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Magnetic and charge orders in the ground state of the Emery model: Accurate numerical results
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We perform extensive auxiliary-field quantum Monte Carlo (AFQMC) calculations for the three-band Hub-
bard (Emery) model in order to study the ground-state properties of copper-oxygen planes in the cuprates.
Employing cutting-edge AFQMC techniques with a self-consistent gauge constraint in auxiliary-field space to
control the sign problem, we reach supercells containing ≈500 atoms to capture collective modes in the charge
and spin orders and characterize the behavior in the thermodynamic limit. The self-consistency scheme interfac-
ing with generalized Hartree-Fock calculations allows high accuracy in AFQMC to resolve small energy scales,
which is crucial for determining the complex candidate orders in such a system. We present detailed information
on the charge order, spin order, momentum distribution, and localization properties as a function of charge-
transfer energy for the the underdoped regime. In contrast with the stripe and spiral orders under hole doping, we
find that the corresponding 1/8 electron-doped system exhibits purely antiferromagnetic order in the three-band
model, consistent with the asymmetry between electron and hole doping in the phase diagram of cuprates.
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I. INTRODUCTION

Significant progress has been made in the study of
a variety of strongly correlated electron systems [1–14].
However, despite more than 30 years of theoretical and ex-
perimental studies, major questions remain in understanding
high-temperature superconductivity. Recent advances in com-
puting technology and computational methods are providing
new opportunities to address important questions with more
powerful and more systematic computational studies.

It is widely believed that the superconducting order of
the cuprates arises from a physical mechanism in the quasi-
two-dimensional planes hosting the copper and oxygen atoms
[15]. Other layers of the material play the role of charge
reservoirs, which can be used to dope the copper-oxide planes
by adding or removing electrons (holes). The experimental ev-
idence indicates that, when no doping is present, in the parent
compounds, the stable phase is an insulating antiferromagnet
[16]. With doping, this order rapidly disappears, giving rise
to a rich, complicated phase diagram with respect to doping
and temperature in which different spin and charge orders
appear to coexist, either cooperating or competing [17,18].
From the theoretical point of view, the complex electronic
structure of these materials makes a fully ab initio many-body
computation a formidable task, in particular since the charac-
terization of the phases requires a detailed study of the bulk
limit. Because of this, a main focal point of the theoretical
research is creating minimal models to study the order in the
copper-oxide plane.

Most of the effort to model this problem has focused on
the Hubbard Hamiltonian [19] (and the related t-J model).
This model relies on the Zhang-Rice singlet notion [20] that
allows a reduction of the degrees of freedom by treating the
oxygen sites implicitly in the mathematical description. A

variety of accurate numerical results have been obtained for
the one-band Hubbard model, which for example indicate the
existence of stripe and spin-density wave (SDW) orders in
the ground state [21–23,47], compatible with those observed
in experiments on the real materials, although quantitative
agreement is not always achieved. Perhaps more importantly,
results from the one-band model show the close and delicate
competition between different orders consistent with experi-
mental observations. Indications are, however, that the pure
Hubbard model (no hopping beyond nearest neighbor) does
not appear to display a superconducting ground state at inter-
mediate coupling and reasonable doping [24]. This gives more
impetus to look more closely beyond the simplest models.

Recent x-ray-scattering experiments and nuclear magnetic
resonance experiments indicate that the oxygen p bands are
involved in spin and charge density wave states [25–29].
This suggests one direction to improve the model may be to
include the oxygen p bands explicitly as nontrivial hole car-
riers. With recent advances in computational methodologies,
several sophisticated many-body approaches can now go well
beyond the minimal Hubbard model to study the more realistic
three-band Hubbard model, or Emery model [15]. This model
explicitly includes copper 3dx2−y2 and oxygen 2px and 2py

orbitals. The model Hamiltonian contains several parameters,
including the charge-transfer energy, hopping amplitudes, and
on-site repulsion energies for the different bands.

In principle the Hamiltonian parameters can be computed
from approximate ab initio approaches. However their actual
determination is subtle. In particular the value of the charge-
transfer energy, which carries the physical meaning of the
energy required to move a hole from a copper dx2−y2 orbital
to an oxygen p orbital, �, can be affected by double-counting
issues [30] in the computation. In addition, the value of the
charge-transfer energy varies across the different families of
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the cuprates, and it controls the average electron occupation
around copper and oxygen atoms. There are indications that
the charge-transfer energy and, in effect, the average copper
occupation are anticorrelated with the critical temperature
[26,27,31,32], which makes � a crucial parameter in the
Emery model. From a recent auxiliary-field quantum Monte
Carlo study of the model at half filling [33], we have seen
that the properties of the ground state of the model vary
fundamentally with �, showing a quantum phase transition
from an insulating antiferromagnet to a nonmagnetic metal.

Away from half filling, there have been many computa-
tional studies addressing the behavior of the Emery model
using different methodologies, including exact diagonaliza-
tion of small clusters [34], random-phase approximation [35],
density-matrix renormalization group [9], quantum Monte
Carlo [36–39], and embedding methodologies (including
dynamical mean-field theory and cluster extensions, and
density-matrix embedding theory) [32,40–44]. These calcu-
lations have revealed a great deal about the properties of the
model. Many similarities are seen between this model and the
one-band Hubbard model, including the presence of strong
magnetic correlations away from half filling and their delicate
balance or competition with superconductivity. Even so, the
numerical evidence has been inconclusive on several key is-
sues, including the nature of the true ground state, because
of computational limitations including the accuracy of the
many-body methods. This is not surprising, given that even
in the one-band model some of these issues are only now
being resolved using combinations of the latest advances in
computational methodologies.

One of the challenges in characterizing the ground-state
magnetic and charge order is the difficulty that most nu-
merical methods face in reaching both the thermodynamic
and zero-temperature limits. In a recent study, Huang et al.
[45] found the presence of fluctuating stripes in the model at
high temperature. We have recently carried out a generalized
Hartree-Fock (GHF) study [46] of the magnetic and charge
orders in this model, focusing on the ground-state phase di-
agram and its dependence on �. The results indicate the
existence of long-wavelength collective modes as was seen
in the one-band Hubbard model [23,47,48]. In addition to
stripes, they also suggested possible additional orders as �

is varied, such as spirals and magnetic domains. Such states
are extremely challenging to detect and establish, because
of the requirements on both accuracy and robustness of the
underlying many-body method and the capability to reach
large system sizes to approach the thermodynamic limit.

Motivated by these considerations and to understand how
similar or different this model is from the one-band Hubbard
model, we investigate the three-band Hubbard model at zero
temperature, using the state-of-the-art auxiliary-field quantum
Monte Carlo algorithm. We focus on the nature of the spin and
charge orders, and seek to quantify the competition between
stripes, spin spirals, and other nematic orders in the thermody-
namic limit. We provide accurate, detailed numerical results
on the ground state in the underdoped regime. At larger �

roughly consistent with the Y-based family, we find stripe
order at 1/8 hole doping. At smaller � where the d- and
p-orbital occupancies are more in line with Hg-, Bi-, and
Tl-based cuprate families, we find close competition between

FIG. 1. (Color online) Schematic view of the CuO2 planes in
cuprates and illustration of the three-band model. Cu 3dx2−y2 orbitals
are represented in blue, and O 2px and 2py orbitals are represented
in green. We use the reference frame defined by the two axes in the
figure. The curve connectors represent the hopping, and the labels
define the sign rule.

stripe and spiral states. Although most of our results are for
the underdoped regime, we find that the 1/8 electron-doped
case at larger � shows a tendency for phase-separated anti-
ferromagnetic (AFM) order, in contrast with the hole-doped
case. Our method employs a self-consistent constraint [21]
on paths sampled in auxiliary-field space, which has been
referred to as the constrained path (CP) approximation when
applied to many-body model systems [49]. The CP approach
relies on a trial wave function or density matrix for a sign
or gauge condition on the Slater determinants sampled in the
AFQMC, thereby controlling the sign problem. This approach
has consistently demonstrated a high level of accuracy and
allowed robust predictions in the one-band Hubbard model
[22,23,47].

The rest of the paper is organized as follows. In Sec. II, we
introduce the three-band Hubbard model. In Sec III, we briefly
describe the CP AFQMC method as well as the self-consistent
scheme used. In Sec. IV, we present our findings for the
(Sec. IV A) spin and charge order, (Sec. IV B) momentum dis-
tributions, (Sec. IV C) localization properties, and (Sec. IV D)
hole-electron asymmetry. We further discuss results and make
conclusions in Sec. V.

II. MODEL

The Emery model, also called the three-band Hubbard
model, includes the Cu 3dx2−y2 orbital and the O 2px and
2py orbitals explicitly in the description of the copper-oxide
planes in the cuprates. In Fig. 1, a schematic representation
of one CuO2 plane is shown to help visualize the model. We
will consider simulation supercells made of M = Lx × Ly unit
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TABLE I. Parameter values adopted in the present paper. The
parameters are obtained from La2CuO4 [50]. We study the value of
� = εp − εd at 4.4 and 2.5.

Parameter Value (eV)

Ud 8.4
Up 2.0
εd −8.0
εp −3.6
tpd 1.2
tpp 0.7

cells of CuO2, with a given number of particles (or more pre-
cisely of holes), N , which then defines the density or doping.
The Hamiltonian is

Ĥ = εd

∑

i,σ

d̂†
i,σ d̂i,σ + εp

∑

j,σ

p̂†
j,σ p̂ j,σ

+
∑

〈i, j〉,σ
t i j
pd (d̂†

i,σ p̂ j,σ + H.c.)

+
∑

〈 j,k〉,σ
t jk
pp( p̂†

j,σ p̂k,σ + H.c.)

+Ud

∑

i

d̂†
i,↑d̂i,↑d̂†

i,↓d̂i,↓ + Up

∑

j

p̂†
j,↑ p̂ j,↑ p̂†

j,↓ p̂ j,↓. (1)

In Eq. (1), i runs over the sites r = (x, y) of a square lattice
Z2 defined by the positions of the Cu atoms, rCu. The labels
j and k run over the positions of the O atoms, shifted with
respect to the Cu sites, rOx = rCu + 0.5 x̂ for the 2px orbitals,
and rOy = rCu + 0.5 ŷ for the 2py orbitals. The model is for-
mulated in terms of holes rather than electrons: for example,
the operator d̂†

i,σ creates a hole on the 3dx2−y2 orbital at site
i with spin σ =↑,↓. The first two terms in the Hamiltonian
contain the orbital energies, defining the charge-transfer en-
ergy parameter � ≡ εp − εd , which can be thought of as the
energy needed for a hole to move from a Cu 3dx2−y2 orbital to
an O p orbital. The next two terms describe hopping between
orbitals; the hopping amplitudes t i j

pd and t jk
pp are expressed in

terms of two parameters, tpd and tpp, and the dependence on
the sites is simply a sign factor, as depicted in Fig. 1. Finally,
the last two terms represent the on-site repulsion energies, or
double-occupancy penalties, similar to those in the one-band
Hubbard model. We neglect Coulomb interactions beyond the
on-site terms.

We study the properties of the model as a function
of the charge-transfer energy �. Our starting point is an
ab initio set [50] of parameters obtained for La2CuO4, the par-
ent compound of the lanthanum based family of cuprates. The
parameter values are listed in Table I. This set corresponds
to a charge-transfer energy � = 4.4 eV. To correct for possi-
ble double-counting issues [30] would imply a considerable
reduction of this value to � ∼ 1.5 eV, which as pointed out
above can greatly change the physics of a system.

Most of our calculations are performed at hole doping,
h = 1/8. The hopping and on-site interaction parameters are
kept at the values given in Table I, and the charge-transfer
energy, �, is varied. Building on our half-filling study [33],

we focus on two particular values, � = 4.4 and 2.5, which
are representative of the insulating and conducting states at
half filling, respectively.

III. METHODS

To compute the ground-state properties of the model in
Eq. (1) for a given system, i.e., a given set of parameters
(εd , εp, {t i j

αβ},Ud ,Up) and supercell, we use the constrained
path auxiliary-field quantum Monte Carlo (CP-AFQMC)
method [49,51]. In addition to tests in lattice models [22], this
method has been shown in a variety of other correlated sys-
tems to be among the most accurate, low-polynomial scaling
many-body methods [52,53].

In order to sample the ground state |�0〉 of the Hamilto-
nian in Eq. (1) for a given supercell, the technique relies on
the imaginary-time evolution of an approximate initial wave
function, say |ψ〉:

|�0〉 ∝ lim
β→+∞

exp[−β(Ĥ − E0)]|ψ〉 (2)

where E0 is the ground-state energy which is estimated adap-
tively in the process. The projection formula in Eq. (2) is
valid for any 〈ψ | �0〉 �= 0. In the CP-AFQMC algorithm,
the imaginary-time evolution is mapped on to open-ended
branching random walks in the manifold of Slater determi-
nants, known as the “walkers.” The sign problem is controlled
through the introduction of a trial wave function, |ψT 〉, which
guides the random walks and imposes a sign constraint by
eliminating random-walk paths when the overlap of a walker
with |ψT 〉 first turns negative. (A gauge constraint is applied
on the overall phase of the Slater determinant in the case
of walkers described by Slater determinants with complex
orbitals [54].)

In this paper, we are concerned with the cooperating or
competing magnetic and charge orders that may arise in the
three-band model as a function of the charge-transfer energy.
We define the spin on the Cu sites for the d bands as

Ŝ(r) = 1

2

∑

σ,σ ′
σσ,σ ′ d̂†

i,σ d̂i,σ ′ , (3)

where σσ,σ ′ denotes the elements of the Pauli spin matrices.
As in Eq. (1), the label i has a one-to-one correspondence with
the position r = (x, y). The spins on the O p bands can be
similarly written down, but they turn out to be negligible as
we discuss below. The charge densities are defined as

n̂α (r) =
∑

σ

α̂
†
i,σ α̂i,σ , (4)

where α is either d or px or py, and the operator α̂
†
i,σ is the

corresponding creation operator for a hole of spin σ in the
unit cell i.

In order to optimize the numerical detection of complex
spin and charge orders, we explicitly break translational and
SU (2) symmetry through the application of a weak pinning
field coupled to the local spin density on one side of the
system:

V̂ext =
∑

r=(x,y)

δy,0(−1)x+y hpinn · Ŝ(r) (5)
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where hpinn = (hx, hy, hz ) can be tuned to obtain the desired
external field. Throughout this paper, we choose the pinning
field to be coupled to the in-plane x component of the spin
density, unless stated otherwise. This field induces a local
AFM order on the dx2−y2 orbitals on one side of the sys-
tem. The presence of the long-range order is determined by
measuring the behaviors of the spin and charge density, af-
ter extrapolation of the results to the thermodynamic limit
and to the hpinn → 0 limit. The symmetry-breaking pinning
field allows us to measure densities as opposed to correlation
functions which would be needed in fully periodic calcula-
tions. This dramatically improves our resolution, since at large
distance (from the location of the pinning field) the order
being numerically measured becomes O(S) rather than O(S2),
where S is the “order parameter,” for example, the magnitude
of the spin. We also studied fully periodic, unpinned systems
that do not break the rotational symmetry and have found that
the results are consistent in both cases.

A. Self-consistent constraint

The CP constraint is an approximation which results in a
systematic bias. The magnitude of the bias has been shown
to be usually very small, even with simple mean field |ψT 〉.
(For example, in the one-band Hubbard model with U/t = 8
and near 1/8 doping, the CP error in the energy [22,55]
using a |ψT 〉 from unrestricted Hartree-Fock is less than the
Trotter error from a time-step choice of τ = 0.05 t−1, which
is typically considered a very conservative choice in standard
calculations.) Better choices of |ψT 〉 can reduce the systematic
bias. In our implementation, the trial wave function |ψT 〉 is in
the form of a general Slater determinant:

|ψT 〉 =
N∏

n=1

φ̂†
n |0〉,

φ̂†
n =

M∑

i=1

∑

σ=↑,↓

∑

α=d,px,py

un(i, α, σ ) α̂
†
i,σ (6)

where the notations follow Eq. (1), with the operator α̂
†
i,σ

creating a hole of spin σ in the α band in the unit cell i.
The spin orbitals un(i, α, σ ) in Eq. (6) are constructed

within a self-consistent scheme which was introduced in
[21]. In the first step a GHF calculation is performed where
the wave function (6) is obtained by minimizing the energy
〈� | Ĥ | �〉 within the manifold of N-particles Slater deter-
minants, using the true Hamiltonian in Eq. (1). For the GHF
procedure we do not assume any particular form for the order
parameter, and we use a combination of randomization and
annealing to help find the global minimum [46]. In the fol-
lowing steps, we use the results of CP-AFQMC simulations
to correct the trial wave function internally [21] in which the
output of a CP-AFQMC calculation relying on a given |ψT 〉
is given as feedback in generating a new trial in the GHF
framework, but using effective Hamiltonians for Ĥ .

In practice, the new wave function is found by diagonal-
izing an effective one-body Hamiltonian, like in the original
GHF procedure, but with effective parameters that are chosen
so as to minimize the discrepancy between the variational and
the CP-AFQMC estimations of the one-body density matrix.

FIG. 2. Convergence of the self-consistent constraint in
AFQMC. The Sz component of the staggered spin vector along
the line cut at x = 0, for three separate self-consistent calculations
starting from varied initial states (SDW, Random, and Spiral). The
system is 4×24, at � = 4.4, with PBC in the x direction, an open
boundary condition in the y direction, and a pinning field in the z
direction applied at y = 0. The top panel is the spin order computed
by AFQMC at the end of the zeroth iteration, i.e., using the initial
state as trial wave function. The bottom panel shows that the order
is converged by the third iteration. The final order is a linear SDW
with the majority of the spin vector in the Sz direction.

Then, a new CP-AFQMC calculation relying on the updated
|ψT 〉 is performed and the procedure is continued until con-
vergence is reached. This interface between sophisticated
mean-field and correlated CP-AFQMC makes our “adaptive”
algorithm able to “learn” the best trial wave function to feed
the final CP-AFQMC simulation.

As a further check of the reliability of the approach, we
systematically explore the robustness of the self-consistency
loops against the choice of the initial condition, that is the
wave function used in the first iteration. Although the GHF
solution is a natural starting point, we explored starting from
the noninteracting ground state, as well as from mean-field
wave functions displaying other possible orders such as spin-
density waves, spirals, and domain walls. As seen in Fig. 2,
the self-consistency loops converge to the same spin order,
even starting from an initial state of the GHF form made up
of random orbitals. This is a very strong indication that our
calculations minimize the bias arising from the constraint to
control the sign problem, and provides another stringent check
on the robustness and accuracy of the many-body results.

B. Extrapolation to thermodynamic limit

Our AFQMC calculations treat large supercells contain-
ing up to ≈500 atoms, which makes it possible to capture
long-wavelength collective modes. In addition, we perform
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TABLE II. Table of measured ground-state properties at doping h = 1/8, for different supercell sizes M = Lx × Ly, at two different values
of charge-transfer energy �. All systems have PBC in the x direction and OBC in the y direction and have a pinning field applied in one row
along the short direction with hpinn = 0.05. The quantities are energy per site, d and p (sum of px and py) occupancies, percentage of the doped
holes in the Cu d band, expectation values of the hopping matrix elements (kinetic-energy components), and the interaction energy.

� Etot/M δnd Tdd Tpd Tpp Eint/M
(eV) Lx × Ly (eV) nd np (%) (eV) (eV) (eV) (eV)

4.4 6×8 −10.3389(1) 0.764(1) 0.361(1) 31.7(1) 0.0538(3) 0.1345(3) 0.0584(3) 0.2006(1)
6×12 −10.3578(1) 0.761(1) 0.364(1) 31.8(1) 0.0539(3) 0.1347(3) 0.0584(3) 0.2023(1)
6×16 −10.3679(1) 0.759(1) 0.366(1) 31.3(1) 0.0543(3) 0.1345(3) 0.0589(3) 0.2036(1)
6×20 −10.3724(1) 0.758(1) 0.367(1) 31.5(1) 0.0546(3) 0.1346(3) 0.0587(3) 0.2038(1)
6×24 −10.3762(1) 0.758(1) 0.367(1) 31.8(1) 0.0541(3) 0.1347(3) 0.0587(3) 0.2040(1)
6×∞ −10.395(1) 0.754(1) 0.371(1) 31.6(1) 0.206(1)
8×12 −10.3572(1) 0.761(1) 0.364(1) 31.9(1) 0.0539(3) 0.1339(3) 0.0587(3) 0.2025(1)
8×14 −10.3627(1) 0.760(1) 0.365(1) 32.0(1) 0.0541(3) 0.1351(3) 0.0585(3) 0.2026(1)
8×16 −10.3658(1) 0.760(1) 0.365(1) 32.3(1) 0.0533(3) 0.1348(3) 0.0588(3) 0.2027(1)
8×18 −10.3692(1) 0.759(1) 0.366(1) 31.8(1) 0.0539(3) 0.1343(3) 0.0589(3) 0.2037(1)
8×20 −10.3718(1) 0.758(1) 0.366(1) 31.8(1) 0.0542(3) 0.1339(3) 0.0588(3) 0.2037(1)
8×∞ −10.393(1) 0.754(1) 0.371(1) 31.9(1) 0.206(1)

2.5 6×8 −9.0480(1) 0.594(1) 0.531(1) 36.9(1) 0.0644(1) 0.1512(1) 0.0847(1) 0.1930(1)
6×12 −9.0737(1) 0.591(1) 0.534(1) 36.2(1) 0.0641(1) 0.1505(1) 0.0844(1) 0.1941(1)
6×16 −9.0877(1) 0.589(1) 0.536(1) 35.7(1) 0.0639(1) 0.1503(1) 0.0848(1) 0.1950(1)
6×20 −9.0942(1) 0.588(1) 0.537(1) 36.1(1) 0.0636(1) 0.1498(1) 0.0846(1) 0.1949(1)
6×24 −9.0989(1) 0.588(1) 0.537(1) 36.0(1) 0.0637(1) 0.1501(1) 0.0843(1) 0.1951(1)
6×∞ −9.125(1) 0.585(1) 0.540(1) 35.4(1) 0.196(1)
8×12 −9.0719(1) 0.592(1) 0.533(1) 36.6(1) 0.0630(1) 0.1498(1) 0.0846(1) 0.1937(1)
8×14 −9.0794(1) 0.592(1) 0.533(1) 36.9(1) 0.0630(1) 0.1501(1) 0.0841(1) 0.1935(1)
8×16 −9.0849(1) 0.591(1) 0.533(1) 37.1(1) 0.0629(1) 0.1500(1) 0.0841(1) 0.1934(1)
8×18 −9.0886(1) 0.590(1) 0.535(1) 36.7(1) 0.0628(1) 0.1498(1) 0.0843(1) 0.1939(1)
8×20 −9.0917(1) 0.590(1) 0.535(1) 36.7(1) 0.0624(1) 0.1497(1) 0.0840(1) 0.1939(1)
8×∞ −9.122(1) 0.587(1) 0.538(1) 37.0(1) 0.194(1)

various tests to help extrapolate our results to the bulk limit.
Our calculations in periodic supercells with Lx × Ly show that
the AFQMC solution favors orders along the x or y direction,
i.e., along the lines connecting the d orbitals with the nearest-
neighbor p orbitals. Unlike in the mean-field solutions [46],
we find no evidence at the many-body level of a tendency to
form long-range orders in the diagonal direction. On the other
hand, our results from varying lattice sizes and aspect ratios
clearly indicate that large lattices are needed to accommodate
the order while minimizing frustration.

The systematic analysis and experimentation (see for ex-
ample the results below in Table II) led us to focus on
studying rectangular 6 × Ly and 8 × Ly systems. We use pe-
riodic boundary condition (PBC) along the x direction and
open boundaries along the y direction, giving the system
the topology of a cylinder, in such a way to accommodate
commensurate spin and charge orders along the y direction.
We have also carried out calculations with PBCs along both
directions (still applying pinning field) to verify the consis-
tency of our results. The cylinder systems and the pinning field
break translational symmetry along y and C4 symmetry, which
makes it compatible to use the self-consistent procedure dis-
cussed in Sec. III A. Figure 3 shows a validation versus Ly,
to establish the spin order as Ly → ∞. We see that, within
statistical error, the spin order is already converged at Ly = 16.
Comparing 6 × Ly calculations with 8 × Ly (and wider sys-
tems when there is any indication of numerical difference or

as spot checks), we validate that the dependence on Lx, when
Ly is large enough, is negligible.

The external pinning field in Eq. (5) plays the role of a
surface term. For a fixed value of Lx, both the energies and
the densities show finite-size effects consistent with a linear
dependence on 1/Ly, which allows us to extrapolate to the

FIG. 3. Plot of the staggered spin vector, (−1)ySx , for � = 4.4
along the line cut at x = 0 for a group of 6 × Ly systems. A pinning
field is applied at y = 0. The spin across the x direction is AFM. The
spin order converges as Ly → ∞.
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TABLE III. Convergence vs supercell size in the periodic direc-
tion. The measured ground-state energy per cell, Etot/M, is shown
at doping h = 1/8, for different supercell sizes M = Lx × 16, at two
different values of charge-transfer energy �. All supercells use the
same systematic parameters as in Table II.

Lx × Ly � = 4.4 � = 2.5

6×16 −10.3679(1) −9.0877(1)
8×16 −10.3658(1) −9.0849(1)

10×16 −10.3672(1) −9.0860(1)
12×16 −10.3682(1) −9.0856(1)

limit Ly → +∞. This provides results free of the finite-size
effects arising from the pinning field and the open boundary
condition in the y direction. We then analyze the effect of
increasing Lx, the dimension in the periodic direction, and find
that 8×∞ results show negligible finite-size errors from the
bulk limit. More details are provided in the next section.

IV. RESULTS

In Table II we list the values of several properties of the
systems as a function of the size of the system M = Lx × Ly

and of the charge-transfer energy, � = εd − εp. With the high
accuracy of these calculations, the results will also help pro-
vide benchmarks for future studies. In addition, the details
help illustrate the convergence with respect to system size.
We include a similar table with the Hartree-Fock results in
the Appendix.

Results are shown for the total energy per site, the kinetic
energies measured by the average nearest-neighbor hopping
amplitudes, which are the lattice averages of the matrix el-
ements of the one-body density matrix (per site): Tdd =
〈d̂†

i d̂i+x̂(ŷ)〉, Tpd = 〈d̂†
i p̂i+x̂(ŷ)/2〉, Tpp = 〈p̂†

i+ŷ/2 p̂i+x̂/2〉, and the
interaction energy. Also shown are the average density of
holes on the d and p orbitals, respectively [Eq. (4)], and
the percent of doped holes on the copper d band, defined as
δnd = (nd

h − nd
0)/h where the reference nd

0 is the average
density of holes on the d orbitals at half filling, while nd

h is the
value at the current doping, h. The quantity gives an indication
of the fraction of the doped holes which go on the d sites.

In Table III, we further examine the behavior of the total
energy as a function of the width Lx for fixed Ly. The PBC
helps to significantly reduce the finite-size effects from Lx,
which is confirmed by the results showing up to Lx = 12.
Changing Lx results in variations which are of order O(10−3)
eV, consistent with the fact that the 6×∞ and 8×∞ results in
Table II are in agreement to within this level. Thus we expect
that the 8×∞ results listed in Table II, to within the indicated
statistical uncertainties, are representative of the bulk limit.

Table II provides a first answer to the following question:
where do the doped holes go, as we move from the parent
compound to the underdoped systems? Expectedly, as � is
increased, the Cu d-orbital occupation increases both in the
half-filled and the doped systems. The fraction of doped holes
on the Cu d bands remains smaller than 50% for both values
of �. This means that as holes are doped significantly more
choose to occupy the p bands over the Cu d bands, giving a

roughly equal distribution of the excess holes on the d and the
two p sites. Interestingly, while the occupancy of d bands is
considerably higher at larger �, the percentage of the doped
holes on the d bands is slightly lower.

Comparing to the experimental results of Jurkutat et al.
[26], our computed orbital occupancies at � = 4.4 for both
the half-filling and 1/8 doped systems are very close to the ex-
perimentally measured values in the Y-based cuprate family:
nd ≈ 0.75 and np ≈ 0.4 at h ≈ 0.15. At � = 2.5, our com-
puted occupancies are remarkably close to those measured in
the Hg-, Bi-, and TI-based cuprate families, with nd ≈ 0.59
and np ≈ 0.54 at h ≈ 0.13. Furthermore, the computed � de-
pendence of the percentage of the doped holes occupying the
d bands is consistent with experiment. The results in [26] sug-
gest that the distribution of excess holes varies significantly
across the different families, and the percentage of holes oc-
cupying the d orbitals is significantly larger in the Hg-, Bi-,
and TI-based families compared to the Y-based family, again
consistent with our results. These observations indicate that
the three-band Hubbard model indeed captures additional ma-
terials specificity which is lacking in the one-band Hubbard
model.

A. Spin and charge orders

We find that the spin orders in the Emery model tend to
be very subtle, with multiple viable orders competing at tiny
energy scales. This results in a high sensitivity of the spin
order with respect to the details of the trial wave function
guiding the CP-AFQMC procedure and with respect to the
size of the system. It was necessary to perform systematic
crosschecks by initializing the self-consistent loop described
in Sec. III A in several different ways: diagonal magnetic
domain walls, SDWs, spiral orders, and homogeneous phases
were used as initial trial wave functions. After several iter-
ations, consistency is reached in many cases, allowing us to
draw conclusions about the spin order in the ground state of
the model as a function of the charge-transfer energy. We will
highlight cases where different candidate spin orders are espe-
cially close and the balance is especially delicate, as indicated
by the competition persisting with the self-consistency, and
by closeness of their energies. The charge order, on the other
hand, appears to be very robust. Negligible effects are seen of
the choice of the trial wave function and of the system size on
the density of holes on d and p orbitals.

At the higher value of the charge-transfer energy, � = 4.4,
a stripelike phase appears. The spin and charge orders are
illustrated in Fig. 4. The spin density on the p orbitals turns out
to be negligible, so we only show the spin order on the Cu d
orbitals. Figure 5 shows the spin order in more details, where
spatially modulated spin densities along the y direction are
seen. The majority of the spin vector lies in the Sx direction,
the same as the pinning field. There does also seem to be some
small, seemingly random order in the Sz direction. They are
compatible with zero, but we cannot rule out some small spin
canting in this direction as well. Figure 6 shows the charge
occupations on the Cu d and the O px and py sites, along
the same line cut as the spin density above. From these fig-
ures we can visualize a regular distribution of AFM domains,
separated by regions of high holes density, in particular on
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FIG. 4. Two-dimensional plot of the staggered spin vector,
(−1)x+y〈Ŝ(r)〉, and charge density, 〈n̂(r)〉, for � = 4.4 and h = 1/8.
The total staggered spins (arrows) are plotted as a projection in the
x-z plane. The color of the arrow represents the angle between the
spin on that site and an arbitrary reference spin. It can be thought
of as a spin correlation and it runs from (0, π ). The spin on the
O p orbitals is negligible and omitted from the plot. The size of
the circle is proportional to the density, with an overall background
subtracted away. We neglect the first and last two rows to avoid the
open boundaries and pinning field.

FIG. 5. Plot of the components of the staggered spin vector along
the line cut at x = 0, for the system in Fig. 4. The spin across the
x direction is AFM. The majority of the spin vector lies in the Sx

direction, the same as the pinning field. A stripe phase with AFM
domains is seen.

the p orbitals, where the AFM order reverses direction. The
“node” where the reversal occurs falls between two Cu sites,
creating a “domain wall” between two AFM domains with
two adjacent rows of aligned spins on the Cu d orbitals. The
wavelength of the spin order on the d orbitals is around ten
Cu sites, while hole densities show a corresponding oscilla-
tion with half the period and higher density tending towards
the domain boundary of the spin order. These characters are

FIG. 6. Plot of the occupations on different sites along the line
cut at x = 0, for the system in Fig. 4. The Cu d-band occupation is
shown in the top panel, and the O px and py bands are plotted in
the bottom. The hole density wave is correlated with the spin order
in Fig. 5, with higher density at the domain boundaries. A small
asymmetry is seen between px and py sites.

214512-7



CHICIAK, VITALI, AND ZHANG PHYSICAL REVIEW B 102, 214512 (2020)

similar to the behavior of stripe orders seen in the one-band
Hubbard model.

The results at lower � = 2.5 are shown in Figs. 7, 8, and
9. The spin order appears to be substantially smoother than at
� = 4.4. We interpret this as a signature of a shift toward a
SDW phase, in contrast with the situation at � = 4.4 which
suggests a stripelike order. For the charge order, the average
Cu d-orbital occupation is nearly uniform and, as expected,
greatly reduced with respect to � = 4.4. There are still signs
of a charge density wave on the O p orbitals, although the
amplitude is decreased by half compared to the charge wave at
� = 4.4. The maxima of the density of holes on the p orbitals
correspond to the nodes of the staggered spin density on the d
orbitals, as happens at the higher �. A significant asymmetry
is seen in the occupancy of the O px and py sites, indicative of
a strong nematic response to the SDW.

We find that a spiral order, pictured in Fig. 10, can be-
come stable at � = 2.5, and is nearly degenerate with respect
to the SDW order within our resolution. The nature of the
spiral order is similar to that seen in the generalized Hartree-
Fock solution [46]. The AFQMC self-consistency loops can
converge to a spiral state or a SDW depending on the starting
trial wave function, and the resulting energies are extremely
close. For example, in an 8×18 supercell the energy per site
is −9.0881(1) for the SDW state, versus −9.0886(1) for the
spiral state. The state also depends delicately on the details
of the system. As in 8×18, the 6×18 system also shows the
spiral state as having slightly lower energy; however, in the
8×20 supercell the energy ordering is reversed. We conclude
that there is an extremely subtle cooperation or competition
between the SDW and spiral phases in this region of the phase
diagram. This suggests that, in the ground state of the Emery
model, when the charge-transfer energy is small, the spin
order appears to be relatively “soft,” and the charge density
is more homogeneous compared to higher values of �.

As mentioned above, our explorations indicate that the
charge and spin orders in the ground state of the Emery model,
for the parameters studied in this paper, appear along the x or
y direction, i.e., the direction connecting a Cu site to one of
its nearest-neighbor O sites. This led us to focus on elongated
geometries of supercells, in order to accommodate potential
collective modes. The artificial symmetry breaking makes it
easier to probe the density waves, but more delicate to study
nematic orders, especially with the necessary reduction in
supercell size in QMC compared to mean-field calculations.
In the latter, nematic orders readily appeared for intermediate
� values [46]. Intra-unit-cell nematic order has been observed
both in theory [56,57] and experiment [58]. Within our QMC
calculations, signatures of nematicity are present in narrow
4×Ly systems; as Lx is increased, the spatially averaged ne-
matic order |npx − npy | fades away. However, locally, on the
unit cell, nematic order is present in Fig. 6 and is very apparent
at lower � in Fig. 9. This local nematic order accompanies
the long-range spin and charge orders, which explicitly break
the rotational symmetry in the lattice and in which the doped
holes tend to organize close to the nodes of the spin density to
induce asymmetry.

FIG. 7. Two-dimensional plot of the staggered spin vector and
hole density, similar to Fig. 4, but for � = 2.5.
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FIG. 8. Plot of the components of the staggered spin vector along
the line cut at x = 0, for the system in Fig. 7. The spin across the
x direction is AFM. The majority of the spin vector lies in the Sx

direction, the same as the pinning field. A smooth AFM spin-density
wave is seen.

B. Momentum distributions

We also compute the momentum distribution of the holes
in the Emery model:

nσ (k) = 〈d̂†
k,σ

d̂k,σ + p̂†
x, k,σ

p̂x, k,σ + p̂†
y, k,σ

p̂y, k,σ 〉, (7)

where the creation (destruction) operators are the Fourier
components of the operators appearing in the Hamiltonian
in Eq. (1). Each of the three terms on the right-hand side of

FIG. 9. Plot of the occupations on different sites along the line
cut at x = 0, for the system in Fig. 7. The Cu d-band occupation is
shown in the top panel, and the O px and py bands are plotted in
the bottom. Densities on the d sites show little fluctuation, while
occupations on the p sites are correlated with the spin density in
Fig. 8, with px sites showing a much larger response.

FIG. 10. Spiral spin order in an 8×18 system at � = 2.5. Com-
ponents of the staggered spin vector plotted in the same style as
Fig. 8. We see noncollinear SDWs occurring simultaneously in the
Sx , Sy, and Sz directions manifesting a spin canting behavior. In the
inset, a 3D plot of this staggered spin is shown, projected in three
dimensions along a line cut at x = 0 plotted along the y direction.
Along the x direction, the order remains perfect AFM.

Eq. (7) gives a band-resolved contribution, which we will also
examine separately below. We focus on the stripe phase at
� = 4.4 and on the spiral phase at � = 2.5.

The top panel Fig. 11 shows the total momentum distribu-
tions n(k) ≡ 1

2 (n↑(k) + n↓(k)) in an 8×18 lattice for � = 4.4
and 2.5, respectively. In the bottom panel, we plot n(k) for
the same two systems along a path in the Brillouin zone,
including the � point k = (0, 0), the antinodes (0, π ) and
(π, 0), the node (π/2, π/2), and the corner of the Brillouin
zone (π, π ). We also show the momentum distribution of
the corresponding half-filled systems, in order to probe the
location of the excess holes in k space. At � = 4.4, the mo-
mentum distribution appears to be smoother than at � = 2.5,
where the Fermi surface is much more defined and closer to
the noninteracting structure. This is consistent with the fact
that the system is more correlated at � = 4.4, where more
holes are on the d orbitals, with a higher number of double
occupancies. We observe a kink in the momentum distribution
close to the antinodes, more prominent at � = 4.4, which
reconstructs the Fermi surface from the noninteracting open
diamond shape towards a closed circle.

In Fig. 12, we show the corresponding band-resolved
momentum distributions. We observe that the asymmetry be-
tween px and py orbitals can be understood as a consequence
of the geometry of the lattice and the definition of the hopping
amplitudes in the Hamiltonian in Eq. (1). For a hole in the px

orbital, for example, it is more likely to have momentum in the
x direction, which is evident in Fig. 12. The comparison with
the half-filled results in both Fig. 11 and here provides a de-
tailed picture of the behavior of the excess holes in momentum
space. Upon doping, at � = 4.4 the holes tend to occupy the p
orbitals close to (π, π ), while a percentage of them appear to
occupy both d and p orbitals close to the node (π/2, π/2). On
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FIG. 11. Top: Total momentum distribution, n(k) in the 8×18
system at h = 1/8, for � = 4.4 (left) and � = 2.5 spiral state (right).
For reference, the corresponding noninteracting Fermi surface is
plotted as a white dashed line. Bottom: n(k) plotted along the path in
momentum space (0, 0) → (π, 0) → (π, π ) → (0, π ) → (0, 0) →
(π, π ) for the same systems in (a), together with their corresponding
half-filled systems. For reference, the noninteracting n(k) is plotted
as the black dashed line.

the other hand, at � = 2.5, the excess holes appear to occupy
d and p orbitals with momenta close to the antinode (0, π ), as
well as close to the node (π/2, π/2). The nesting that results
from such arrangements clearly has to do with the delicate
spin orders we have observed.

A remarkable difference between the two � values is
seen in spin symmetry breaking. In the stripe phase at � =
4.4, the difference between n↑(k) and n↓(k) is negligible,
n↑(k) − n↓(k) ∼ 0 within statistical error. In the spiral phase
at � = 2.5, n↑(k) and n↓(k) are not the same. The difference
n↑(k) − n↓(k) is crucial for the spiral order, as we exten-
sively discussed at the mean-field level in [46]. In Fig. 13, we
probe the differences between n↑(k) and n↓(k) at the many-
body level. Complimentary points are where n↑(k) − n↓(k) =
n↓(k′) − n↑(k′). The vector connecting k and k′ is the nesting
vector, q. We can then infer the difference �q = q − Q be-
tween the spiral nesting vector q and Q = (π, π ) for the AFM
order. The resulting �q is along the y direction, consistent
with the observed spiral state along y. The resolution from
QMC is limited by the finite size of the system, in particular
in the x direction, such that it is difficult to infer q very
precisely, but we estimate �q � π/9, which corresponds to
a wavelength of nine Cu sites in real space. This is roughly

FIG. 12. Band resolved momentum distributions, plotted along
the path (0, 0) → (π, 0) → (π, π ) → (0, π ) → (0, 0) → (π, π )
for the same systems as in Fig. 11. Filled symbols denote the h = 1/8
doped systems, while open symbols denote the corresponding half-
filled systems. For reference, the noninteracting n(k) is plotted as the
black dashed line.

consistent with the wavelength of ten Cu sites discussed in the
previous section.

C. Localization of holes

In our QMC study of the Emery model at half filling [33],
a phase transition was clearly identified between an AFM
insulating state, which is stable at high values of �, and a
nonmagnetic metal state which exists below � = 3.0. One of
the probes that we used to detect whether the system was
insulating or conducting was the Resta-Sorella localization
estimator [59]. Here we also study the localization of the
holes in the doped systems. However, since we have systemat-
ically used open boundary conditions, we will use as a probe
the quantum metric tensor (QMT) [59], defined by the 2×2
matrix:

Qab = 1

N
(〈r̂ar̂b〉 − 〈r̂a〉〈r̂b〉), a, b = x, y. (8)
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FIG. 13. The difference between the spin-up and spin-down mo-
mentum distributions in the spiral state at � = 2.5 with h = 1/8.
To guide the eye to complimentary nesting points on the Fermi
surface, for kx < 0, we plot n↑(k) − n↓(k), and for kx > 0 we plot
n↓(k) − n↑(k). We plot the nesting vector, q, in red, Q = (π, π ) in
white, and �q = q − Q in blue.

The position operator is defined as

r̂a =
M∑

i=1

∑

α=d,px,py

(ri,α )a

∑

σ

α̂
†
i,σ α̂i,σ , (9)

where (ri,α )a is the Cartesian a component of the position vec-
tor of the orbital α in the unit cell i. The diagonal components
of the QMT provide a measure of the localization of the holes
in the system. In particular, since our supercells are elongated
in the y direction, we focus on the size dependence of the Qyy

component of the QMT under open boundary condition. If
Qyy → ∞ as Ly → ∞, then we have a conductive state; if
Qyy converges to a finite value in the bulk limit, the system is
an insulator.

In Fig. 14, we plot Qyy computed from AFQMC as a
function of lattice size. We did not observe any significant
difference between results for Lx = 6 and 8, indicating that the
role of the transverse direction is negligible. For clarity and to
maximize the length of the extrapolation, we only show results
for 6×Ly systems. The results at half filling for both values of
the charge-transfer energies are also shown for comparison,
and provide a reference relating to our previous study [33],
which established that the ground state of the Emery model at
half filling is conductive at � = 2.5 and insulating at � = 4.4.

In the 1/8 doped systems, the QMT increases as a function
of the supercell size for both values of �. Interestingly, the
slopes of Qyy as functions of Ly for the two doped systems lie
between the corresponding results at half filling. At � = 2.5,
the excess holes appear to substantially reduce the overall
mobility, but the system still shows evidence of delocalized
holes. The mobility is substantially higher in the spiral phase,
which is not very surprising since the spiral order creates
fewer (ideally no) domain walls, and less charge fluctuation,

FIG. 14. Plot of the (y, y) component of the QMT as a function
of Ly. At � = 4.4 and half filling, the value of the QMT is saturated
for large lattice sizes suggesting an insulating state. For both doped
systems � = 2.5, 4.4, the QMT appears to be still increasing sug-
gesting conducting states.

both of which should favor enhanced mobility. Interestingly,
at � = 4.4 we see the opposite trend, with increased mobility
upon doping. The system seems to show signs of delocalized
holes in the presence of stripe order, which is somewhat
counterintuitive. We stress that, although these system sizes
are much larger than previously possible by accurate many-
body computations, we are still somewhat limited at Ly = 24,
especially for extrapolation of the asymptotic behavior. This
makes it difficult to reach a conclusive answer about whether
the ground state of the model is insulating or conductive.

As mentioned, we also computed the hopping amplitudes,
namely, the nearest-neighbor components of the one-body
density matrix, as listed in Table II. These can be relevant to
experiments, for example in scanning tunneling microscopy
[60]. The matrix elements provide a further probe of the
local mobility of the holes. From the results it is evident that
the local mobility of the holes increases as � is decreased,
consistent with the QMT results above.

D. Electron-hole asymmetry

An important feature of the cuprate phase diagram is the
asymmetry between electron and hole doping. AFM correla-
tions in the hole-doped case rapidly melt as holes are added
to the system. In the electron-doped case, on the other hand,
the AFM state survives for much higher values of doping.
Although the main focus of this paper is on the hole-doped
regime, our methodology allows us to compute physical
properties of electron-doped systems as well. We have thus
examined a system at h = −1/8 which mirrors one of the
systems we have studied, in order to probe this asymmetry.

In Fig. 15, we consider two 6×16 systems at � = 4.4 in
the three-band Hubbard model. On the left is a hole-doped
system, exhibiting the behavior consistent with what we have
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(a) (b)

FIG. 15. Comparison of hole-doped and electron-doped systems.
The two-dimensional plots show the x component of the total spin,
〈Ŝx (r)〉, and charge density, 〈n̂(r)〉, for both (a) a hole-doped system,
h = 1/8, and (b) an electron-doped system h = −1/8, at � = 4.4.
The spins (arrows) are plotted as a projection in the x plane. The color
of the arrow represents the direction of 〈Ŝx (r)〉, blue being positive
and red negative. The spin on the O p orbitals is negligible and
omitted from the plot. The size of the green circles is proportional
to the hole density. The color of the circles is scaled to the maximum
and minimum hole densities for the respective systems. The first and
last two rows are not shown.

seen in Sec. IV A. The spin arrows help highlight the underly-
ing AFM order, while the color variations of the charge circles
highlight the density waves, a stripe phase in which the spin
is modulated in phase with a charge wave. On the right is an
electron-doped system, with otherwise identical parameters.
A strikingly different behavior is seen. We observe a phase
separated system in which a significant percentage of the
doped electrons are localized on the d orbitals near the pinning
line at y = 0. Beyond the inhomogeneous region induced by
the pinning field, the system aligns in a homogenous AFM
order.

In Fig. 16 we show a quantitative comparison for the band-
resolved hole density between the two systems. It is evident
that the majority of the doped electrons occupy d orbitals,
while doped holes tend to go to the p orbitals with higher
probability. In the electron-doped case, the system appears to
phase separate in order to build an optimal density to form
a homogenous AFM order, consistent with the experimental
observation. Our explorations in the electron-doped case are
not as extensive as in the hole-doped case, where systematic
computations for different system sizes established the spin
and charge order. It is possible that the AFM domains could
acquire some modulation for larger system sizes. However,
we tested in supercells as large as 6×24 and it is clear that
such modulations would have much larger domain size than

FIG. 16. Plot of the occupations on different sites along the line
cut at x = 0, for the systems in Fig. 15. The Cu d-band occupation is
shown in the top panel, and the O px and py bands are plotted in the
bottom. Closed symbols represent the hole-doped system (h = 1/8)
and open symbols represent the electron-doped system (h = −1/8).

the wavelength in the hole-doped case, and they did not yield
any obvious lowering of the energy compared to a state of a
single domain. The sharp contrast between the electron- and
hole-doped cases in the Emery model is an important step
towards a more realistic model for the cuprates.

V. CONCLUSIONS

Using CP-AFQMC with the latest developments, we have
studied the hole-doped, three-band Hubbard model as a
function of the charge-transfer energy. The magnetic and
charge orders are determined at two representative values of
�. Accurate numerical results are obtained from computa-
tions on large supercells to provide systematic information on
a variety of ground-state properties. Based on the performance
of CP-AFQMC both in simplified models and in real materi-
als, these results represent the state of the art in many-body
computation for the combination of accuracy and approach-
ing the bulk limit in the model. Thus the detailed data will
serve as useful benchmarks for future computational studies,
as well as provide a valuable cross-check for theoretical and
experimental studies.

We find that, with the parameters adopted, the Emery
model at � = 4.4 reproduces the observed Cu and O oc-
cupations of the Y family of cuprates, while at � = 2.5 it
reproduces the Hg-, Bi-, TI-based families’ relative occupa-
tions. At � = 4.4, we observe a robust stripe order consisting
of spin-density waves with corresponding charge density
modulation, creating AFM background with a phase change
across boundaries where the hole density in the vicinity is
higher. At � = 2.5, on the other hand, the spin order was
more nuanced with several competing orders sensitive to the
system sizes and geometries and initial trial wave functions.
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We find a spin-density wave state, characterized by modulated
AFM order along with a weak charge density wave only on
the O p sites, as well as a spin spiral state in which the spins
cant in a randomly chosen plane along the propagation direc-
tion with essentially uniform charge density. These states are
separated by an energy scale that is almost degenerate within
the (high) resolution of the AFQMC calculation, suggesting
a possible quasidegeneracy of the ground state of the Emery
model.

We characterized the properties of these states with de-
tailed information on the densities in supercells with a pinning
field applied on one side to break translational symmetry.
We also computed average hopping amplitudes and ener-
getics as detailed in Table II. The momentum distributions
were analyzed and compared for the stripe and spiral states.
We observed that the holes became more delocalized as the
charge-transfer energy was reduced, by measurements of the
QMT and the one-body density matrix. The spiral spin state,
which has a nearly constant charge density, has holes substan-
tially more delocalized than in the stripe state. Finally, we
explored the relation between hole and electron doping and
found that the Emery model exhibited an asymmetry in the
AFM orders away from half filling, which is consistent with
the observed phase diagrams of cuprate materials.

The Emery model shows significant differences from the
one-band Hubbard model at the mean-field level. The ground
state from generalized Hartree-Fock exhibits [46] a very rich
phase diagram including orders such as diagonal magnetic
domain walls, nematicity, and spin spirals. At the many-body
level, some of these features from GHF were not observed.
At � = 4.4 the half-filled system has AFM order and is in-
sulating, while the 1/8 hole-doped system exhibits a stripe
order rather similar to what is seen in the one-band model.
The spiral state at � = 2.5, which is either the ground state
or nearly degenerate with an SDW ground state, has not been
seen in the simple one-band Hubbard model. (It is not clear
whether some engineering of the hopping parameters beyond
near neighbors will make this state also appear in the one-band
model.) Based on these results one is tempted to reinforce
that the three-band model is perhaps only marginally more
relevant than the one-band Hubbard model for representing
the cuprates. However, the answer is more nuanced regarding
how similar the Emery model is to the one-band Hubbard
model.

The Emery model captures the asymmetry in AFM order
between hole and electron doping seen in the phase diagram
of the real materials, which is not present in the particle-hole
symmetric one-band model. As we showed, the model with
different values of � reproduced, to an excellent degree for
different families of cuprates, the experimentally measured d
and p orbital occupancies, nd and np, which are known to
affect several properties including the superconducting tran-
sition temperature. Results for the fate of excess holes and

the localization also appear to mirror well the phenomenology
of the different families of real materials. The ground-state
properties show considerable sensitivity to parameter values
and details. This basic feature is seen even in the one-band
model, and is more pronounced in the Emery model, as re-
flected both in the variation with � and in the delicate balance
at � = 2.5 that we have observed. Indeed the presence of
many competing or cooperating orders within small energy
windows is a trademark of the real materials the essential
physics of which we hope to capture with these models. It is
thus reasonable to assume, especially without precise knowl-
edge of what balance of these states would be responsible for
superconductivity, that the Emery model can be different in a
nontrivial way.

A major remaining question about the ground state of
the Emery model is of course superconductivity. We have
not studied the nature of superconducting correlations in this
paper. Since our computations were done in the canonical
ensemble, we could not directly measure the superconducting
order parameter. Pairing correlation functions can be mea-
sured, however these will have very small amplitude and
will require systematic finite-size scaling with high resolution
to determine the asymptotic (distance) behavior unambigu-
ously. Recent progress in the one-band model [24] suggests
a variation in AFQMC which provides a promising avenue
to determine pairing order. We will leave this to a future
investigation.
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APPENDIX: HARTREE-FOCK PROPERTIES

In Table IV, we include the measured properties from our
previous mean-field GHF study [46] and this QMC study
to illustrate the effect of correlation introduced in the QMC
calculations on measured quantities for systems with the same
parameters.
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TABLE IV. Table of measured ground-state properties at doping h = 1/8, for the Hartree-Fock (HF) calculations with different supercell
sizes M = Lx × Ly, at three different values of charge-transfer energy �. All systems have PBC in both directions. The quantities are energy
per site, d and p (sum of px and py) occupancies, and the interaction energy. We include the extrapolated QMC results for comparison. See
Ref. [46] for computational details of the HF calculations.

� Etot/M Eint/M
(eV) Lx × Ly (eV) nd np (eV)

4.4 24×30 (tilted HF) −9.8056 0.842 0.283 0.2601
8×∞ (QMC) −10.393(1) 0.754(1) 0.371(1) 0.206(1)

2.5 16×16 (HF) −8.4916 0.588 0.538 0.3169
8×∞ (QMC) −9.122(1) 0.587(1) 0.538(1) 0.194(1)

1.5 32×36 (HF) −7.9663 0.469 0.656 0.3610
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