue and orange lines correspond to the cases of a bulk
normal metal and a bulk superconductor. Panel (c) shows K (T ) per unit area on the normal (solid lines) and the superconducting side (dotted
lines) of a thin SN bilayer for various values of T∗/�0, ct/cl = 0.5, and Gξ/σ = 0.1. Other parameters are the same as in Fig. 7.

In the simple cases of a bulk normal metal and a bulk BCS
superconductor, we recovered the previously known results.

Subsequently, we illustrated our theory on two simple ge-
ometries of a superconductor-normal metal contact. Due to
the presence of a proximity minigap, these heterostructures
exhibit a strong suppression of the cooling power at low tem-
peratures which makes them suitable candidates for making
quantum thermal detectors. Our theory can serve as a tool for
optimizing the structure to improve the detector sensitivity,
which could serve as a benchmark for future experiments.
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APPENDIX A: KELDYSH GREEN’S FUNCTIONS

In the derivation of Eq. (8) based on the Kubo formula,
we make use of the contour-ordered Green’s function which
can be constructed for an arbitrary set of bosonic fields ϕα (t )
(the index α incorporating the spatial coordinates and all other
indices) as

D̆αβ (t, t ′) =
(

Dαβ (t, t ′) D<
αβ (t, t ′)

D>
αβ (t, t ′) D̃αβ (t, t ′)

)
, (A1a)

iDαβ (t, t ′) = 〈T ϕα (1)ϕβ (1′)〉, (A1b)

iD<
αβ (t, t ′) = 〈ϕβ (1′)ϕα (1)〉, (A1c)

iD>
αβ (t, t ′) = 〈ϕα (1)ϕβ (1′)〉, (A1d)

iD̃αβ (t, t ′) = 〈T̃ ϕα (1)ϕβ (1′)〉, (A1e)

where T (T̃ ) denotes chronological (antichronological) time
ordering. These functions are not independent and by per-
forming the Larkin-Ovchinnikov rotation [44], Ď → Ľτ̌3ĎĽ†

with Ľ = (1 − iτ̌2)/
√

2 and τ̌2 being the second Pauli matrix,
we pass to the so-called Keldysh space, obtaining

Ďαβ (t, t ′) =
(

DR
αβ (t, t ′) DK

αβ (t, t ′)
0 DA

αβ (t, t ′)

)
. (A2)

The newly introduced functions satisfy the following relations
[θ (t ) being the Heaviside step function]:

DR
αβ (t, t ′) = θ (t − t ′)

[
D>

αβ (t, t ′) − D<
αβ (t, t ′)

]
, (A3)

DA
αβ (t, t ′) = θ (t ′ − t )

[
D<

αβ (t, t ′) − D>
αβ (t, t ′)

]
, (A4)

DK
αβ (t, t ′) = D>

αβ (t, t ′) + D<
αβ (t, t ′), (A5)

which are used to derive Eq. (8) from Eq. (7).

APPENDIX B: CALCULATION OF THE Yλ(q�) FACTORS

The factors Yλ(q�) coming from angular averages that are
given by

Yλ(q�) =
〈

�λ(n)

1 + �2(qn)2

〉2

n

(
1 −

〈
1

1 + �2(qn)2

〉
n

)−1

+
〈

�2
λ(n)

1 + �2(qn)2

〉
n
, (B1)

where 〈. . . 〉n denotes averaging over the directions of the
Fermi velocity and �λ(n) are given in Eq. (32). Evaluation
of the angular averages gives

〈
1

1 + �2(qn)2

〉
n

= arctan q�

q�
,

〈
(qn)2/q2 − 1/3

1 + �2(qn)2

〉
n

= q� − (1 + q2�2/3) arctan q�

q3�3
,
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〈
[(qn)2/q2 − 1/3]2

1 + �2(qn)2

〉
n

= (1 + q2�2/3)2

(q�)5
arctan q� − 1 + q2�2/3

(q�)4
,

〈
(etκn)(qn)/q

1 + �2(qn)2

〉
n

= 0,

Yl (q�) = −q� − (1 + q2�2/3) arctan q�

3q2�2(q� − arctan q�)
, (B2a)

Yt1,t2(q�) =
〈

(etκn)2(qn)2/q2

1 + �2(qn)2

〉
n

=

= q�(1 + 2q2�2/3) − (1 + q2�2) arctan q�

2q5�5
. (B2b)

Note that these integrals are the same for a normal metal and a superconductor, and Yl (q�) are in agreement with Ref. [12]. The
asymptotic behavior is

Yl (q� → 0) = 4

45
+ O(q2�2), (B3a)

Yl (q� → ∞) = π

18 q�
+ O(q−2�−2), (B3b)

Yt1,t2(q� → 0) = 1

15
+ O(q2�2), (B3c)

Yt1,t2(q� → ∞) = 1

3 q2�2
+ O(q−3�−3). (B3d)
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