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Signatures of triplet correlations in density of states of Ising superconductors
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The few-layer transition metal dichalcogenides (TMDs) have been recently suggested as a platform for
controlled unconventional superconductivity. We study the manifestations of unconventional triplet pairing in the
density of states of a disordered TMD based monolayer. The conventional singlet pairing attraction is assumed to
be the dominant pairing interaction. We map the phase diagrams of disordered Ising superconductors in the plane
of temperature and the in-plane magnetic field. The latter suppresses singlet and promotes triplet correlations.
The triplet order parameters of a trivial (nontrivial) symmetry compete (cooperate) with singlet order parameter
which gives rise to a rich phase diagram. We locate the model dependent phase boundaries and compute the order
parameters in each of the distinct phases. With this information, we obtain the density of states by solving the
Gorkov equation. The triplet components of the order parameters may change an apparent width of the density
of states by significantly increasing the critical field. The triplet components of the order parameters lead to the
density of states broadening significantly exceeding the broadening induced by magnetic field and disorder in a
singlet superconductor.
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I. INTRODUCTION

The progress in growth and fabrication techniques made
it possible to create high quality ultrathin multilayer systems
with individual layers held together by weak Van der Waals
forces [1]. In particular, few and monolayers of transition
metal dichalcogenides (TMD)s with highly tunable properties
have been fabricated [2]. Many such systems turned out to be
superconducting down to the monolayer limit [3–10] greatly
stimulating the research of two-dimensional superconductiv-
ity. Very recently, the TMD based systems have been proposed
as a platform for controlled studies of the intrinsic or exter-
nally induced unconventional superconductivity [11,12].

Many TMD monolayers such as 1H-NbSe2 lack the in-
version center even though the bulk (2H-NbSe2) has such a
center. This gives rise to a spin splitting of electron bands in
the presence of atomic spin-orbit interaction. Due to the basal
mirror plane symmetry σh, the electron spins are polarized
out-of-plane. The superconducting properties of such systems
referred to as Ising superconductors [3,5,6,13] are determined
to a large extent by the spin splitting, �SO typically exceeding
the superconducting gap by few orders of magnitude.

One of the experimentally confirmed signatures of Ising
superconductivity is its remarkable stability to the in-plane
magnetic field, B ⊥ ẑ. The in-plain critical field Bc is demon-
strated to greatly exceed the Pauli limit [3,5,6,8–10,14]. In
fact, Bc is infinite at zero temperature; T = 0 unless the dis-
order is present in the system [15–18] or a random Rashba
spin-orbit coupling is produced by ripples breaking σh sym-
metry [19]. Hereinafter, we absorb a half product of a g factor
and the Bohr magneton in the definition of B such that the
Zeeman spin splitting is 2B. In few-layer systems we neglect

the coupling of the in-plane field to the orbital motion. Such
coupling is dominant for out-of plane field [20].

A large Bc can be explained by an in-plane spin sus-
ceptibility being close to that of a normal state [6]. The
superconductivity is then stabilized as the magnetic polariza-
tion energy is excluded from the energy difference between
the normal and the superconducting states. In contrast to the
case of conventional superconductors, the electrons with mo-
menta in between the spin split Fermi surfaces reorient their
spins in response to an applied in-plane field [21]. The net
spin polarization along the field is independent of �SO and is
determined by the Pauli susceptibility in the normal state.

A smooth adjustment of paired electrons to the applied
field is secured by a σhT symmetry combining σh with the
time reversal symmetry T [22]. At finite B the spins of paired
electrons related to each other by σhT operation are no longer
antiparallel. It follows that as electrons are polarized by the
field, the wave function of the Cooper pairs they form in-
evitably acquires a triplet component [23]. Such field induced
triplets, here referred to as nontrivial, have a symmetry lower
than the symmetry of the crystal. Therefore, it is meaningful
to assign the two distinct transition temperatures Tcs and Tct to
the leading singlet and subleading nontrivial triplet interaction
channels, respectively.

Crucially, the nontrivial triplets are distinct by symmetry
from the triplets coexisting with singlets in the absence of
inversion center at B = 0 [24–26]. We refer to the latter
triplets as trivial as they transform trivially under all symmetry
operations. In the limit studied here �SO � EF , where EF is
the Fermi energy, and trivial triplets decouple from singlets
[27]. For this reason, we characterize a possible attraction in
a Cooper pair forming a trivial triplet by a separate transition
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FIG. 1. The DOS, N (ω) normalized by its normal state value, 2N0 as a function of ω given in units of Tcs. In this example the SOC is given
by the K model (Sec. II). �SO = 15Tcs, � = 0.1Tcs. Panel (a): singlet OP, Tct = 0. Panel (b): singlet-triplet OP, Tct = 0.8Tcs. Insets: (T, B)
phase diagrams with T and B in units of Tcs. The solid (gray) line shows Bc(T ) separating the normal and superconducting phase shown as the
shaded (blue) area. The coordinates of vertically aligned and evenly spaced dots (T = 0.9, B) are the (T, B) pairs for which the DOS curves
are shown in the main figure using the same color scheme. The dashed black line in the inset of panel (b) is the Bc(T ) shown as a solid line in
panel (a) for the singlet only case. In panels (a) and (b) DOS curves broaden with increasing field.

temperature Tctz. The trivial triplets are insensitive to moder-
ate fields and are suppressed by a minute disorder [18]. In
contrast, nontrivial triplets are induced by the field and are
stabilized against the disorder due to the strong coupling to
the leading singlet order parameter (OP) [18,28].

For the trivial triplets to be observed the critical temper-
ature should be large enough, Tctz � Tcs, as otherwise the
singlet correlations dominate at experimentally accessible
fields. In contrast, the nontrivial triplets noticeably affect the
Bc and OPs already for Tct � Tcs. In both cases, for triplet
correlations to come into play, electrons forming a triplet
Cooper pair should attract.

The indirect evidence for attraction in the triplet channel
comes from the very recent density functional theory cal-
culations performed on the NbSe2 monolayers either free
standing or on a substrate. These studies find a large Stoner en-
hancement of the magnetic susceptibility indicative of strong
ferromagnetic interactions [21] and/or ferromagnetic ground
state [29].

The ferromagnetic fluctuations revealed by density func-
tional theory enhance the pairing interaction in the triplet
channel and suppress the interactions in the singlet channel
[30–33]. As argued in Ref. [21] significant attraction in the
triplet channel results from ferromagnetic fluctuations with
correlation length exceeding vF /�SO, where vF is the Fermi
velocity and we set h̄ = kB = 1. In the alternative scenario
considered in Ref. [34], appropriate to the gated TMDs with
small Fermi pockets both singlet and triplet instabilities arise
from repulsion. In this approach Tcs and Tct = Tctz are pro-
moted by distinct interpocket pair hopping processes and can
both be finite.

Here we assume finite Tct(z) < Tcs and study the effect
of triplet correlations on the density of states (DOS), N (ω),
where ω is the quasiparticle energy. Typically, the DOS curve
N (ω) is inferred from the low-temperature differential con-
ductance in devices contacted via a tunnel barrier [8]. A recent
tunneling data in gated MoS2 is in fact indicative of an uncon-
ventional symmetry of the OP in gated TMDs [35].

The essential conclusion of this work is that an admixture
of a triplet component to the superconducting OP may result
in apparent broadening of the N (ω) curves as the applied field
increases. Indeed, as detailed in Sec. IV A for �SO � EF , the
scalar disorder characterized by the scattering rate � acts as a
spin flipping disorder with the effective rate �eff ∝ �B2/�2

SO
in the experimentally relevant regime, B � �SO. This holds
also in the other limit, �SO � EF , Ref. [16]. The triplet com-
ponents describing the Cooper pairs with parallel spins do not
add to broadening per se. In other words, when the triplet
component of OP is added and all the other parameters are
kept fixed the DOS broadening inferred from the Gorkov
equation does not change appreciably. Nevertheless, triplet
components push the critical field Bc(T ) up. This, in turn,
leads to a stronger broadening ∝B2

c even in systems that are
nominally in the clean limit, � � Tcs, see Fig. 1.

We may express this point yet differently (see Sec. VI).
At fixed Bc(T ), addition of the triplet components of OP
enforces the adjustment of the other model parameters via
self-consistency condition. This leads to extra broadening
compared with the pure singlet OP.

These results are illustrated in Fig. 1, where the computed
DOS is compared for systems with purely singlet OP [panel
(a)] achieved for Tct(z) = 0 and the OP which contains a field
induced triplet correlations present for Tct > 0. Qualitatively,
as Fig. 1 demonstrates, a broadening growing rapidly towards
Bc in very clean systems with � = 0.1Tcs might be an indica-
tion of a finite triplet component of the OP.

The field dependence of the DOS broadening is a salient
feature of Ising superconductors along with the enhanced Bc.
As such it applies equally to pure singlet and to the mixed
parity superconductors. Its concrete manifestation, however,
differs in these two cases. To highlight these differences which
are of a potential experimental importance we investigate in
detail the (T, B) mean field phase diagrams of a monolayer
TMD for a subset of relevant symmetry constrained OPs.
The phase diagrams are constructed for the complementary
models of the nodal and nodeless �SO, and for systems with
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FIG. 2. (a) The crystal structure of 1H-NbSe2, where the Nb are
blue and Se yellow. The gray region shows the unit cell in which
there is no inversion center. This figure was produced with Vesta [37].
(b) Schematic Fermi surface of metallic monolayer TMDs at zero
magnetic field. SOC vanishes along the dashed �M lines. The sign
of SOC alternates between adjacent dashed lines. (c) The directions
of the Zeeman field (red), SOC (blue), and the OPs (black).

different degree of purity. In each case the representative DOS
curves are presented.

The paper is structured as follows. In Sec. II we specify the
model Hamiltonian including the kinetic energy, interaction
constrained by symmetries, and the disorder potential. Sec-
tion III contains a summary of main results intended for the
reader not interested in the details of the derivation. In this
section, we show phase diagrams for selected sets of parame-
ters as well as few representative DOS curves computed along
different lines on these phase diagrams. The Gorkov equation
employed for finding the DOS is detailed in Sec. IV. Quali-
tative picture of interrelation between the triplet correlations
and the DOS is given in Sec. IV A. The Landau expansion
of the thermodynamic potential we minimize in order to map
the phase diagram is obtained in Sec. V. Finally in Sec. VI we
discuss the results in light of the recent tunneling experiments.

II. THE MODEL HAMILTONIAN

Consider a disordered monolayer superconductor without
an inversion center. The appropriate Hamiltonian

H = H0 + Hdis + Hint (1)

includes the kinetic energy, random disorder potential, and
pairing interaction term, respectively. Kinetic energy,

H0 =
∑
k,s

ξkc†
kscks +

∑
k,ss′

[γ (k) − B]· σss′c†
kscks′ , (2)

contains the dispersion measured from the chemical potential,
ξ (k), the antisymmetric spin-orbit coupling (SOC), γ (−k) =
−γ (k) due to the lack of the inversion center, and Zeeman
field B = Bx̂, Fig. 2. We denote, c†

ks = V −1/2
∫

dreik·rψ†
rs,

where ψ†
rs creates a particle with spin projection s on the z

axis at position r in a volume V . The vector of Pauli matrices

is denoted by σ = (σ1, σ2, σ3), and σ0 stands for a unit matrix
in spin space.

In this work we consider the two models of the band struc-
ture and SOC both having D3h as the point symmetry group,
Fig. 2(a). In NbSe2 monolayer, the Nb derived band crossing
the Fermi level, gives rise to two distinct hole Fermi pockets.
In the hexagonal Brillouin zone one of the pockets is centered
at � and the other two disconnected pockets enclose the ±K
points, Fig. 2(b). Although both pockets are present in NbSe2,
here for simplicity we consider two separate models referred
to as � and K model with only one type of pockets.

The σh symmetric SOC has a form γ (k) = �SOγ̂ (k)ẑ. As
the axial vector ẑ belongs to the A′

2 irrep of D3h, the same
should be true for the scalar function γ̂ (k). For simplicity
we write γ̂ (k) = γ̂ (ϕk ), where ϕk is an angle the vector k
forms with the kx axis in the Brillouin zone. The acceptable
functions γ̂ (ϕk ) are linear combinations of Fourier harmon-
ics cos(3nϕk ) with integer n �= 0. All such functions vanish
along �M as prescribed by the vertical mirror symmetry.
Hence, without loss of generality we take for the � model
γ̂ (ϕk ) = √

2 cos(3ϕk ) [26,36]. The simplest model of SOC
for the K model is γ̂ (ϕk ) = sgn[cos(3ϕk )]. Such a function is
constant at each of the ±K pockets. We consider normalized
γ̂ functions, 〈γ̂ 2(ϕk )〉F = 1, where the angular averaging over
the Fermi surface is denoted as 〈· · · 〉F ≡ (2π )−1

∫
dϕk(· · · ).

The disorder is modeled as a collection of impurities of
a density nimp located at random positions, R j . The resulting
scattering potential reads

Hdis =
∑

j

∑
s=1,2

∑
k,k′

uk−k′eiR j ·(k−k′ )c†
ksck′s , (3)

where uq is a Fourier transformation of the spin independent,
scalar potential produced by a single impurity. For simplic-
ity we consider a short range impurity potential such that
uq = u0. The resulting elastic scattering time, τ is given by
the Golden Rule, τ−1 = 2πnimpN0u2

0, where N0 is the normal
state DOS per spin species.

Finally, we treat the pairing interaction

Hint = 1

2

∑
k,k′

∑
{si}

V s1s2
s′

1s′
2

(k, k′)c†
ks1

c†
−ks2

c−k′s′
2
ck′s′

1
(4)

within the mean field approximation. To this end we introduce
the OP

�s1s2 (k) = 1

V

∑
k′,s′

1,s
′
2

V s1s2
s′

1s′
2

(k, k′)〈c−k′s′
2
ck′s′

1
〉 (5)

and make an approximation, Hint ≈ HMF − H̄i, where the
mean field interaction Hamiltonian is

HMF = V

2

∑
k,si

�∗
s1s2

(k)c−ks2 cks1 + h.c. , (6)

where h.c. stands for the Hermitian conjugated term. Equation
(5) is a self-consistency equation with the right hand side
computed with the quadratic Hamiltonian (6). The expectation
value of the mean field Hamiltonian,

H̄i = 1

2

∑
si,s′

i

∑
k,k′

V s1s2
s′

1s′
2

(k, k′)〈c†
ks1

c†
−ks2

〉〈c−k′s′
2
ck′s′

1
〉. (7)
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Next, we introduce a simplified model of interaction (4)
which contains a minimum amount of necessary information
to capture the thermodynamic properties and field induced
phase transitions in the superconducting TMD monolayer. To
this end we invoke the arguments based on symmetry consid-
erations.

A. Symmetry and the choice of the OPs

We now consider the momentum and spin dependence of
the superconducting OP written in the standard form as

�(k) = [ψ (k)σ0 + d(k) · σ]iσ2. (8)

Here ψ (k) and d(k) parametrize the singlet and triplet com-
ponents of the OP.

In our description the leading OP is singlet, Tcs > Tct(z).
Here we neglect its anisotropy setting ψ (k) = η0ψ̂0 with the
basis function ψ̂0 = 1. At B = 0 the triplet OP coexisting
with the singlet one is determined by the axial vector dA′

1
(k)

transforming as A′
1. Since d(k) and the SOC transform in the

same way, the reasoning fixing γ (k) applies, and we write
dA′

1
(k) = ηAγ̂ (k)ẑ. In addition to dA′

1
we include the triplet

OP induced by the field, previously introduced in Ref. [28].
Since the in-plane field B = (Bx, By) belongs to E ′′ it couples
to the triplet OPs of the same symmetry. For the � model
within the considered space of the Fourier harmonics the pairs
of E ′′ partners (d1

E ′′ , d2
E ′′ ) are (cos 3ϕkx̂, cos 3ϕkŷ), (cos ϕkx̂ −

sin ϕkŷ, sin ϕkx̂ + cos ϕkŷ) [11], and (sin 3ϕkx̂, sin 3ϕkŷ).
The first OP in the full list above written in the form

(γ̂ (ϕk )x̂, γ̂ (ϕk )ŷ) applies to both � and K models. In con-
trast to other E ′′ combinations, it couples to the fields via
the SOC induced polarization of the bands even when the
interaction has a full rotational symmetry such that differ-
ent Fourier harmonics decouple. Although in the generic
situation all E ′′ triplets condense together, here we consider
the model with rotational invariant interaction. This narrows
the list of E ′′ triplet OPs down to one entry, (d1

E ′′ , d2
E ′′ ) =

[ηE1γ̂ (ϕk )x̂, ηE2γ̂ (ϕk )ŷ]. We do not include the triplet OPs
given by the d vectors cos ϕkx̂ + sin ϕkŷ, sin 3ϕk ẑ, sin ϕkx̂ −
cos ϕkŷ, and belonging to A′′

1, A′
2, and A′′

2 symmetry, respec-
tively. We also omit the E ′ triplet assuming no strain.

In summary, in our model the d vector characterizing the
triplet component of the OP, Eq. (8), reads

d(k) = γ̂ (k)(ηE1x̂ + ηE2ŷ + ηAẑ) , (9)

and our list of OPs includes A′
1 singlet η0, A′

1 triplet ηA,
and E ′′ triplet (ηE1, ηE2), see Fig 2(c). The above symmetry
arguments lead us to the effective interaction

V s1s2
s′

1s′
2

(k, k′) = vs[iσ2]s1s2
[iσ2]∗s′

1s′
2

+
∑
j=1,2

vt [γ̂ (k)σ j iσ2]s1s2
[γ̂ (k′)σ j iσ2]∗s′

1s′
2

+ vtz[γ̂ (k)σ3iσ2]s1s2
[γ̂ (k′)σ3iσ2]∗s′

1s′
2
. (10)

Equation (10) is the minimal Hamiltonian capturing the inter-
action in the A′

1 singlet channel of a strength vs, the interaction
in the A′

1 triplet channel of a strength vtz, and finally the E ′′
channel with interaction vt .

With the model Hamiltonian (10) the OP, Eq. (8) is fully
determined by the four OPs of a definite symmetry,

η0 = vs

V

∑
k′,s′

1s′
2

[iσ2]∗s′
1s′

2
〈c−k′s′

2
ck′s′

1
〉

ηE1(2) = vt

V

∑
k′,s′

1s′
2

[γ̂ (k′)σ1(2)iσ2]∗s′
1s′

2
〈c−k′s′

2
ck′s′

1
〉

ηA = vtz

V

∑
k′,s′

1s′
2

[γ̂ (k′)σ3iσ2]∗s′
1s′

2
〈c−k′s′

2
ck′s′

1
〉. (11)

It is convenient to use the observable transition temper-
atures instead of the interaction amplitudes. We hence
introduce the three transition temperatures Tcs, Tct(z) corre-
sponding to the three terms in Eq. (10). These temperatures
are defined under conditions that only one interaction am-
plitude is nonzero, the system is clean, and SOC and
magnetic field are turned off. In this case, we have the stan-
dard relations, Tcs = 2eγE π−1 exp(−1/2N0|vs|) and Tct(z) =
2eγE π−1 exp(−1/2N0|vt (z)|), where  is a high energy cut-
off for the attraction and γE is Euler’s constant [38].

III. SUMMARY OF RESULTS

In this section we present the main findings of this work.
The end result is the calculated DOS of a disordered Ising
superconductor throughout the (T, B) phase diagram. We fo-
cused on the role played by the triplet correlations. Although
the � and K model of SOC give overall similar results, there
are qualitative differences in some regions of the phase dia-
gram. We, therefore, consider these two models separately.

Furthermore, for each of the two models the two physically
distinct situations arise depending on the symmetry of the
dominant triplet channel. The first scenario for which the field
induced E ′′ triplet channel dominates over the symmetric A′

1
triplet channel is realized for Tct > Tctz. The opposite scenario
is realized for Tctz > Tct. Below we consider these two scenar-
ios separately.

A. The K model of SOC

1. Tct > Tctz: Dominant E ′′ triplet channel

The representative phase diagram in the situation when the
E ′′ triplet channel dominates the A′

1 triplet channel is shown in
Fig. 3(a). In this case there is a normal and superconducting
phases with the superconducting OP having both A′

1 singlet
and E ′′ field-induced triplet components. In the limit �SO �
EF considered here, the A′

1 triplet component remains zero.
Previously, we have referred to this phase as having the s + i f
symmetry [28]. The critical field diverges at a finite tempera-
ture T ∗

ct . This temperature can be easily computed by noticing
that in the high field limit, the singlet component of the OP is
suppressed. The triplet component of OP, on the other hand,
has a E ′′ symmetry with d ‖ ŷ which is perpendicular to B, see
Fig. 2(c). Therefore, magnetic field does not limit this triplet
OP. Although d in this case is also orthogonal to γ (k) in the
high field limit B � �SO, the limiting of the E ′′ triplet by
SOC is eliminated. As a result, in the considered limit T ∗

ct is
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FIG. 3. The (T, B) phase diagrams with both axes given in units of Tcs for the K model with �SO = 15Tcs, � = 0.2Tcs. The light
shaded (blue) regions mark the superconducting phase of coexisting singlet and ηE2 triplet OP (s + i f phase). The second order normal
to superconducting transition lines are denoted by thin (blue) lines. The Tct and Tctz are marked by vertical dashed lines. (a) Tct = 0.7Tcs,
Tctz = 0.5Tcs. (b) Tct = 0.5Tcs, Tctz = 0.7Tcs. The shaded (green) region in panel (b) marks superconducting phase with ηA triplet OP (s′ phase).
The first order transition between s + i f and s′ phases is denoted by a thick (blue) line. These phase boundaries are obtained by the minimization
of the thermodynamic potential, Eq. (28), with respect to the OPs. The coordinates of vertically aligned and evenly spaced colored dots, at
T = 0.4Tcs and T = 0.8Tcs in panel (a)[(b)] define the (T, B) pairs for which the DOS is shown in Figs. 4(a) and 4(b) [Figs. 4(c) and 4(d)],
respectively, using the same color scheme.

determined by the standard relation,

ln
T ∗

ct

Tct
= �

(
1

2

)
− �

(
1

2
+ �

2πT ∗
ct

)
, (12)

where � is the digamma function. Clearly, T ∗
ct = Tct in the

clean system and is suppressed by the disorder. For instance,
for the set of parameters used in Fig. 3(a) Eq. (12) gives T ∗

ct ≈
0.536. At � > πTcte−γ /2, Bc is finite for all temperatures, and
the high field part of the superconducting phase is eliminated.
Much stronger disorder is needed to bring Bc to the Pauli limit,
see Ref. [18] for details.

Both OPs and DOS are plotted along two constant tem-
perature cuts in the phase diagram Fig. 4(a) and Fig. 4(b),
respectively. The low T cut, Fig. 4(a), shows the saturation
of the triplet OP and vanishing of singlet OP at high field
confirming the statements made above. The DOS similarly is
broadened with increasing the field and saturates in the same
limit. At higher T the DOS shows a strong smearing effect of
the field, while the gap is still visible, Fig. 4(b).

2. Tctz > Tct: Dominant A′
1 triplet channel

Figure 3(b) features a phase diagram of the system with
A′

1 triplet pairing dominating E ′′ triplet correlations. In this
case the low field second order transition line bifurcates at
the tricritical point as the field increases. Among the two high
field transition lines emanating from the tricritical point one
marks the first-order phase transition between the s + i f state
and the s′ state where the OP is a pure A′

1 symmetric triplet.
The other is a vertical line, T = T ∗

ctz of the second order tran-
sitions between the normal state and s′ superconducting state.
The transition temperature T ∗

ctz is determined by the instability
towards the A′

1 triplet. For this triplet d ‖ ẑ, see Fig. 2(c) which
is parallel to γ (k) and orthogonal to B. This implies that the

A′
1 transition temperature T ∗

ctz is insensitive neither to SOC nor
to the magnetic field and is given by a standard equation,

ln
T ∗

ctz

Tctz
= �

(
1

2

)
− �

(
1

2
+ �

2πT ∗
ctz

)
, (13)

where � is the digamma function. For the parameters used
in Fig. 3(a), Eq. (13) gives T ∗

ctz ≈ 0.536. For a generic rela-
tionship between the critical temperatures, Tct and Tctz, the
temperature at which the critical field diverges is either T ∗

ct
given by Eq. (12) for Tct > Tctz, or T ∗

ctz given by Eq. (13) for
Tctz > Tct. For both Fig. 3(a) and Fig. 3(b), max{Tct, Tctz} =
0.7Tcs. For this reason for this set of critical temperatures,
T ∗

ctz = T ∗
ct .

Another manifestation of the similarity of the two triplet
instabilities at high fields can be seen by comparison of the OP
field dependence in Fig. 4(a) and Fig. 4(c) at T = 0.4Tcs. The
E ′′ triplet in the inset of Fig. 4(a) and the A′

1 triplet in the inset
of Fig. 4(c) saturate to the same value at high field. To avoid
confusion we stress, however, that in general T ∗

ctz �= T ∗
ct . The

most general statement is that both the temperature at which
the critical field diverges and the magnitude of the dominant
triplet OP at high field are determined by max{Tct, Tctz}. In this
form the above statement applies equally to both the K and the
� model considered in Sec. III B.

The DOS and the variation of the OPs for the two constant
T cuts of the phase diagram in Fig. 3(b) is shown in Fig. 4(c)
and Fig. 4(d). The OPs along the low temperature cut crossing
the first order transition line are discontinuous as shown in
the inset of Fig. 4(c). Similarly, the DOS does not evolve
smoothly across the first order transition. Nevertheless, it is
not easily seen in Fig. 4(c). This is explained by the smearing
of the DOS as well as the smallness of the jump in the quasi-
particle spectral gap across the transition. At higher fields the
OPs as well as the shape of the DOS deep in the s′ phase reach
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FIG. 4. Normalized DOS, N (ω)/2N0. Panels (a),(b) pertain to T = 0.4Tcs and T = 0.8Tcs columns of dots in Fig. 3(a), respectively.
Panels (c),(d) pertain to T = 0.4Tcs and T = 0.8Tcs columns of dots in Fig. 3(b), respectively. The DOS curves have the same color as the
corresponding dots in Fig. 3 and broaden with increasing field. Insets: the evolution of OPs with B. The magnitude of singlet η0, triplet ηE2,
and triplet ηA OPs are shown by solid, dashed, and dotted lines, respectively. The values of B for which the DOS is plotted in the main figure
is marked by a vertical bar of the same color as the DOS curve attached to a horizontal axis. OPs, ω and B are in units of Tcs.

saturation as can be seen from the last two DOS curves in
Fig. 4(c) corresponding to the largest fields shown. Naturally,
the DOS for the high temperature cut Fig. 4(d) is qualitatively
similar to Fig. 4(b).

B. The � model of SOC

1. Tct > Tctz: Dominant E ′′ triplet channel

A representative phase diagram of the Ising superconductor
with nodal SOC is shown in Fig. 5(a). Here as in the K
model in the same regime, Tct > Tctz, the OP has an s + i f
symmetry all over the superconducting phase provided the
disorder scattering rate is not substantially smaller than Tcs.
In a clean system there is a small island of s′ phase separated
from the s + i f phase by the intermediate s + i f + is′ phase
and at higher T bordering the domain of the normal state,
see Fig. 6. Even when the disorder eliminates the s′ phase the
critical temperature remains a nonmonotonic function of the
field, Fig. 5(a). Moreover, it follows that s′ to s + i f transition
can be induced by increasing the disorder scattering rate.

The DOS shown for T < Tctz and T > Tct in Fig. 7(a)
and Fig. 7(b) is characterized by the peak following the field
dependent OPs and strongly broadened at elevated magnetic

fields. In addition, for fields B > B∗, where B∗ = η0(T, B∗),
the spectral gap is closed along the �M line, where 12 nodes
are formed causing topological edge states in stripe shaped
samples [39]. So that above the characteristic field, B∗ slightly
exceeding the Pauli critical field obtained for �SO = 0, N (ω)
is finite for all positive ω > 0. In the clean limit it results in
a V -shaped DOS. At finite disorder concentration the spectral
gap closes, and the � model of Ising superconductor provides
us with yet another example of gapless superconductivity at
B > B∗. At weak disorder, N (0) ∼ exp(−πη0/�) is finite and
yet suppressed exponentially [40].

In general, the self-consistent Born approximation fails at
low energies [41], and the detailed analysis of the DOS in this
regime as well as the zero-energy Majorana surface states is
beyond the scope of the present work. Still, we note that the
overall low-energy behavior of the bulk DOS stays nearly un-
affected by moderately weak disorder, consistent with Fig. 7.

2. Tctz > Tct: Dominant A′
1 triplet channel

In distinction with the K model the high field first or-
der transition between the s + i f and s′ phases proceeds
via an intermediate s + i f + is′ phase, see Fig. 5(b). In the
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FIG. 5. The (T, B) phase diagrams with both axes given in units of Tcs for the � model with �SO = 15Tcs, � = 0.2Tcs. The light
shaded (blue) regions mark the superconducting phase of coexisting singlet and ηE2 triplet OP (s + i f phase). The second order normal
to superconducting transition lines are denoted by thin (blue) lines. The Tct and Tctz are marked by vertical dashed lines. (a) Tct = 0.7Tcs,
Tctz = 0.5Tcs. (b) Tct = 0.5Tcs, Tctz = 0.7Tcs. The shaded (green) region in panel (b) marks superconducting phase with ηA triplet OP (s′ phase).
The thin elongated (red) region in between the s + i f and s′ phases denotes an intermediate s + i f + is′ phase. The coordinates of vertically
aligned and evenly spaced colored dots, at T = 0.4Tcs and T = 0.8Tcs in panel (a)[(b)], define the (T, B) pairs for which the DOS is shown in
Figs. 7(a) and 7(b) [Figs. 7(c) and 7(d)], respectively, using the same color scheme.

intermediate phase the OP contains two types of triplets. The
E ′′ (i f ) triplets are T odd as they are induced by the externally
applied field breaking the T symmetry explicitly. In contrast,
A′

1 (is′) triplets are present due to the spontaneous T symmetry
breaking. Despite this difference the triplet components have
the same phase and the OP is unitary all over the phase

FIG. 6. The (T, B) phase diagrams with both axes given in units
of Tcs for the � model with �SO = 15Tcs and no disorder. The
Tctz = 0.5Tcs, Tct = 0.7Tcs, are indicated by vertical dashed lines.
The light shaded (blue) regions mark the superconducting phase of
coexisting singlet and ηE2 triplet OP (s + i f phase). The shaded
(green) region marks superconducting phase with ηA triplet OP (s′

phase). The thin crescent shaped (red) region in between the s + i f
and s′ phases denotes an intermediate s + i f + is′ phase. The normal
state occupies the high-T part of the phase diagram. All the phase
boundaries shown as solid (blue) lines mark the second order phase
transitions.

diagram. Although the superconducting state breaks T sym-
metry, both extrinsically and spontaneously, because the OP
stays unitary there is no net Cooper pair spin polarization.

We now discuss the nature of symmetry breaking at the
two lines of the second order phase transition defining the in-
termediate s + i f + is′ phase in Figs. 5(b) and 6. To see what
symmetry is actually broken, notice that the thermodynamic
potential discussed in detail in Sec. V in the s + i f phase is
exactly the same for s + i f + is′ and s + i f − is′ choice of
the OP. Specifically, s + i f state is symmetric under the re-
stricted time reversal symmetry operation, η0 → η∗

0, ηA → η∗
A

not affecting ηE2. This Z2 discrete symmetry is broken at the
transition to the s + i f + is′ phase. The Z2 symmetry is related
to and yet distinct from the time reversal symmetry, broken
in other cases of transitions in and out of an intermediate
phase [42,43]. Here we refer to it as restricted time reversal
symmetry.

We have verified the above symmetry by computing the
free energy. To see it, let us take without loss of generality
η0 OP as real. Then as detailed in Sec. V, Zeeman field
induces a finite ImηE2. The system as a whole is symmetric
under the T operation provided the sign of the magnetic
field is flipped. The odd powers of ηE2 OP enter the ther-
modynamic potential in combination with magnetic field, ∝
BImηE2. Since under the time reversal T , conjugating all the
OPs and flipping magnetic field, these combinations do not
change, the thermodynamic potential remains invariant under
the restricted time reversal operation, η0 → η∗

0, ηA → η∗
A. It is

this symmetry that is broken spontaneously in the s + i f + is′
phase.

For the � model with Tctz < Tct the DOS curves for fixed
T = 0.4Tcs (T = 0.8Tcs) and ascending sequence of B is
shown in Fig. 7(a) [Fig. 7(b)]. Similarly, the results for the
case Tct < Tctz for fixed T = 0.4Tcs (T = 0.8Tcs) and ascend-
ing sequence of B is shown in Fig. 7(c) [Fig. 7(d)].
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FIG. 7. Normalized DOS, N (ω)/2N0 for the � model. Panels (a),(b) pertain to T = 0.4Tcs and T = 0.8Tcs columns of dots in Fig. 5(a),
respectively. Panels (c),(d) pertain to T = 0.4Tcs and T = 0.8Tcs columns of dots in Fig. 5(b), respectively. The DOS curves have the same
color as the corresponding dots in Fig. 5 and broaden with increasing field. The horizontal (black) dashed line in panel (a) is the DOS for
normal state points in the phase diagram in Fig. 5(a) indicated by black squares. Panel (a): The right inset shows the high-field DOS. All
panels: The left inset shows the evolution of OPs with field. The magnitude of singlet η0, triplet ηE2, and triplet ηA OPs are shown by solid,
dashed, and dotted lines, respectively. OPs, ω and B are in units of Tcs. Panel (b): The critical field in the Pauli limit is 0.86Tcs and the gap
closes at B∗ ≈ 1.4Tcs.

IV. GORKOV EQUATION AND QUALITATIVE
CONSIDERATIONS

Our goal is to compute the DOS at any given part of the
phase diagram in the (T, B) plane. This is achieved in two
steps. First, the OPs are found by the process of minimization
of the mean field thermodynamic potential, Eq. (28). Then,
with these OPs as an input we calculate the DOS by solving
the Gorkov equation. The first step is detailed in Sec. V and
covered partially in our previous work [18]. This section is
devoted to the actual calculation of the DOS.

To this end we introduce the normal and anomalous Mat-
subara Green functions as 2 × 2 matrices in the spin space,

Gss′ (r, r′; τ, τ ′) = −〈Tτψrs(τ )ψ†
r′s′ (τ ′)〉,

Fss′ (r, r′; τ, τ ′) = −〈Tτψrs(τ )ψr′s′ (τ ′)〉. (14)

Here, ψrs(τ ) = eHτψrse−Hτ are the field operators in the
Heisenberg representation, where τ is the imaginary time. The
symbol Tτ stands for the time-ordering operator, and 〈· · · 〉
indicates thermal averaging.

The disorder averaged Green function is a 4 × 4 matrix

Ĝ(k; ωn) =
[

G(k; ωn) F (k; ωn)

−F ∗(−k; ωn) −G∗(−k; ωn)

]
, (15)

where we have introduced the Fourier transformed Green
function

G(k; ωn) =
∫

V
dr

∫ β

0
dτe−ik·r+iωnτ G(r; τ ), (16)

and similarly for F (k; ωn). Here, β = 1/T and Matsubara fre-
quencies are ωn = (2n + 1)πT . The matrix Ĝ is defined in the
direct product of particle-particle or Nambu and spin spaces.
This implies that each of the Green functions in Eq. (15) is a
matrix in spin space in accordance with Eq. (14). The spin
unresolved DOS is then expressed in terms of the normal
Green function,

N (ω) = −N0

π

∑
s

Im
∫

dξk〈Gss(k; ω + i0+)〉F , (17)

where 0+ is a positive infinitesimal.
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The Green function Ĝ satisfies the Gorkov equation which
can be written as

[iωnσ̂0 − ĤBdG(k) − �̂(ωn)]Ĝ(k; ωn) = σ̂0 , (18)

where σ̂0 = diag(σ0, σ0) is a unit matrix of rank 4. The
Bogoliubov-de Gennes Hamiltonian,

ĤBdG(k)=
[
ξk+[γ(k)−B]·σ �(k)

�†(k) −ξk+[γ(k)+B]·σ

]
, (19)

where the superconducting OP �(k) is given by Eq. (8). The
effect of the disorder scattering is described within the self-
consistent Born approximation by the self-energy appearing
in the Gorkov equation (18),

�̂(ωn) = �

∫
dϕk

2π

∫
dξk

π
σ̂zĜ(k; ωn)σ̂z, (20)

where � = (2τ )−1, and σ̂z = diag(σ0,−σ0).
To obtain the DOS we solved Eqs. (18) and (20) numeri-

cally by the method of iterations. With the initial guess of the
self-energy the matrix inversion in Eq. (18) gives the Green
function which in turn is used in order to find an updated
self-energy from Eq. (20). These steps are repeated until
convergence is reached. Before we proceed to the discussion
of the calculated DOS for various representative parts of the
phase diagram we present a qualitative picture of the effect
of the combined action of SOC, magnetic field, and triplet
correlation on the DOS in the next section.

A. Qualitative picture of the DOS broadening

To understand how triplet correlations affect N (ω), it is
useful to consider the singlet Ising superconductor first with
the OP �(k) = η0iσ2. In this case, when B = 0, SOC has
no effect on Tcs and the DOS [44]. On the other hand, for
�SO = 0 an in-plane B splits the BCS peak, without causing
its broadening [45]. Nevertheless, when both magnetic field
and SOC are present the disorder causes a finite broadening
of the DOS.

To clarify this we consider the unitary transformation of
HBdG, Eq. (19) diagonalizing the normal components of Ĝ.
We consider the K model of SOC for simplicity. Let us refer
to the momenta such that γ̂ (k) > 0, [γ̂ (k) < 0] as belonging
to +K and −K pockets, respectively. The diagonalization is
carried out separately for momenta in ±K pockets by the
unitary transformation

Û =
[
U± 0
0 U∓

]
, U± = cos

θ

2
∓ iσ2 sin

θ

2
, (21)

where the angle θ satisfies sin θ = |B|/
√

B2 + �2
SO.

The BdG Hamiltonian Eq. (19) is diagonalized by the
transformation H̄BdG = ÛHBdGÛ −1, for k ∈ ±K ,

H̄BdG=
⎡
⎣ξk±σ3

√
B2+�2

SO �′(k)

�†′
(k) −ξk±σ3

√
B2+�2

SO

⎤
⎦, (22)

where similar to Eq. (8) we have �′(k) = [ψ ′(k)σ0 + d′(k) ·
σ]iσ2. The singlet part of the transformed OP is η′

0 = η0 cos θ ,
and the triplet part d′(k) = ∓iη0 sin θ ŷ for k ∈ ±K .

The disorder potential, Eq. (3) is similarly transformed
H̄dis = ÛHdisÛ −1,

H̄dis =
∑

j

∑
s

∑
k,k′

′
uk−k′eiR j (k−k′ )c†

ksck′s

+
∑

j

∑
s,s′

∑
k,k′

′′
(cos θ ∓ iσ2;ss′ sin θ )

× uk−k′eiR j (k−k′ )c†
ksck′s′ , (23)

where
∑′ denotes the summation over the momenta k and k′

belonging to the same pocket. This terms accounts therefore
for the intrapocket scattering. The summation in the second
term

∑′′ accounts for the interpocket scattering. The upper
(lower) sign describes the scattering from ±K to ∓K pockets,
respectively.

The shape of the N (ω) close to the peak, ω ≈ η0, is de-
termined by the states in the energy interval of the order η0

around EF . For such low energies the bands split by the SOC
as appears in Eq. (22) can be considered as decoupled. Fur-
thermore, the interpocket scattering term in the transformed
disorder potential (23) acquires a spin flipping component,
∝B/�SO. It appears that to the leading order in the parameter,
B/�SO � 1, the energy dependence of the DOS can be cap-
tured by a simple model of the anisotropic magnetic impurity
scattering [46]. The Gorkov equation for such a problem reads[

iωnσ̂0 − Ĥ eff
BdG(k) − �̂eff (ωn)

]
Ĝ(k; ωn) = σ̂0, (24)

where the effective BdG Hamiltonian takes a simple form,

Ĥ eff
BdG(k) =

[
ξkσ0 η0iσ2

−η∗
0 iσ2 −ξkσ0

]
, (25)

and the effective magnetic disorder gives rise to the self-
energy,

�̂eff (ωn) = �eff
m

∫
dϕk

2π

∫
dξk

π
σ̂2Ĝ(k; ωn)σ̂2 , (26)

where σ̂2 = diag(σ2, σ2) and the scattering off the magnetic
impurities is characterized by the effective rate,

�eff
m = 1

2
�

B2

B2 + �2
SO

. (27)

Even though we have considered the limit B/�SO � 1, we
retained the magnetic field in the denominator of (27) to
stress that the effective rate cannot exceed the scalar impurity
scattering rate. The prefactor of a 1/2 is needed as only half of
all the scattering events acquire a spin flipping component. We
have checked the validity of the effective model captured by
Eqs. (25) and (27) numerically. We have shown that the DOS
given by the effective and the original models agree well, see
Fig. 8(a).

Although the effective model of magnetic impurities cap-
tures well the shape of the DOS it does not reproduce Bc. The
physical reason for this is the limitation of the above effective
model to energies, ωn � �SO. Indeed, when only one of the
spin split bands is populated, the Bc is determined by the
pair breaking equation known from the theory of magnetic
scattering with renormalized Tcs [16]. In contrast, when both
spin split bands are occupied the pair breaking equation dif-
fers from that of the magnetic impurities model, because the
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FIG. 8. Normalized DOS, N (ω)/2N0 as a function of the en-
ergy ω in units of Tcs for the K model. Panel (a): solid line: DOS
for original model with B = 2.5Tcs, �SO = 15Tcs, � = 0.5Tcs, and
|η0| = 0.8Tcs. Dashed line: DOS for the effective magnetic impurity
model with the effective scattering rate (27) and with the rest of the
parameters as in the original model. Panel (b): dashed line: DOS for
singlet OP. Solid line: DOS for mixed singlet-triplet OP. The param-
eters are B = 2Tcs, �SO = 15Tcs, � = 0.1Tcs and for illustration we
take |η0| = Tcs for the dashed curve and |η0| = Tcs, |ηE2| = Tcs for
the solid.

frequencies ωn > �SO contribute to Bc. For such frequencies
the spin-independent Hamiltonian (25) is inadequate since the
two spin-split bands cannot be considered separately.

Before discussing the role played by the triplet OP we
compare the discussion above to the problem of the singlet
superconductor in the presence of the Zeeman field and spin-
orbit scattering considered in Ref. [47]. Similar to the SOC
considered in this work, spin-orbit scattering enhances the
critical field beyond the Pauli limit as such scattering tends
to average the Zeeman splitting. In this way the spin-orbit
scattering suppresses the pair breaking effect of the magnetic
field. In addition, it also leads to the broadening of the DOS by
mixing the two Zeeman split peaks. In our case the finite tilt
of the spins turns the regular scattering effectively magnetic.
As a result of this difference, while in our case as the stronger
SOC narrows the DOS, see Eq. (27), in the problem studied
in Ref. [47] the increase in the spin-orbit scattering broadens
the DOS.

We now turn to the discussion of the influence of the triplet
OP on the shape of the DOS. For definiteness we focus on
the OP (8) with finite singlet component η0 and a finite triplet
component specified by the vector d = d2(k)ŷ, where d2(k)
is an odd function of momentum. The unitary transformation
Eq. (21) transforms the OP such that the singlet components
acquires a small correction, η′

0 = η0 cos θ − id2 sin θ . This
correction does not contribute to the broadening to the leading
order.

The triplet components encoded by d′ ≈ d describe the
pairs of electrons with the parallel spins. Such states differ
in energy by an amount �SO. Therefore, these terms rep-
resent a small perturbation in the Gorkov equation in the
limit, |d| � �SO. It makes it clear that except for the overall
shift of the spectral peak the equal spin triplet components
make a negligible contribution to its shape. We tested this

statement numerically. As is evident from Fig. 8(b) the triplet
component has little direct effect on the shape of the DOS.
Rather it changes the phase diagram as determined by the
self-consistency condition and in this way has a strong indirect
effect on DOS. More specifically, the above arguments show
that as the triplet correlations make the critical field higher
the broadening towards the critical field make the DOS curves
progressively more broadened at elevated magnetic fields, see
Fig. 1.

V. THERMODYNAMIC POTENTIAL AND THE PHASE
DIAGRAM

We write the difference of the thermodynamic potential in
superconducting and normal state in the form of a Landau
expansion,

(V 2N0)−1�(η0, ηA, ηE1, ηE2) = �(2) + �(4) . (28)

We first present the second order terms [18],

�(2) = CsA |η0|2 + CtA |ηA|2 +
∑
j=1,2

CtE j |ηE j |2

− 2CsA,tE Im{η∗
0 (BxηE2 − ByηE1)} , (29)

where the last term describes the coupling between the A′
1

singlet and the components of the E ′′ triplet OP [28]. The
structure of this term is fixed by symmetries. In our nota-
tions the pair of components (ηE1, ηE2) transforms exactly as
(−By, Bx ) under D3h, and furthermore under the time reversal
operation the flipping of the magnetic field is compensated by
the OPs conjugation thanks to the imaginary part in Eq. (29).

In what follows for definiteness we set By = 0. The full set
of mean field equations yields ηE1 = 0 in this case. For this
reason we list only the coefficients which are not multiplying
the ηE1 to simplify the presentation.

For the sake of clarity we present the Landau expansion
of the thermodynamic potential for the K model, i.e., for the
nodeless SOC. Employing the notations, ωn = (2n + 1)πT
for Matsubara frequency labeled by an integer n, and ω̃n =
ωn + sgn(ωn)� we have [18]

CsA =
∑
ωn>0

2πT B2ω̃n

ωn
[
ω̃n

(
B2 + ω2

n

) + ωn�
2
SO

] + ln
T

Tcs
, (30a)

CtE2 =
∑
ωn>0

2πT
[
�

(
B2 + ω2

n

) + ωn�
2
SO

]
ωn

[
ω̃n

(
B2 + ω2

n

) + ωn�
2
SO

] + ln
T

Tct
, (30b)

CtA =
∑
ωn>0

2πT �

ωnω̃n
+ ln

T

Tctz
, (30c)

CsA,tE =
∑
ωn>0

2πT �SO

ω̃n
(
B2 + ω2

n

) + ωn�
2
SO

. (30d)

The terms of the fourth order in the OPs can be represented
in the form

�(4) = �
(4)
A + �

(4)
E + �

(4)
AE , (31)

where the first term describes the coupling of the singlet and
triplet OPs of A′

1 symmetry. The second term describes the
contribution of E ′′ triplets. Finally the last term describes the
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coupling of OPs of different symmetries allowed at the fourth
order. In the explicit form each term of equation (31) reads

�
(4)
A = D1|η0|4 + D2|ηA|4 + D3|η0|2|ηA|2

+ (D4η
∗2
0 η2

A + c.c.), (32a)

�
(4)
E = K|ηE2|4, (32b)

�
(4)
AE = L0E |η0|2|ηE2|2 + LAE |ηE2|2|ηA|2 + {

L′
0Eη∗2

0 η2
E2

+ L′
AEη∗2

E2η
2
A + M0E |η0|2η∗

0ηE2 + M ′
0Eη∗

0η
2
E2η

∗
E2

+ N1η
∗
0η

∗
E2η

2
A + N2η

∗
0ηE2|ηA|2 + c.c.

}
, (32c)

where c.c. refers to each term in the curly brackets. All of the
coefficients appearing in Eq. (32) are derived in the next three
sections, Secs. V A, V B, and V C, and presented in details in
Appendix A for the K model of SOC. In the case �SO = 0
and pure singlet OP, ηE2 = ηA = 0, minimization of the ther-
modynamic potential (28) with respect to η0 reproduces the
self consistency equation in Ref. [45].

Below we describe the derivation of the expansion coeffi-
cients of the thermodynamic potential. The self-consistency
equations (5) are equivalent to the minimization of the ther-
modynamic potential,

� = −β−1 ln(Tre−β(H0+Hdis+HMF )) − H̄i − �0, (33)

considered as a function of the OPs [48]. In Eq. (33) we have
subtracted the thermodynamic potential in the normal state for
convenience. The second term in Eq. (33) is readily obtained
from definition (7) with the effective interaction (10) and the
relations (11),

H̄i = −V 2N0

[
L(Tcs)|η0|2+L(Tct )

∑
j=1,2

|ηE j |2+L(Tctz )|ηA|2
]

,

(34)

where we have introduced the notation, L(T ) =
ln(2eγE /T π ).

To deal with the disorder we employ a quasiclassical ap-
proach [38]. To implement this approach, in the next section
we express the disorder averaged thermodynamic potential,
Eq. (33) via the quasiclassical Green function.

A. Thermodynamic potential and quasiclassical Green function

In the presence of the disorder it is convenient to use
an alternative representation of the thermodynamic potential,
Eq. (33), � = �′ − H̄i, where

�′ =
∫ 1

0
dλ〈HMF〉λ , (35)

and 〈· · · 〉λ stands for the thermal averaging with respect to the
quadratic Hamiltonian, H0 + Hdis + λHMF with HMF specified
by Eq. (6). Equivalently, at a given λ the averaging in Eq. (35)
is performed with respect to the original mean field Hamil-
tonian with the OP �(k) replaced by λ�(k). Our derivation
leading to Eq. (46) is a variant of the original one in Ref. [49]
adopted to the case of multiple OPs. The present approach in
its current form has been used recently to study the effect of
disorder on the phase diagram of nonsuperconducting systems
with multiple magnetic OPs [50].

We define the λ-dependent anomalous Green function
Fλ,ss′ (r, r′; τ, τ ′) by Eq. (14) with the thermal average, 〈· · · 〉
replaced by 〈· · · 〉λ. With these definitions Eq. (35) takes the
form

�′ = V

β

∑
k,si

∑
ωn

∫ 1

0
dλRe[�∗

s1s2
(k)Fλ,s1s2 (k; ωn)], (36)

where we have used the explicit form of the mean field Hamil-
tonian Eq. (6) and the relation,

〈c−ks2 cks1〉λ = β−1
∑
ωn

Fλ,s1s2 (k; ωn). (37)

To deal with the disorder we employ a quasiclassical for-
malism. The quasiclassical Green’s functions are defined by

ĝ(kF; ωn) =
∫ ∞

−∞

dξk

π
iσ̂3Ĝ(k; ωn) (38)

=
[

g(kF; ωn) −i f (kF; ωn)
−i f ∗(−kF; ωn) −g∗(−kF; ωn)

]
,

where σ̂3 = diag(σ0,−σ0). We parametrize the quasiclassical
Green’s functions in terms of Pauli matrices as [51]

g(kF; ωn) = g0(kF; ωn)σ0 + g(kF; ωn) · σ, (39)

f (kF; ωn) = [ f0(kF; ωn)σ0 + f (kF; ωn) · σ]iσ2. (40)

The λ-dependent quasiclassical Green functions can be de-
fined similarly to Eqs. (38), (39), and (40) by adding the
subscript λ to all the quantities. For instance, we have the
definition,

fλ(kF; ωn) = −
∫ ∞

−∞

dξk

π
Fλ(k; ωn). (41)

Similar to Eq. (40) we parametrize

fλ(kF; ωn)= [ fλ,0(kF; ωn)σ0 + fλ(kF; ωn)·σ]iσ2. (42)

The definition, Eq. (41) allows us to write Eq. (36) in the form,

�′

V 2N0
= −π

β

∑
ωn

∫
dϕk

2π

×
∫ 1

0
dλRe

[∑
s1,s2

�∗
s1s2

(kF) fλ,s1s2 (kF; ωn)

]
. (43)

For the choice of the OP specified by Eqs. (8) and (9) we have

1

2

∑
s1,s2

�∗
s1s2

(kF) fλ,s1s2 (kF; ωn)

= η∗
0 fλ,0(kF; ωn)

+ γ̂ (kF)

[ ∑
j=1,2

η∗
E j fλ, j (kF; ωn) + η∗

A fλ,3(kF; ωn)

]
.

(44)

For brevity we henceforth write f0(kF; ωn) = f0, f (kF; ωn) =
f , f ∗

0 (−kF; ωn) = f ∗
0 , f∗(−kF; ωn) = f∗ and use the same no-

tations for g0, g, g∗
0, g∗. Furthermore, naturally we extend the

same notation to all the λ-dependent quasiclassical Green
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functions to the remainder of the paper. With these notations
and using Eq. (44), the expression Eq. (43) takes the form

�′

V 2N0
= −2π

β

∑
ωn

∫ 1

0
dλRe

[
η∗

0〈 fλ,0〉F

+ η∗
A〈γ̂ (kF) fλ,3〉F +

∑
j=1,2

η∗
E j〈γ̂ (kF) fλ, j〉F

]
. (45)

The standard regularization
∑

ωn
|ωn|−1 = (β/π )L(T ) along

with the representation � = �′ − H̄i allows us to combine the
expression (45) with Eq. (34) to obtain for the thermodynamic
potential (33),

�

V 2N0
= 2π

β

∑
ωn

∫ 1

0
dλRe

[
η∗

0

(
η0

2|ωn| − 〈 fλ,0〉F

)

+ η∗
A

(
ηA

2|ωn| − 〈γ̂ (kF) fλ,3〉F

)

+
∑
j=1,2

η∗
E j

(
ηE j

2|ωn| − 〈γ̂ (kF) fλ, j〉F

)]

+ |η0|2 ln
T

Tcs
+

∑
j=1,2

|ηE j |2 ln
T

Tct
+ |ηA|2 ln

T

Tctz
.

(46)

Equation (46) gives an expression of the thermodynamic po-
tential in terms of the quasiclassical Green function. It is
greatly simplified when expanded to the fourth order in OPs.
This is done in the next section.

B. Landau expansion of the thermodynamic potential

In this section, we perform the expansion of the thermo-
dynamic potential in the OPs, η0, ηA, ηE1, and ηE2. For our
purposes the expansion up to the fourth order suffices. Clearly,
in order to expand Eq. (46) to the fourth order we need
to perform the expansion of the λ-dependent quasiclassical
Green functions, fλ,0 and for fλ up to the third order. Using
the quasiclassical methods, in the next section we will obtain
the expansion of the original, λ-independent functions in the
form

f0 =
∞∑

ν=0

f (ν)
0 , f =

∞∑
ν=0

f (ν),

g0 =
∞∑

ν=0

g(ν)
0 , g =

∞∑
ν=0

g(ν), (47)

where the superscript ν denotes the order of expansion. In
Eq. (47) and in what follows we extend our convention
of omitting the arguments (k, ωn) in each of the functions
f0, f, g0, g to the expansion coefficients f (ν)

0 , f (ν), g(ν)
0 , g(ν) ap-

pearing in Eq. (47).
Since the dependence of fλ,0, fλ on λ originates exclu-

sively from changing �(k) by λ�(k) the expansion of the
λ-dependent Green functions is straightforwardly related to
the expansion of the original, λ-independent Green functions

Eq. (47),

fλ,0 =
∞∑

ν=0

λν f (ν), fλ =
∞∑

ν=0

λνf (ν). (48)

Substituting (48) to (46) and performing the simple integra-
tion over λ we obtain to the second order in OPs as introduced
in Eq. (28),

�(2) = πT
∑
ωn

Re

{
η∗

0

[
η0

|ωn| − 〈
f (1)
0

〉
F

]

+ η∗
A

[
ηA

|ωn| − 〈
γ̂ (kF) f (1)

3

〉
F

]

+
∑
j=1,2

η∗
E j

[
ηE j

|ωn| − 〈
γ̂ (kF) f (1)

j

〉
F

]}

+ |η0|2 ln
T

Tcs
+ |ηA|2 ln

T

Tctz
+

∑
j=1,2

|ηE j |2 ln
T

Tct
.

(49)

The first and third order terms are forbidden by the gauge
invariance, �(1) = �(3) = 0. Technically, this follows from
the vanishing of { f (0)

0 , f (0)} and { f (2)
0 , f (2)}, respectively, as

shown in Sec. V C.
To the fourth order we obtain

�(4) = −πTcs

2

∑
ω′

n

Re

[
η∗

0

〈
f (3)
0

〉
F + η∗

A

〈
γ̂ (kF) f (3)

3

〉
F

+
∑
j=1,2

η∗
E j

〈
γ̂ (kF) f (3)

j

〉
F

]
. (50)

Note that unlike in Eq. (49), in Eq. (50) the temperature is set
to the critical temperature, T = Tcs. This is necessary for the
consistency of the Landau expansion close to Tcs. As a result,
the Matsubara frequencies in Eq. (50), ω′

n = πTcs(2n + 1), are
also evaluated at T = Tcs.

In the next section we compute { f (1)
0 , f (1)

0 } and { f (3)
0 , f (3)

0 }
by solving the quasiclassical Eilenberger equation. Together
with Eqs. (49) and (50) this will allow us to complete the
Landau expansion of the thermodynamic potential.

C. Solution of the Eilenberger equation

In this section, we introduce the Eilenberger equation
[52,53] and solve it for the quasiclassical Green function
Eq. (38) up the third order in the superconducting OPs. This,
according to Eqs. (49) and (50), allows us to compute the
thermodynamic potential to the fourth order. For brevity, in
this section we denote the momentum argument kF of the
quasiclassical Green functions by k and denote the angular
average 〈. . .〉F by 〈. . .〉 not to be confused with the thermo-
dynamic average. The Eilenberger equation in the presence of
SOC and Zeeman field reads [18]

[
(
iωn − �̂(ωn) − Ŝ(k)

)
σ̂3, ĝ(k, ωn)] = 0 , (51)

where

Ŝ(k) =
[

(γ (k) − B) · σ �(k)
�†(k) (γ (k) + B) · σT

]
. (52)
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Equation (51) together with the normalization condition

ĝ2(k; ωn) = σ̂0 (53)

determines ĝ(k, ωn). The disorder self-energy in Eq. (51) is
defined in Eq. (20) and is expressed in terms of the quasiclas-
sical Green function Eq. (38) as

�̂(ωn) = −i�〈ĝ(k; ωn)〉σ̂3. (54)

The Eilenberger equation (51) is written in the product
of the Nambu and spin spaces the same way as the Green
function, Eq. (15). In what follows we denote the four Nambu
blocks by a pair of indices (i, j), where i, j = 1, 2. For in-
stance, the (1,2) block of the Green function, Eq. (15), is
an anomalous Green function, F (k, ωn). The (1, 2) block
of Eq. (51) gives four equations which can be presented as
coupled scalar and vector equations,

2ωn f0 = 2if · B + ψ (k)[g0 + g∗
0] + d(k) · [g − g∗]

+�[−〈g0 + g∗
0〉 f0 + 〈 f0〉(g0 + g∗

0)

−〈g − g∗〉 · f + 〈f〉 · (g − g∗)], (55a)

2ωnf = 2i f0B + 2γ (k) × f + ψ (k)[g − g∗]

+ i[g + g∗] × d(k) + [g0 + g∗
0]d(k)

+�[−〈g − g∗〉 f0 + 〈 f0〉(g − g∗)

−〈g0 + g∗
0〉f + 〈f〉(g0 + g∗

0)

+ if × 〈g + g∗〉 − i〈f〉 × (g + g∗)]. (55b)

The (1, 1) block of the normalization condition (53) is
similarly presented as [51,54]

g2
0 + g2 = 1 − f0 f ∗

0 + f · f∗, (56a)

2g0g = if × f∗ + f0f∗ − f ∗
0 f . (56b)

In Eq. (47) we have introduced the Landau expansion for
f0, f , g0, and g functions. It is convenient to separately intro-
duce the expansion of the functions f ∗

0 , f∗, g∗
0, and g∗,

f ∗
0 =

∞∑
ν=0

( f ∗
0 )(ν), f∗ =

∞∑
ν=0

(f∗)(ν),

g∗
0 =

∞∑
ν=0

(g∗
0)(ν), g∗ =

∞∑
ν=0

(g∗)(ν), (57)

where for clarity we henceforth omit the arguments (−k, ωn)
of the expansion coefficients, ( f ∗

0 )(ν), (f∗)(ν), (g∗
0)(ν), and

(g∗)(ν) in the same way as we did for f ∗
0 , f∗, g∗

0, and g∗ before.
To solve the Eilenberger equation up to third order it suf-

fices to consider the Eqs. (55) and (56). We show in Appendix
C that the solutions of Eqs. (55) and (56) found here auto-
matically satisfy the equations contained in the (1,1) block
of Eq. (51) as well as the equations contained in the (1,2)
block of Eq. (53). This statement is a necessary condition
for the consistency of the quasiclassical method. Furthermore,
the (2,1) and (2,2) blocks of the Eilenberger equation (51)
are equivalent to the (1,2) and (1,1) blocks, respectively, in
the sense that the former follow from the latter by the com-
plex conjugation and replacement of k by −k. The same
block-wise equivalence holds for the normalization condition,
Eq. (53).

1. Zero order solutions

The zero order solutions that are exact in the normal state
are not fixed by the Eilenberger equation and can be de-
termined most easily by solving the Gorkov equation (18)
directly and using the definition of the quasiclassical Green
function (38),

f (0)
0 = 0, f (0) = 0, g(0)

0 = sgn(ωn), g(0) = 0. (58)

2. Solutions to the first order

With equation (58) as an input, Eq. (55) expanded to the
first order reads

ωn f (1)
0 = if (1) · B + sgn(ωn)ψ (k)

+�sgn(ωn)
[〈

f (1)
0

〉 − f (1)
0

]
, (59a)

ωnf (1) = i f (1)
0 B + γ (k) × f (1) + sgn(ωn)d(k)

+�sgn(ωn)
[〈

f (1)〉 − f (1)]. (59b)

To the first order the normalization condition Eq. (56)
yields

g(1)
0 = 0, g(1) = 0. (60)

Equation (67) has been solved in detail in Ref. [18]. Here we
outline the procedure used to obtain the solution as the same
approach is used here to obtain solutions at higher orders.

First, one solves Eq. (67) for f (1)
0 , f (1) with 〈 f (1)

0 〉, 〈f (1)〉
considered as given along with the OPs appearing in Eq. (67).
The solutions then are averaged over angles. This results in
linear equations for 〈 f (1)

0 〉, 〈f (1)〉 which are easily solved. Fi-
nally, the obtained values of the latter angular averages are
used to express f (1)

0 , f (1) via the OPs.
The first order solutions obtained by following this proce-

dure read

f (1)
0 = �2

SO + ω̃2
n

|ω̃n|K1

(
η0 + �

〈
f (1)
0

〉)
+ iBsgn(ωn)

K1
�

〈
f (1)
1

〉 − iB�SO

|ω̃n|K1
ηE2, (61a)

f (1)
1 = isgn(ωn)B

K1

(
η0 + �

〈
f (1)
0

〉) + |ω̃n|
K1

�
〈
f (1)
1

〉
− sgn(ωn)�SO

K1
ηE2, (61b)

f (1)
2 = iB�SOγ̂ (k)

|ω̃n|K1

(
η0 + �

〈
f (1)
0

〉) + sgn(ωn)�SOγ̂ (k)

K1
�

〈
f (1)
1

〉

+ (ω̃2
n + B2)γ̂ (k)

|ω̃n|K1
ηE2, (61c)

f (1)
3 = γ̂ (k)

|ω̃n| ηA, (61d)

where we have defined the denominator K1 = B2 + �2
SO +

ω̃2
n and the angular averages are

〈
f (1)
0

〉 =
(
�2

SO + |ω̃n||ωn|
)
η0 − iB�SOηE2

|ω̃n|
(
B2 + ω2

n

) + |ωn|�2
SO

, (62a)

〈
f (1)
1

〉 = iBω̃nη0 − �SOωnηE2

|ω̃n|(B2 + ω2) + |ωn|�2
SO

, (62b)
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and 〈 f (1)
2 〉 = 〈 f (1)

3 〉 = 0.
Using the solutions (69) we obtain for the quantities that,

together with (62a), enter the quadratic part of the thermody-
namic potential, Eq. (49),

〈
γ̂ (k) f (1)

2

〉 = iB�SOη0 + (B2 + ω2
n )ηE2

|ω̃n|(B2 + ω2
n ) + |ωn|�2

SO

, (63a)

〈
γ̂ (k) f (1)

3

〉 = ηA

|ω̃n| . (63b)

Substitution of Eq. (71) and Eq. (62a) in Eq. (49) repro-
duces Eq. (29) with coefficients Eq. (30).

3. Solution to the second order

With the solutions to the zero and first order, Eqs. (58) and
(60), the Eilenberger equations (55) to the second order take
the form

ωn f (2)
0 = if (2) · B + �sgn(ωn)

[〈
f (2)
0

〉 − f (2)
0

]
, (64a)

ωnf (2) = i f (2)
0 B + γ (k) × f (2)

+�sgn(ωn)
[〈

f (2)〉 − f (2)]. (64b)

Unlike Eq. (67), Eq. (72) is homogeneous, and as a result,
has only a trivial solution,

f (2)
0 = 0, f (2) = 0. (65)

To the second order, the normalization condition Eq. (56)
gives the second order corrections to g0 and g directly in terms
of the first order solutions

2sgn(ωn)g(2)
0 = − f (1)

0 ( f ∗
0 )(1) + f (1) · (f∗)(1)

, (66a)

2sgn(ωn)g(2) = if (1) × (f∗)(1) + f (1)
0 (f∗)(1) − ( f ∗

0 )(1)f (1).

(66b)

Here we do not present Eq. (74) in the explicit form. The
angular averages of Eq. (74) are given below for illustration,

〈
g(2)

0

〉 = E (0)
1 |η0|2 + E (0)

2 |ηE2|2 + E (0)
3 |ηA|2

+ (
E (0)

4 η0η
∗
E2 + c.c.

)
, (67a)〈

g(2)
1

〉 = E (1)
1 |η0|2 + E (1)

2 |ηE2|2 + E (1)
3 η0η

∗
E2 − E (1)∗

3 η∗
0ηE2

+ {
E (1)

4 η0η
∗
A + E (1)

5 ηE2η
∗
A + c.c.

}
, (67b)

and 〈g(2)
2 〉 = 〈g(2)

3 〉 = 0. The coefficients in Eq. (75) are listed
in Appendix B. A useful property,

g∗(2)
0 = g(2)

0 , (68)

follows from Eq. (66a).

4. Solution to the third order

To expand Eq. (55) to the third order we make use of Eqs. (58), (60), (65) and the property (68),

2ωn f (3)
0 = 2if (3) · B + 2ψ (k)g(2)

0 + d(k) · (g(2) − (g∗)(2)) + �
[
2sgn(ωn)

(〈
f (3)
0

〉 − f (3)
0

) + 2
〈
f (1)
0

〉
g(2)

0

− 〈
g(2) − (g∗)(2)〉 · f (1) − 2

〈
g(2)

0

〉
f (1)
0 + 〈

f (1)〉 · (g(2) − (g∗)(2))
]
, (69a)

2ωnf (3) = 2i f (3)
0 B + 2γ (k) × f (3) + ψ (k)

(
g(2) − (g∗)(2)) + i

(
g(2) + (g∗)(2)) × d(k) + 2g(2)

0 d(k) + �
[〈

f (1)
0

〉(
g(2) − (g∗)(2))

− 〈
g(2) − (g∗)(2)〉 f (1)

0 − 2f (1)〈g(2)
0

〉 + 2sgn(ωn)
(〈

f (3)〉 − f (3)) + 2
〈
f (1)〉g(2)

0 + if (1) × 〈
g(2) + (g∗)(2)〉

− i
〈
f (1)〉 × (

g(2) + (g∗)(2))]
. (69b)

In order to solve Eq. (77), for f (3)
0 , f (3) we follow the same procedure as in Sec. V C 2 for finding the first order solutions.

With the expressions for f (3)
0 , f (3) we calculate the angular averages entering the quartic part of the thermodynamic potential,

Eq. (50),

η∗
0

〈
f (3)
0

〉 = D1(ωn)|η0|4 + L′
0E (ωn)η∗2

0 η2
E2 + 1

2
M ′

0E (ωn)η∗
0η

2
E2η

∗
E2 + 1

2
N2(ωn)η∗

0ηE2|ηA|2 +
{

M0E (ωn)η0η
∗2
0 ηE2 + 1

2
c.c.

}

+ 1

2
N1(ωn)η∗

0η
∗
E2η

2
A + 1

2
L0E (ωn)|η0|2|ηE2|2 + 1

2
D3(ωn)|η0|2|ηA|2 + D4(ωn)η∗2

0 η2
A, (70a)

η∗
E2

〈
γ̂ (k) f (3)

2

〉 = 1

2
L0E (ωn)|η0|2|ηE2|2 + L′

0E (ωn)∗η2
0η

∗2
E2 + 1

2
N1(ωn)η∗

0η
∗
E2η

2
A + 1

2
M0E (ωn)∗η2

0η
∗
0η

∗
E2 + 1

2
N2(ωn)∗η0η

∗
E2|ηA|2

+
{

M ′
0E (ωn)∗η0ηE2η

∗2
E2 + 1

2
c.c.

}
+ K (ωn)|ηE2|4 + 1

2
LAE (ωn)|ηE2|2|ηA|2 + L′

AE (ωn)η∗2
E2η

2
A, (70b)

η∗
A

〈
γ̂ (k) f (3)

3

〉 = D2(ωn)|ηA|4 + 1

2
D3(ωn)|η0|2|ηA|2 + D4(ωn)∗η2

0η
∗2
A + N1(ωn)∗η0ηE2η

∗2
A

+
{

1

2
N2(ωn)η∗

0ηE2|ηA|2 + c.c.

}
+ 1

2
LAE (ωn)|ηE2|2|ηA|2 + L′

AE (ωn)∗η2
E2η

∗2
A . (70c)

The coefficients in Eq. (78) are even functions of the frequency and are given explicitly in Appendix A. We multiplied the
averages with suitable OP, as in the thermodynamic potential, Eq. (50). Substitution of Eq. (78) in Eq. (50) reproduces Eq. (32)
with the coefficients presented in Appendix A.
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VI. DISCUSSION AND CONCLUSIONS

Triplet superconductivity remains elusive in most mate-
rials. Uranium-based superconductors are perhaps the only
uncontroversial exception [33]. Some success in measuring
the singlet-triplet ratio has been achieved in noncentrosym-
metric superconductors by Little-Parks effect experiments
[55]. Identifying triplets in DOS in noncentrosymmetric su-
perconductors is harder and indirect, because the potentially
dominant singlet component gaps out the low energy states.
Here, we showed that excessive broadening of the coherence
peaks, which cannot be explained by SOC, Zeeman effect, and
disorder, may be indicative of a triplet component induced by
a Zeeman field. This behavior can be most clearly identified
by observing the DOS broadening in the vicinity of the coher-
ence peaks.

In view of the potential importance of the unconventional
paring in NbSe2 based on the recent theoretical and exper-
imental works [11,12,21,29] it is practically important to
understand the implications of the triplet components of and
OP on the tunneling data in TMDs. In this work we have
addressed the question of how the triplet correlations affect
the DOS in TMD monolayers. In practical terms, we argue
that the strength of the triplet correlations is an important knob
controlling the DOS evolution with an in-plane magnetic field.

We illustrate this point by a concrete example in Fig. 9.
The DOS is shown for the two systems with the same critical
field Bc(T ) and the same level of weak disorder, � � Tcs. In
one system [Fig. 9(a)] the order parameter is a pure singlet,
while in the other [Fig. 9(b)] system there is an admixture of
the triplet component with the triplet transition temperature
Tct = 0.5Tcs. The critical field is the same because the SOC
in the singlet superconductor, �SOC = 15Tcs, is larger than
the SOC in the superconductor of the mixed parity, �SOC =
6.2Tcs. The comparison between the two figures shows that
the field evolution of the DOS in the two systems is strik-
ingly different. The broadening is much more pronounced in
the system with a small fraction of the triplet component of
the OP. The above example highlights the potential practical
importance of DOS measurements in identification of triplet
superconducting correlations.

In conclusion, the monolayer TMDs are promising plat-
form for studies and controlled manipulation of triplet
components of the superconducting OP. In this work, we
demonstrate that the field induced triplet correlations can be
inferred from the field evolution of the tunneling data com-
bined with the knowledge of other parameters such as SOC
and degree of system purity available from transport measure-
ments.
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FIG. 9. Normalized DOS, N (ω)/2N0 as a function of the energy
ω in units of Tcs for the K model of SOC, and � = 0.1Tcs. The
DOS curves broaden as the field increases. Panel (a): purely sin-
glet OP, Tct = 0, �SO = 15Tcs. Panel (b): mixed singlet-triplet OP,
Tct = 0.5Tcs, �SO = 6.28Tcs. Insets show the (T, B) phase diagrams
with both axes given in units of Tcs. The solid (gray) line in the insets
is Bc(T ) separating the superconducting state shown as shaded (blue)
region from the normal state. The dashed black line in the inset of
panel (b) is the Bc(T ) shown as the solid line in the inset to panel
(a). The coordinates of vertically aligned and evenly spaced colored
dots at T = 0.9Tcs in insets to panel (a)[(b)] define the (T, B) pairs
for which the DOS is shown in the corresponding main figure using
the same color scheme.

APPENDIX A: FOURTH ORDER COEFFICIENTS OF
LANDAU EXPANSION OF THE THERMODYNAMIC

POTENTIAL

We present here the fourth order coefficients of the Landau
expansion of the thermodynamic potential, in the form of the
summation over the Matsubara frequencies. Here we consider
the K model of SOC. As the Landau expansion is performed
close to Tcs the fourth order coefficients are evaluated at T =
Tcs. Hence we present any given coefficient C appearing in
Eq. (32) in the form

C = −πTcs

∑
ω′

n>0

C(ω′
n) , (A1)
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where the summation is over the frequencies ω′
n = (2n + 1)πTcs labeled by an integer n. We first list the coefficients in the

expansion Eq. (32a),

D1(ω) = D−4
1

2

[ − ω
(
ωω̃ + �2

SO

)4 + 2B2ω
(
ω̃2 − �2

SO

)(
�2

SO + ωω̃
)2 + B4

(
3ω̃4ω + 2�2

SOω̃2(� + ω̃) − �4
SOω

)]
, (A2)

where as in the main text ω̃ = ω + sgn(ω)�, and we have defined the denominator,

D1(ω) = B2ω̃ + ω
(
ωω̃ + �2

SO

)
. (A3)

The other coefficients in Eq. (32a) are

D2(ω) = − ω

2ω̃4
, (A4)

D3(ω) = 1

ω̃2D2
1

[
B2

(
�ω̃2 − 2�2

SOω
) − (2ω + �)

(
�2

SO + ω̃ω
)2]

, (A5)

D4(ω) = −1

2ω̃2D2
1

[
B2

(
�2

SOω + ω̃3
) + ω̃

(
�2

SO + ω̃ω
)2]

. (A6)

The coefficient in the expansion Eq. (32b) is

K (ω) = −ω(B2 + ω2)

2D4
1

[
B6 + B4

(
2�2

SO + 3ω2
) + B2

(
�4

SO + 3ω4 − 4��2
SOω

) − ω2
(
3�4

SO + 2�2
SO

(
ω̃2 − �2

) − ω4
)]

. (A7)

Finally, the coefficients in the expansion Eq. (32c) are

L0E (ω) = 1

D4
1

{
B6

(
�ω̃2 − 2�2

SOω
) − B4ω

[
2�2

SO

(
3�2 + 7�ω + 6ω2

) + 4�4
SO + ω̃2ω(2ω − �)

]
− B2ω

[
2�2

SOω2(4�2 + 10�ω + 7ω2) + �4ω(7� + 12ω) + 2�6
SO + ω̃2ω3(� + 4ω)

] − ω4(� + 2ω)
(
�2

SO + ω̃ω
)2}

,

(A8)

LAE (ω) = −1

ω̃2D2
1

[
2B4ω + B2

(
�2

SO(� + 2ω) + 4ω3
) − ��2

SOω2 + 2ω5
]
, (A9)

L′
0E (ω) = 1

2D4
1

{
B6

(
�2

SOω − ω̃3
) − B4ω

[
3ω̃3ω − �2

SO

(
�2 + 2�ω + 2�2

SO + 3ω2
)]

+ B2ω
[
�4

SOω(� + 3ω) − �2
SOω2

(
2�2 + 4�ω + ω2

) + �6
SO − 3ω̃3ω3

] − ω3
(
�2

SO + ω̃ω
)3}

, (A10)

L′
AE (ω) = (B2 + ω2)

2ω̃2D2
1

[
ω

(
B2 + �2

SO + ω2
) + ��2

SO

]
, (A11)

M0E (ω) = i�SOB

D4
1

{
B4

[
�2

SOω − ω̃2(� + ω̃)
]+B2ω

[
2�4

SO + 2ω̃2ω2 + �2
SO(ω̃ + ω)2

] + ω
[
ω(2� + 3ω) + �2

SO

][
�2

SO + ω̃ω
]2}

,

(A12)

M ′
0E (ω) = iB�SOω

D4
1

{
B6 + B4

[
2
(
�2 + �2

SO

) + 4�ω + 5ω2
] + B2

[(
�2

SO + ω2
)(

�2
SO + 3ω2

) + 4ω̃2ω2
]

+ �2
SOω2

(
2ω2 − �2

SO

) + ω4
(
�2 + 3ω̃2 − 2�ω̃

)}
, (A13)

N1(ω) = − iB�SO

ω̃2D2
1

[
ω

(
B2 + ω2

) + �2
SOω̃

]
, (A14)

N2(ω) = iB�SO

ω̃2D2
1

[
2ω

(
B2 + ω̃2 + ω2

) + �2
SO(� + 2ω)

]
. (A15)

APPENDIX B: SECOND ORDER LANDAU EXPANSION COEFFICIENTS

We present here the coefficients to the averages over the second order Landau expansions from Eq. (75). As in the main text
we denote ω̃n = ωn + sgn(ωn)� and define the recurring denominator

J1 = |ωn|�2
SO + |ω̃n|

(
B2 + ω2

n

)
. (B1)
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The coefficients are

E (0)
1 = − sgn(ωn)

2J 2
1

[
2�|ωn|

(
�2

SO − B2 + ω2
n

) − B2
(
�2 − �2

SO + ω2
n

) + �2ω2
n + (

�2
SO + ω2

n

)
2
]
, (B2)

E (0)
2 = sgn(ωn)

2J 2
1

[
ω2

n�
2
SO − B4 − B2(�2

SO + 2ω2
n

) − ω4
n

]
, (B3)

E (0)
3 = − sgn(ωn)

2|ω̃n|2
, (B4)

E (0)
4 = − isgn(ωn)B�SO

2J 2
1

(
2�|ωn| + B2 + �2

SO + 3ω2
n

)
, (B5)

E (1)
1 = − iB|ω̃n|

J 2
1

(
�|ωn| + �2

SO + ω2
n

)
, (B6)

E (1)
2 = iB|ωn|�2

SO

J1
2

, (B7)

E (1)
3 = �SO

2J 2
1

(
�

(
B2 − ω2

n

) − |ωn|
(
�2

SO − B2 + ω2
n

))
, (B8)

E (1)
4 = Bsgn(ωn)�SO

2|ω̃n|J1
, (B9)

E (1)
5 = − i

(
B2 + ω2

n

)
sgn(ωn)

2|ω̃n|J1
. (B10)

APPENDIX C: EILENBERDER EQUATION AND NORMALIZATION CONDITION: CONSISTENCY
OF QUASICLASSICAL METHOD

Here we complete the discussion of the Eilenberder equation (51) and the normalization condition (53) in Sec. V C. In this
Appendix, as in Sec. V C, we denote the momentum argument kF of the quasiclassical Green functions by k and denote the
angular average 〈. . .〉F by 〈. . .〉. In Eq. (55) we wrote the (1, 2) block of the Eilenberder equation; the (1, 1) block is

0 = ψ∗(k) f0 − ψ (k) f ∗
0 + d(k) · f∗ + f · d∗(k) + �[〈 f ∗

0 〉 f0 − 〈 f0〉 f ∗
0 + 〈f〉 · f∗ − 〈f∗〉 · f], (C1a)

0 = 2g × (γ (k) − B) − ψ∗(k)f − f∗ψ (k) + d(k) f ∗
0 − f0d∗(k) + if∗ × d(k) + id∗(k) × f

+�[〈f∗〉 f0 − 〈 f0〉f∗ + 〈f〉 f ∗
0 − 〈 f ∗

0 〉f − i(〈f∗〉 × f + 2g × 〈g〉 + 〈f〉 × f∗)]. (C1b)

In Eq. (56) we wrote the (1, 1) block of the normalization condition; the (1, 2) block is

f0(g0 − g∗
0) + f · (g + g∗) = 0, (C2a)

f × (g − g∗) + if (g0 − g∗
0) + i(g + g∗) f0 = 0. (C2b)

We expect the equations derived by taking the Landau expansion of Eqs. (C1) and (C2) up to third order to be consistent
with the expressions for f (ν)

0 , f (ν), ( f ∗
0 )(ν), (f∗)(ν), and g(ν)

0 , g(ν), (g∗
0)(ν), (g∗)(ν), ν = 0, 1, 2, that are found in the way illustrated

in Sec. V C. In the remainder of this Appendix we perform this consistency check. Considering the zero order terms (58) and
the first order terms (60) the first order expansion of Eqs. (C1) and (C2) and the second order expansion of Eq. (C2) hold. The
second order expansion of Eq. (C1) yields

0 = ψ∗(k) f (1)
0 − ψ (k)( f ∗

0 )(1) + d(k) · (f∗)(1) + f (1) · d∗(k) + �
[〈

( f ∗
0 )(1)〉 f (1)

0 − 〈
f (1)
0

〉
( f ∗

0 )(1) + 〈
f (1)〉 · (f∗)(1) − 〈

(f∗)(1)〉 · f (1)],
(C3a)

0 = 2g(2) × (γ (k) − B) − ψ∗(k)f (1) − (f∗)(1)
ψ (k) + d(k)( f ∗

0 )(1) − f (1)
0 d∗(k) + i(f∗)(1) × d(k) + id∗(k) × f (1)

+�
[〈

(f∗)(1)〉 f (1)
0 − 〈

f (1)
0

〉
(f∗)(1) + 〈

f (1)〉( f ∗
0 )(1) − 〈

( f ∗
0 )(1)〉f (1) − i

(〈
(f∗)(1)〉 × f (1) + 〈

f (1)〉 × (f∗)(1))]
. (C3b)

The expressions for f (1)
0 , ( f ∗

0 )(1), f (1), (f∗)(1), g(2) derived from the procedure illustrated in Sec. V C are consistent with
Eq. (C3). This can be seen by direct substitution. Considering Eqs. (58), (60), and (65) the third order expansion of the
normalization condition (C2) gives

f (1) · (g(2) + (g∗)(2)) = 0, (C4a)

f (1) × (g(2) − (g∗)(2)) + i(g(2) + (g∗)(2)) f (1)
0 = 0, (C4b)

where we used the property (68). The expressions for f (1)
0 , f (1), g(2), (g∗)(2) derived from the procedure illustrated in Sec. V C are

consistent with Eq. (C4). This can be seen by direct substitution. In order to complete the check with the third order expansion
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of Eq. (C1) we first take the third order expansion of Eq. (56b) which together with Eqs. (58), (60), and (65) yield g(3) = 0.
Considering this result together with Eqs. (58), (60), and (65) shows that the third order expansion of Eq. (C1) holds.
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