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Edge modes in one-dimensional topological charge conserving spin-triplet superconductors:
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Charge conserving spin singlet and spin triplet superconductors in one dimension are described by the U (1)
symmetric Thirring Hamiltonian. We solve the model with open boundary conditions on a finite line segment
by means of the Bethe ansatz. We show that the ground state displays a fourfold degeneracy when the bulk is
in the spin triplet superconducting phase. This degeneracy corresponds to the existence of zero energy boundary
bound states localized at the edges which may be interpreted, in the light of the previous semiclassical analysis
due to Kesselman and Berg, as resulting from the existence of fractional spin ±1/4 localized at the two edges of
the system.
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I. INTRODUCTION

One of the hallmarks of topological phases of matter is the
existence of protected gapless modes localized at their ends
[1]. This is typically the case of one-dimensional, proximity
induced, topological superconductors which host Majorana
bound states at their edges [2–4]. Since the topological protec-
tion of the edge modes relies on the presence of a finite energy
gap in the bulk, the question has been raised [5] whether
purely one-dimensional superconductors, with the supercon-
ductivity induced by intrinsic attractive charge conserving
interactions, could support protected localized gapless end
modes. Indeed, in these systems charge conservation induces
strong quantum fluctuations leaving the system gapless with
only quasi-long-range superconducting correlations. Due to
the massless charge degrees of freedom, one would expect the
edge modes to leak into the bulk and to be only power-law
localized instead of being exponentially localized.

However, it has been argued that, provided there exist
enough symmetries, exponentially localized zero energy end
modes may also be present in gapless systems and several
such phases have been proposed in the literature [1,6–15].
Among these, maybe the most representative example is pro-
vided by 1D spin-triplet topological superconductors (e.g.,
with dominant triplet superconducting correlations) which are
predicted to host exponentially localized fractional spin- 1

4 at
both ends of an open chain [1] leading to a fourfold ground
state degeneracy in the thermodynamic limit.

These predictions are supported by extensive DMRG cal-
culations [1] in related lattice models, but most of the
arguments leading to the existence of such localized fractional
zero energy modes are based on semiclassical or mean-field
arguments. Therefore, we find it important to provide an ex-
actly solvable model which displays, over a wide range of
coupling constants, spin triplet superconducting correlations

in the bulk and localized zero energy modes at the two edges
of an open geometry. To this end we shall diagonalize in this
work the Hamiltonian of the U (1)-symmetric Thirring with
open boundary conditions (OBC) imposed on the fermions.
The Hamiltonian is given by H = ∫ L/2

−L/2 dx H where

H = −iv(ψ†
Ra∂xψRa − ψ

†
La∂xψLa)

+ψ
†
RaψRb

[
g‖ σ z

abσ
z
cd + g⊥

(
σ x

abσ
x
cd + σ

y
abσ

y
cd

)]
ψ

†
LcψLd .

(1)

In the above equation, σ x,y,z are the Pauli matrices and the
two-components spinor fields ψL(R)(x), which describe left
and right moving fermions carrying spin 1/2 with components
a = (↑,↓).

The U (1) Thirring model, which is an anisotropic XXZ-
type deformation of the SU (2) invariant Thirring model (or
the Chiral invariant two-flavors Gross-Neveu model), de-
scribes both singlet and spin triplet 1D charge conserving
superconductors as well as the quantum phase transition be-
tween them, as a function of the couplings (g‖, g⊥).

The model has has been shown to be integrable with peri-
odic boundary conditions (PBC) [16–18]. However we are not
aware of a solution of the model on a finite line segment with
OBC,

ψLa(±L/2) + ψRa(±L/2) = 0, a = (↑,↓). (2)

It is only, to our knowledge, in the SU (2) invariant case (i.e.,
g‖ = g⊥) that an exact solution has been obtained recently
on the system with one open edge with a Kondo impurity
coupled to it [19]. As we shall demonstrate in Sec. IV, the
model is integrable for arbitrary couplings when the OBC
(2) are imposed on the fermions and it remains integrable
also in the presence of more general boundary conditions
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which are asymmetric with respect to the left and the right
edges.

Solving the model we find it possesses both topologically
trivial and nontrivial phases corresponding to spin singlet
and spin triplet superconducting correlations, respectively.
While the topologically trivial SSS phase phase is unique
and nondegenerate a more interesting situation arises in the
topological STS phase. The exact solution shows that for an
infinitesimal asymmetric OBC a four degenerate ground state
structure emerges resulting from the existence of two zero
energy boundary bound states localized at the two ends of the
system. Two of the ground states have a total z-component
spin Sz = 0 and fermion parity P = +1 while the other two
have Sz = ±1/2 and fermion parity P = −1. This fourfold
degeneracy can be consistently interpreted in the light of the
semiclassical analysis [1] as fractional spin- 1

4 boundary states.
We remark however that when the asymmetry between the
left and right edges is removed we explicitly find only a
threefold degenerate ground state in the thermodynamic limit.
We shall argue that the fourth state can be obtained by acting
with a symmetry operator, analogous to the spin lowering
operator that needs to be applied to the highest weight spin
state provided by the solution to the Bethe ansatz equations of
SU(2) symmetric models in order to complete the multiplets.
In the topological phase such an operator would be given by
either one of the two zero energy Majorana modes, localized
at the two edges of the system, characterizing the topological
degeneracy in a given fermionic parity sector. Overall, our
exact results indicate that quantum fluctuations do not spoil
the topological nature of the spin triplet phase found in the
semiclassical limit.

The paper is organized as follows. We begin in Sec. II by
reviewing the bulk properties of (1) using both fermionic and
bosonic languages. In Sec. III we elaborate on the semiclas-
sical arguments given by Keselman and Berg [1] leading to
existence of localized fractional spin- 1

4 boundary states in the
spin triplet superconducting phase. In Sec. IV we solve the
model using Bethe ansatz in the scaling limit where universal
answers can be obtained for the ground state as well as for
boundary excitations. We shall also consider the effect of
integrable asymmetric boundary conditions between left and
right edges. We finally discuss our results and open questions
in Sec. V.

II. BULK PROPERTIES OF THE U (1)-SYMMETRIC
THIRRING MODEL

In this section we shall present, to be self-consistent, some
of the known results regarding the model. They follow from
the exact solution given in Ref. [18] for PBC and bosoniza-
tion. Most of these results hold when OBC are considered as
far as bulk properties are concerned.

A. Symmetry properties

We start by briefly discussing the symmetry properties of
the model. The Hamiltonian (1) displays, for generic cou-
plings (g‖, g⊥), a U (1)c ⊗ U (1)s symmetry corresponding to
the changes, ψL(R) → eiαc ψL(R) and ψL(R) → eiαsσ

z/2 ψL(R).

As a consequence the total spin Sz and the total number of
fermions N ,

Sz = 1

2

∫
dx (ψ†

Lσ zψL + ψ
†
Rσ zψR), (3)

N =
∫

dx (ψ†
LψL + ψ

†
RψR), (4)

are conserved quantum numbers. The model displays also a
number of discrete symmetries. On top of the chiral symme-
try, i.e., ψL(R) → ψR(L), (1) is time-reversal (TR) symmetric,
T ψL(R) = iσ yψR(L) (T 2 = −1), and is invariant under space
parity x → −x. The U (1)-Thirring model is also invariant
upon reversing the spins of all the fermions, i.e., �L(R),↑ ↔
�L(R),↓. The latter symmetry has a Z2 = {1, τ } group structure
with

τψL(R) = σ x ψL(R), τ 2 = 1, (5)

and, similarly to time reversal T , it reverses the sign of the to-
tal spin Sz, Sz → −Sz. Finally, on the line g‖ = g⊥, the U (1)s

symmetry in the spin sector is enlarged to SU (2). On this
line, the U (1)-Thirring model (1) is invariant under the shift,
ψL(R) → ei	α·	σ/2 ψL(R), and is nothing but the Gross-Neveu
(GN) model.

Duality symmetry

On top of the above symmetries, the model displays also
a duality symmetry � [20] which acts asymmetrically on the
left and right fermions

ψ̂ = �ψ

ψ̂L = ψL, ψ̂R = iσ zψR. (6)

The duality � relates exactly, and at all scales, different mod-
els with opposite couplings g⊥ and −g⊥:

H(ψ, g‖, g⊥) = H(ψ̂, g‖,−g⊥). (7)

In particular it relates the correlation functions between any
set of operators O j (ψ ) and their duals Ô j ≡ O j (ψ̂ ) in the
two ground states of H(ψ, g‖,±g⊥), i.e., 〈O1...On〉g⊥ =
〈Ô1...Ôn〉−g⊥ . This property allows us in principle to de-
duce the properties of dual models with couplings with
say (g‖,−g⊥ < 0) from those of models with couplings
(g‖, g⊥ > 0). It is a symmetry of the phase diagram. Of
particular interest is the model described by (1) on the line
g‖ = −g⊥ which is dual to the SU (2) Gross-Neveu model

HGN(ψa, g, g) and displays a dual ̂SU (2) nonlocal symmetry

ψL → ei	α·	σ/2 ψL, ψR → (σ zei	α·	σ/2σ z )ψR. (8)

We shall refer to the model described by Hamiltonian
HĜN(ψ, g,−g) as the dual ̂SU (2) Gross-Neveu model that we
shall denote ĜN in the following.

B. Bosonization

The Hamiltonian (1) may also be expressed in terms
of bosonic fields using the equivalence between the U (1)-
Thirring model and the sine-Gordon (SG) model. The latter
correspondence is valid in the long distance and low energy
limit [18,21] and is achieved using the bosonization of the
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Fermi field

ψL(R)a(x) = κa√
2πa0

exp [−i
√

π (θa(x) ± φa(x))], (9)

where a = (↑,↓), a0 is a short distance cutoff and
[φa(x), θb(y)] = −iδabθ (x − y), θ (u) being the Heaviside step
function [not to be confused with the dual bosonic field θb(u)].
The operators κa=(↑,↓) are anticommuting Klein factor satis-
fying {κa, κb} = 2δab which ensure that fermions of different
spins anticommute. The long distance and low energy limit of
(1) is described by two scalar bosons fields, a massless charge
field �c and a SG spin field �s as well as their duals �c and
�s,

�c = (φ↑ + φ↓)/
√

2 , �c = (θ↑ + θ↓)/
√

2 (10)

�s = 2
√

π

β
(φ↑ − φ↓) , �s = β

4
√

π
(θ↑ + θ↓), (11)

in terms of which the total number of fermions N and the total
spin Sz can be expressed as

N =
√

2

π

∫
dx ∂x�c, Sz = β

4π

∫
dx ∂x�s. (12)

The Hamiltonian (1) written in terms of these low energy
fields decomposes as H = HLL + HSG where

HLL = uc

2

[
1

Kc
(∂x�c)2 + Kc(∂x�c)2

]
, (13)

a Luttinger liquid Hamiltonian which describes the gapless
charge degrees of freedom and

HSG = us

2
[(∂x�s)2 + (∂x�s)2] − χ

m2
0

β2
cos (β�s), (14)

is the sine-Gordon (SG) Hamiltonian which describes the spin
degrees of freedom. Although in the integrable U (1) Thirring
model the charge Luttinger parameters uc = v and Kc = 1, for
sake of generality, we shall keep them as generic parameters
in the following. In the spin sector χ = sgn(g⊥) and the cou-
plings us, m2

0, and β of the SG model (14) are related to the
couplings (g‖, g⊥) of the U (1) Thirring model (1) in a nonuni-
versal way except in the weak coupling limit (|g‖|, |g⊥|) � 1
where m2

0/β
2 ≈ g⊥us/(πa0)2 and β2/8π ≈ 1 − g‖/(πv).

Finally, to be complete, let us quote how the discrete sym-
metries of the model act on the boson fields. The Z2 symmetry
generator τ in (5) acts on the spin boson fields as

τ�s = −�s, τ�s = −�s, (15)

while the duality symmetry � (6) on the fermion fields trans-
late as

��s = �s + π

β
, ��s = �s − π

β
. (16)

C. Phase diagram

The phase diagram of the U (1) Thirring model depicted in
Fig. 1 is well known and was obtained in Ref. [18] in the case
of periodic boundary conditions. The plane (g‖, g⊥) is divided
into six regions. For g⊥ > 0 one distinguishes between three
regions: A for g‖ > g⊥ > 0, B for g‖ < −g⊥ < 0, and C for
|g‖| > g⊥. For g⊥ < 0 the other three regions are: Â for g‖ >

g‖

g⊥

C

̂C

A

̂A

Topological

B

̂B

STS

SSS

FIG. 1. Weak-coupling phase diagram of the U (1) Thirring
model. In green is the Luther-Emery phase which includes the re-
gions B and B̂. In blue is the spin singlet superconducting (SSS)
phase. It includes the two regions A and C as well as the SU (2) in-
variant GN line at g‖ = g⊥. In red is the spin triplet superconducting
(STS) phase. It includes the two regions Â (dark red) and Ĉ (light
red) and the ĜN line at g‖ = −g⊥. The semiclassical regime corre-
sponding to large g‖ � 1 is not displayed in the figure. In a system
with OBC we show using Bethe ansatz that, in the region A and on
the GN line of the SSS phase, the ground state is nondegenerate. In
contrast, in the region Â and on the ĜN line of the STS phase (dark
red) the ground state is fourfold degenerate. This degeneracy results
from zero energy boundary bound states localized at the edges. We
interpret them in the light of the semiclassical analysis of Kesselman
and Berg [1] as the result of localized spin ±1/4 at the two edges
of the system. We hence give support that the topological phase
found in the strong anisotropic regime in Ref. [1] survives quantum
fluctuations down to the weak coupling regime. In the regions C and
Ĉ we are unable to conclude from the Bethe ansatz analysis about the
ground state degeneracy in the universal regime.

−g⊥ > 0, B̂ for g‖ < g⊥ < 0, and Ĉ for |g‖| < −g⊥. They
are the dual to the g⊥ > 0 regions in the sense of (6). On top
of these six regions are the two invariant GN and ĜN lines
obtained for g‖ = g⊥ and g‖ = −g⊥. On these lines, the model

displays enlarged SU (2) and ̂SU (2) symmetries.
In the regions B and B̂ the four fermion term, proportional

to g⊥ in (1), is irrelevant and both spin and charge sectors
remain massless. The low energy sector of the theory is de-
scribed by two Luttinger liquids, one in each sector. This is
the Luther-Emery phase [22]. The same conclusion holds for
the GN and ĜN lines when g‖ < 0.

In contrast, in the remaining regions, A (Â), C (Ĉ), and
on the GN (ĜN) lines for g‖ > 0, the four fermion term is
relevant: There is a dynamical mass generation m, correspond-
ing to the opening of a spin gap, while a massless charge
excitation decouples from the spectrum. When g⊥ > 0, the
(A, C) regions and the GN line define the same phase. When
g⊥ < 0 the two regions Â, Ĉ and the ĜN line define a differ-
ent, dual, spin gapped phase. The reason why we distinguish
between two regions in a single phase is that, while the theory
is asymptotically free in the ultraviolet in the regions A(Â)
as well as on the GN and ĜN lines, in regions C(Ĉ), it is
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nontrivial in both the infrared and the ultraviolet regimes.
In all these regions the (massive) spectrum and the Bethe
equations are different but the ground state properties do
not qualitatively change within each of the two spin gapped
phases. In particular we stress that there are no phase tran-
sitions on either the GN and ĜN lines between the regions
A and C or Â and Ĉ. The only phase transition between the
two spin gapped phases is between regions A and Â on the
line g⊥ = 0 where the U (1) Thirring model is described by
two charge and spin Luttinger liquids. We refer the reader
interested in more details of these topics to Ref. [18].

Ground state instabilities

As well known in one dimension, due the massless charge
degree of freedom, there can be no true long range order of
any local, superconducting, and/or charge density wave types.
The different phases are instead characterized by both the
ground state degeneracy and the dominant instabilities (i.e.,
the power-law asymptotics of their correlation functions) they
support. In all the phases, the ground state is not degenerate
for PBC and we distinguish between two spin gapped phases.

(i) The SSS phase. This is a spin singlet superconducting
phase which is stabilized when g⊥ > 0 and corresponds to
the regions A, C and the GN line. In this phase a nonzero
mass gap m develops and the system displays both spin singlet
superconducting and charge density wave (CDW) instabilities
with order parameters,

OSSS = ψ
†
Lσ yψ

†
R, OCDW = ψ

†
L ψR, (17)

which, using bosonization, can be shown to display quasi-
long-range order

〈O†
SSS(x)OSSS(0)〉 ∝ |x|−1/Kc , (18)

〈O†
CDW(x)OCDW(0)〉 ∝ |x|−Kc , (19)

where Kc is the charge Luttinger parameter.
(ii) The STS phase. This is a spin triplet superconducting

phase which is obtained when g⊥ < 0 in the regions Â, Ĉ, and
ĜN . In this phase both SSS and CDW correlation functions
are short range and the instabilities are of the spin triplet su-
perconducting (STS) and the spin density wave (SDW) types
with order parameters,

OSTS = ψ
†
Lσ xψ

†
R, OSDW = iψ†

Lσ zψR, (20)

and asymptotics

〈O†
STS(x)OSTS(0)〉 ∝ |x|−1/Kc , (21)

〈O†
SDW(x)OSDW(0)〉 ∝ |x|−Kc . (22)

The two types of instabilities in (17) and (20) are mutually
nonlocal and are actually dual to each other in the sense of
(6), i.e., OSTS = ̂OSSS and OSDW = ̂OCDW. They only coex-
ist on the line of fixed points g⊥ = 0 where the spin gap
closes. The two SSS and STS phases define therefore two
different phases separated by the quantum phase transition
line (g⊥ = 0, g‖ � 0). Notice that in a general 1D electron gas
[23] the superconducting and density waves instabilities have
different power-law asymptotics, i.e., ∝|x|−1/Kc and ∝|x|−Kc ,
respectively. Which instability dominates depends on Kc and

it is custom to label the phases by their dominant instability:
Either CDW or SDW when Kc < 1 and either SSS or STS
phase when Kc > 1. In the present integrable model, where
Kc = 1, both types of instabilities are equally dominant and
we choose to label the two phases by the type of supercon-
ducting instability they support, i.e., SSS when g⊥ > 0 and
STS when g⊥ < 0.

III. OPEN BOUNDARIES: SEMICLASSICAL
APPROXIMATION

We now consider the effect of the OBC (2) on the fermions.
Before going into the detailed analysis of our exact solution,
we discuss the model in the strongly anisotropic limit: g‖ �
1, |g⊥| � 1 (called quasiclassical regime in Ref. [18]) where,
as far as bulk properties are concerned, the U (1) Thirring
model can be regarded as a regularized integrable version
of the SG model (14) with β2/4π < 1 and m2

0 small. In the
quantum regime, i.e., when 1 < β2/4π < 2, this ceases to be
true and the equivalence between the U (1) Thirring model and
the SG model is only valid in the asymptotic low-energy/long-
distance limit.

The OBC on the fermions (2) translate to the charge
bosonic field (13) and the spin bosonic field of the SG model
(14) as

�c(−L/2) = 0, �c(+L/2) =
√

π

2
N, (23)

�s(−L/2) = 0, �s(+L/2) = 4π

β
Sz. (24)

Therefore, since the total number of particle of each spin com-
ponent N(↑,↓) enclosed in a finite chain is an integer, N ± 2Sz

has to be an even integer. This implies that the total particle
number sector N of the Luttinger liquid Hamiltonian (13) and
the total Sz sector of the SG model (14) are not independent
but constrained by

N even ⇔ Sz ∈ Z, N odd ⇔ Sz ∈ Z + 1
2 . (25)

Besides the latter constraint, the physics of the U (1) Thirring
model in the presence of OBC in the semiclassical regime
boils down to that of the SG model (14) with the OBC (24).
The effect of Dirichlet boundary conditions on the spectrum of
the SG model has been extensively studied [24–26]. It appears
that, in the presence of the OBC (24), boundary bound states
are likely to be stabilized in an extended part of the phase
diagram which corresponds to a region which is deep in the
STS phase. As we shall see, these boundary bound states
emerge straightforwardly in the semiclassical analysis and are
responsible, as first stressed out in Ref. [1], of the topological
nature of the STS phase in the limit of large g‖ � 1, |g⊥| � 1.

Semiclassical analysis

The semiclassical limit of the SG model corresponds to the
limit β → 0 (keeping m2

0 small fixed) and to large g‖ � 1. It
is well understood as far as PBC are concerned [27]. For OBC,
as we shall see, the ground state degeneracy dramatically
changes when going from the SSS phase (g⊥ > 0) to the STS
phase g⊥ > 0. In the limit β → 0, as argued by Keselman
and Berg [1], the system in the STS phase hosts symmetry
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protected edge states with fractional spin Sz = ±1/4, which
are exponentially localized at each edge. These edge states
become degenerate in the thermodynamical limit leading to
a fourfold ground state degeneracy. In the following we shall
follow the lines of arguments presented in Ref. [1] and elabo-
rate on the nature of the edge states Hilbert space.

1. Classical edge kinks

In the limit, β → 0, the boson spin field is locked to the
minima �s,n of the cosine term in (14) which depend on the
sign of g⊥

�s,n = n
2π

β
, χ > 0, (26)

�s,n =
(

n + 1

2

)
2π

β
, χ < 0, (27)

where we recall that χ = sgn(g⊥) and n ∈ Z. Clearly in the
SSS phase (χ > 0) given the OBC (24), there is a unique min-
imum at �s,n = 0 which corresponds to a total spin Sz = 0.
In the STS phase (χ < 0) the situation radically changes as
none of the minima in (27) match with the OBC (24). The
lowest energy states in this case consist of classical kinks
configurations of the spin field �s(x) which interpolate be-
tween �s(−L/2) = 0 and �s(+L/2) = 4π

β
Sz and match in

the bulk (i.e., when −L/2 � x � +L/2) with one of the
classical ground states (27). Due to the spin gap m in the
bulk, these kinks are exponentially localized near both left and
right edges at x = −L/2 and x = +L/2, respectively, and, to
the exponential accuracy in the system size [i.e., to O(e−mL )],
each edge can be treated separately. Hence, for large system
sizes, i.e., when mL � 1, the kinks can be seen as the sum of
left and right kinks which interpolate between �s(−L/2) = 0
and �s,n = (n + 1

2 ) 2π
β

in bulk and between �s,n = (n + 1
2 ) 2π

β

in bulk and �s(+L/2) = 4π
β

Sz.
Consider first the left edge at x = −L/2. As depicted in

Fig. 2, there the lowest energy states consist of classical kinks
interpolating between �s(−L/2) = 0 and one of the two clas-
sical ground states �s = ±π/β in the bulk. Due to (12) these
two left kinks correspond to an accumulation of a fractional
spin at the left edge,

Sz
L = β

4π

∫ y

−L/2
dx ∂x�s = ±1/4, (28)

where y is some point deep in the bulk. These two left kinks
cost a finite energy but have the same energy owing to the
Z2 symmetry (15) which exchanges the two ground states
in the bulk, i.e., π/β ↔ −π/β. A similar analysis can be
done at the right edge at x = L/2. The situation there depends
on the total spin Sz enclosed in the system. When Sz = 0
the lowest energy states consist of right kinks interpolating
between �s = ±π/β in the bulk and �s(+L/2) = 0. They
correspond to an accumulation of a fractional spin,

Sz
R = β

4π

∫ L/2

y
dx ∂x�s = ∓1/4, (29)

at the right edge. When Sz = ±1/2 the right kinks interpolate
between �s = ±π/β in the bulk and �s(+L/2) = ±2π/β at
the edge. They also accumulate a fractional spin at the right

L
2−L

2

π
β

−π
β

−2π
β

2π
β

0
x

Φs

Sz = 1
2

Sz = −1
2

Sz = 0

FIG. 2. Classical kink configurations in the STS phase in the
presence OBC as taken from Ref. [1]. The red (blue) lines correspond
to edge kinks with an accumulation of spin �Sz = 1

4 (− 1
4 ). The two

green horizontal lines correspond to the constant values that the spin
field �s takes in the two bulk ground states �s = ± π

β
.

edge Sz
R = ±1/4. Since kinks depend only on the accumula-

tion of spin they carry, there are only two independent right
classical kinks with spin ±1/4. Due to the Z2 symmetry (15)
these right kinks have the same energy. All together there
are four classical kinks states, two at the left and two at the
right edges, each carrying fractional spins ±1/4 and having,
to O(e−mL ) accuracy, the same classical energy thanks to the
Z2 symmetry (15).

2. Quantum edge kinks

To promote the above left and right classical kinks to quan-
tum states one needs to assume the existence of quantum kinks
at each edge ∣∣± 1

4

〉
L,
∣∣± 1

4

〉
R, (30)

labelled by their local fractional spins. Concurrently this im-
plies the existence of local quantum spin operators Sz

L and
Sz
R, [Sz

L, Sz
R] = 0, which, when acting on the left and right

quantum kinks states, have fractional eigenvalues

Sz
L
∣∣± 1

4

〉
L = ± 1

4

∣∣± 1
4

〉
L,

Sz
R
∣∣± 1

4

〉
R = ± 1

4

∣∣± 1
4

〉
R. (31)

With these assumptions, the edge state Hilbert space is given
by the tensor product of left and right kinks states (30) and
consists of the four states∣∣± 1

4

〉
L ⊗ ∣∣± 1

4

〉
R, (32)

which can be sorted out according to the total spin

Sz = Sz
L + Sz

R (33)

into two Sz = 0 states∣∣+ 1
4

〉
L ⊗ ∣∣− 1

4

〉
R,

∣∣− 1
4

〉
L ⊗ ∣∣+ 1

4

〉
R (34)
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and two Sz = ±1/2 states∣∣+ 1
4

〉
L ⊗ ∣∣+ 1

4

〉
R,

∣∣− 1
4

〉
L ⊗ ∣∣− 1

4

〉
R. (35)

Although the left and right edge states carry fractionalized
spins ±1/4 the total spins of the four ground states have
integer and half integer values as it should.

3. Majorana modes and symmetry fractionalization

The above analysis matches the mean field approaches
[15,28] based on coupled Majorana chains that we shall la-
bel “x” and “y” chains. It leads the existence of four local
Majorana modes (two at each edge)(

σ x
L, σ

y
L
)

and
(
σ x
R, σ

y
R
)
, (36)

which satisfy the Clifford algebra, i.e., {σμ
r , σ ν

r′ } = 2δrr′δμν

where (μ, ν) = (x, y) and (r, r′) = (L,R). At each edge, the
low energy Hilbert space is described by the two SO(2)(L,R)

spinors (30) which span two irreducible projective represen-
tations of the U (1) symmetry group generated by

s(L,R) = 1
4i

[
σ x

(L,R), σ
y
(L,R)

]
. (37)

These two representations are eigenvectors of the local
fermionic parity operators

PL = −iσ x
Lσ

y
L = σ z

L,

PR = −iσ x
Rσ

y
R = σ z

R, (38)

with [PL,PR] = 0 and P(L,R) = ±1. They are related to the
local spin operators by

σ z
(L,R) = −iei2πSz

(L,R) , (39)

or equivalently by Sz
(L,R) = 1

4σ z
(L,R), so that the states

| ± 1
4 〉(L,R) have local fermionic parities P(L,R) = ±1. One

may verify, using (25), that the total fermionic parity operator
fractionalizes into

P = −PLPR = (−1)N . (40)

In this scheme, the two Sz = 0 states in (34) with an even total
fermionic parity P = +1 are the tensor products of states with
opposite local parities. The two states (35) with total spins
Sz = ±1/2 have an odd total fermionic parity P = −1 and
are the tensor products of states with the same local parities.

When projected onto the low energy subspace of the edges
kinks, the Z2 symmetry group (5) also fractionalizes between
the two edges into local Z2,(L,R) symmetry groups

Z2,(L,R) = {
1, σ x

(L,R)

}
,
(
σ x

(L,R)

)2 = 1. (41)

The local spin flip operators σ x
(L,R) reverse the spins Sz

(L,R)
(as well as the fermion parities P(L,R)) at each edge and the
total spin flip operator τ of the Z2 symmetry in (5) is given by

τ = iσ x
Lσ x

R. (42)

Since [τ,P] = 0, in each fermionic parity sector P = ±, one
may sort out the states (34) and (35) into symmetric and
antisymmetric states |P = ±, τ = ±〉 with respect to the total
spin flip operator τ , i.e.,

P|±, τ 〉 = ±|±, τ 〉, τ |P,±〉 = ±|P,±〉, (43)

where

|+,±〉 =
√

1

2

(∣∣∣∣+ 1

4

〉
L

⊗
∣∣∣∣− 1

4

〉
R

±
∣∣∣∣− 1

4

〉
L

⊗
∣∣∣∣+ 1

4

〉
R

)
,

|−,±〉 =
√

1

2

(∣∣∣∣+ 1

4

〉
L

⊗
∣∣∣∣+ 1

4

〉
R

±
∣∣∣∣− 1

4

〉
L

⊗
∣∣∣∣− 1

4

〉
R

)
.

(44)

While working in this basis it is suitable to introduce new
Majorana operators, λ(L,R) and η(L,R), which are associated
with the two commuting Z2 symmetries of the problem: the
Z2 = {1, τ } symmetry (5) associated with the spin flip sym-
metry of the Hamiltonian and the ZF

2 = {1,P} fermion parity
symmetry. With the correspondence

λL = σ z
L, λR = −iσ y

Lσ x
R,

ηL = σ z
Lσ x

R, ηR = σ
y
R, (45)

we check that [λr, ηr′ ] = 0, {λr, λr′ } = {ηr, ηr′ } = 2δrr′ , and

τ = iλLλR, P = iηLηR. (46)

The problem then decouples into two commuting λ and η

Majorana modes which are associated with the Z2 and ZF
2

symmetries, respectively. In a given total fermion parity sector
the Majorana λ(L,R) exchange symmetric and antisymmetric
states |P, τ 〉 ↔ |P,−τ 〉 while the Majorana η(L,R) reverse
the fermion parity of either the symmetric or the antisymmet-
ric states |P, τ 〉 ↔ | − P, τ 〉.

4. Particle number conservation

So far we have described the spin sector only. Including the
charge degrees of freedom is the equivalent to enforce par-
ticle number conservation together with the constraint (25).
In a system with overall conservation of the total number
of fermions N , the states with different fermionic parities
P must differ by an odd number of fermions. Hence the
minimum energy difference between the states with P = +1
and P = −1 in (44) is given by the energy cost of adding
or removing a charge in the system. This is the charging
energy which, in a Luttinger liquid, goes to zero as 1/L in
the thermodynamical limit. Thus the four states (34), (35) or
equivalently (44) are degenerate in the L → ∞ limit. At finite
size though, the effect of particle number conservation is to lift
the fourfold degeneracy of the edge states. In a finite system
the ground state of the system is (to the exponential accuracy
in the system size) only doubly degenerate. The states with
opposite fermion parities | ± P, τ 〉 are separated by a gap
of order 1/L whereas, in each parity sector, the symmet-
ric and antisymmetric states |P,±τ 〉 are (quasi)degenerate
with a much smaller energy splitting δE ∼ e−mL. The result-
ing twofold (quasi)degeneracy is exhausted by the two zero
energy Majorana modes (λL, λR) [see Eq. (45)] which are
localized at each edge of the system and confer the STS phase
a topological degeneracy which results from the Z2 symmetry
of the problem.

Strictly speaking the arguments leading to the existence
of the symmetry protected zero energy edge modes (30),
and concurrently to the topological degeneracy, are valid in
the semiclassical regime which corresponds to the strongly
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anisotropic regime of the U (1) Thirring model. Hence, the
mere existence of a stable topological phase that extends in the
whole STS phase rely on the assumption that quantum fluctu-
ation do not spoil the nice picture described above. This is
particularly true in the weak coupling regime, i.e., 0 < g‖ �
1, 0 < −g⊥ � 1, where quantum fluctuations are strong. We
also stress that at the heart of the existence of fractional edge
states (30) is the assumption that the fractionalization of the
spin quantum number at the edges is a genuine phenomenon.
This implies that the fractional spin operators Sz

(L,R), defined
semiclassically in (28) and (29), have to be given a proper
sense in the full quantum theory as sharp quantum observable
with zero variance in the thermodynamical limit, i.e.,

lim
L→∞

〈(
Sz

(L(R)

)2〉− (〈
Sz

(L,R)

〉)2 = 0. (47)

In a strongly interacting theory this is a highly nontrivial
issue. It is only, to our knowledge, for free massive fermions
interacting with a classical soliton-anti-soliton field that the
fractionalization at the fermion charge at the locations of the
soliton and antisoliton fields has been clearly established [29].
In the present context, which corresponds to β2 = 4π , the
soliton and the antisoliton can be seen as the two left and
right boundaries and the fractionalized fermion charge ±1/2
corresponds to the fractional spin ±1/4 quantum edge states.

This supports the results obtained above in semiclassical
analysis. However, it says nothing about quantum regime
(β2 > 4π ) where quantum fluctuations are strong. To inves-
tigate this regime other methods are required. This will be
provided in the next section when solving the model (1) using
the Bethe ansatz.

IV. OPEN BOUNDARIES: THE BETHE ANSATZ SOLUTION

In this section we solve exactly, using the Bethe ansatz, the
U (1) Thirring model when OBC are imposed on the fermions.
We shall present the Bethe equations for all values of the cou-
plings g‖ and g⊥. In the following we shall present our results
for the regions A(Â) of the phase diagram (see Fig. 1) and
on the GN(ĜN) lines at g‖ = ±g⊥ where universal answers
can be obtained in the scaling limit. In the latter limit, the
cutoff D is taken to infinity while the mass (the spin gap) m is
kept fixed. This corresponds to the region of small couplings
(|g‖|, |g⊥|) � 1 where β2 ∼ 8π in the SG model (14) and this
is precisely the quantum regime we want to investigate. In
the regions C(Ĉ), as well known, taking the scaling limit is
a nontrivial issue since, as seen in Fig. 1, the limit of infinite
cutoff corresponds to a strong coupling fixed point (the theory
is not asymptotically free) whose nature is, to our knowledge,
unknown. In the following we shall thus concentrate on the
portions of both the SSS and STS phases that correspond to
the regions A(Â) and the GN(ĜN) lines in Fig. 1.

A. Overview of Bethe ansatz solution

Our main focus will be on the the effects of the open
boundaries on the ground state properties and we shall not
discuss their effects on the gapped excitations. Before pro-
ceeding to the actual calculation we present here an outline of
the results. We shall show that the model when defined on a
line segment with open boundary conditions is integrable and

that its properties are given by a set of algebraic equations, the
Bethe ansatz equations, which in addition to incorporating the
scattering dynamics of the model also incorporate the bound-
ary conditions. We shall derive the equations and discuss in
detail the boundary effects that follow from the presence of the
boundary terms in the Bethe ansatz equations. The solutions
of the equations, the Bethe roots, together with the total spin
Sz usually characterize the eigenstates of the Hamiltonian, its
ground state in particular (see below).

Analyzing the equations we shall find that in the SSS
phase the ground state is unique with a total spin Sz = 0 as
in the periodic boundary conditions case [18]. In this state
all the Bethe roots are real. In the STS phase on the other
hand we find three ground states which are degenerate in

the thermodynamic limit. Two of the states, denoted |̂ 1
2 〉 and

| − 1̂
2 〉, have spins Sz = 1/2 and Sz = −1/2, respectively. The

state with spin Sz = 1/2 is constructed from Bethe reference
state with all spin up and the state with spin Sz = −1/2 is
constructed from Bethe reference state with all spin down.
These states have all real Bethe roots and have identical Bethe
root distribution. The third state |̂0〉 has spin Sz = 0. It is
constructed by adding a purely imaginary solution to either

of the states |̂ 1
2 〉, | − 1̂

2 〉. Purely imaginary Bethe roots are
referred to as boundary strings and correspond to boundary
bound states [26].

So far our Bethe ansatz solution for symmetric OBC ap-
pears to disagree with the semiclassical predictions which
predict two Sz = 0 states. We note however that in the pres-
ence of symmetries the solutions to Bethe equations might not
give all the states in the Hilbert space. To obtain these states,
one needs to apply operators associated with the symmetries
to the states obtained directly from the Bethe equations—
examples are spin raising operators applied to a highest weight
state obtainable as Bethe ansatz state so as to complete a
SU (2) multiplet.

In the present case the space parity symmetry x → −x
induces two equal boundary terms in the Bethe equations of
the STS phase, due to which the boundary string occurs as
a double pole. One expects that this double pole corresponds
to two states, namely, there exists another singlet state |̂0′〉 in
addition to the state |̂0〉. As this state |̂0′〉 cannot be obtained
directly from the Bethe equations and the construction of
a corresponding generating symmetry operator in the Bethe
ansatz framework is a nontrivial task, we resolve this issue by
considering a slightly asymmetric boundary conditions allow-
ing a small twist ε′ between the left and right moving fermions
at the right boundary [to be defined in (92)]. This splits the
double pole giving rise to the expected additional boundary
string solution, the fourth state |̂0′〉, which is obtained in the
limit where ε′ → 0.

This asymmetric BC which also breaks the Z2 symmetry
does not change the number of ground states in the SSS
phase which remains unique with spin Sz = 0 in the scaling
limit. In the STS phase we obtain four states, two with spin
Sz = ±1/2 and two with spin Sz = 0 in the scaling limit. As

before, the state |̂ 1
2 〉ε′ with spin Sz = 1/2 is constructed from

Bethe reference state with all spin up and the state | − 1̂
2 〉ε′ ,

with spin Sz = −1/2, is constructed from Bethe reference
state with all spin down. These two states have all real roots
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TABLE I. Total spin and energy in the scaling limit of low lying
states in the STS phase with asymmetric boundary conditions.

State Total spin Energy

|̂0′〉ε′ 0 0

|−̂ 1
2 〉ε ′ −1/2 0

|̂0〉ε′ 0 δEε′

|̂ 1
2 〉ε ′ 1/2 δEε′

but have now slightly different Bethe root distributions and
they differ in their energy: ESz=1/2 − ESz=−1/2 = δEε′ . Again,
a state |̂0〉ε′ with spin Sz = 0 can be obtained by adding a
purely imaginary solution to the state with spin Sz = 1/2 and
is degenerate with it. However, due to the presence of the
asymmetry another purely imaginary solution exists, which
when added to the state with spin Sz = 1/2 gives a state |̂0′〉ε′

with spin Sz = 0 which is degenerate with the state with spin
Sz = −1/2.

In the limit ε′ → 0, when the asymmetry vanishes, the

energy difference δEε′ → 0 and the states |̂ 1
2 〉ε′ , | − 1̂

2 〉ε′ trans-

form into states |̂ 1
2 〉 and | − 1̂

2 〉, respectively. The two singlet
states |̂0〉ε′ and |̂0′〉ε′ yield two different spin singlet states
|̂0〉 and |̂0′〉 which are quasidegenerate in the limit ε′ � 1.
The state |̂0′〉 is precisely the state we wished to construct in
the symmetric BC case. We thus conclude that the fourfold
ground state degeneracy found in the semiclassical analysis
by Kesselman and Berg [1] in the strongly anisotropic regime
(g‖ � 1) survives strong quantum fluctuations down to weak
couplings in the region Â and on the dual Gross-Neveu line
ĜN (Table I).

B. Bethe equations

Since the Hamiltonian (1) commutes with total particle
number N (4), H can be diagonalized by constructing the ex-
act eigenstates in each N sector. From here on, for notational
convenience, we shall use the notation (+,−) to indicate
the chirality index of the fermions replacing (R, L) notation.
The N-particle eigenstate takes the standard reflection Bethe
ansatz form of a plane wave expansion in N! 2N different
regions of coordinate space. The state is labeled by momenta
k j, j = 1 · · · N , the same in all regions, and is given by

|{k j}〉 =
∑

Q,	a,	σ

∫
dN x θ (xQ)A{σ }

{a} [Q]
N∏
j

eiσ j k j x j ψ†
a jσ j

(x j )|0〉

(48)

with energy eigenvalue E = ∑
j k j . In the above equation, the

sum is to be taken over all spin and chirality configurations
specified by {a} = {a1 . . . aN }, {σ } = {σ1 . . . σN } as well as
different orderings of the N particles. These different order-
ings correspond to elements of the symmetric group Q ∈ SN .
Here θ (xQ) denotes the Heaviside function which is nonzero
only for that particular ordering Q. The amplitudes A	σ

	a [Q] are
related to each other by the various S matrices. Amplitudes
which differ by changing the chirality of the rightmost and
leftmost particle are related by the boundary S matrices which

are identities in our system owing to the open boundary con-
ditions (2). Amplitudes which are related by swapping the
order of particles with different chiralities are related by the
particle-particle S matrix, which is given by [17]

Si j =

⎛⎜⎜⎜⎜⎜⎜⎝
1

sinh( f )

sinh( f + η)

sinh(η)

sinh( f + η)
sinh(η)

sinh( f + η)

sinh( f )

sinh( f + η)
1

⎞⎟⎟⎟⎟⎟⎟⎠, (49)

where η = −iu and f , u are related to g‖ and g⊥ through the
relations

cos(u) = cos(g‖)

cos(g⊥)
,

sin(u)

tanh( f )
= sin(g‖)

cos(g⊥)
. (50)

An additional S matrix, denoted by W i j , is also required. It
relates amplitudes that differ by exchanging particles of the
same chirality. This is given by

W i j = Pi j . (51)

The consistency of the solution is then guaranteed as the S and
W matrices satisfy the Yang-Baxter and Reflection equations
[30–32].

Imposing the boundary condition at x = ±L/2 quantizes
the single particle momenta k j which are expressed in terms
of M parameters λβ , the Bethe rapidities or Bethe roots, which
satisfy a set of coupled nonlinear equations called the Bethe
equations. In a state, M denotes the number of down spins
and N − M is the number of up spins and vice versa. We
use the method of boundary algebraic Bethe ansatz to obtain
the logarithmic form of Bethe equations, which take different
forms in different regions of Fig. 1.

For definiteness we give the explicit form of the Bethe
equations in the regions A and Â below.∑

σ=±
N�(λα + σ f /2u, 1/2) − 2�(λα + iτπ/2u, 1/2)

=
M∑

β=1

∑
σ=±

�(λα + σλβ, 1) + 2iπ Iα, (52)

k j = πn j

L
+ i

2L

M∑
β=1

∑
σ=±

�( f /2u + σλβ, 1/2), (53)

where �(x, y) = log ( sinh(u(x+iy))
sinh(u(x−iy)) ). The second term in

Eq. (52) is a boundary term where τ = 1 in the region A,
and τ = 0 in region Â. The parameters f , u are real in the
regions A and Â. The GN and ĜN lines correspond to the
isotropic limit ( f , u → 0, f /u = 1/g) of the Bethe equations
of regions A and Â, respectively [18]. We work in the region
where u < π/2 which corresponds to 4π < β2 < 8π in SG.

The boundary term in the topological phase leads to a
dramatic change in the degeneracy of the ground state in the
region Â and on the ĜN line. The Bethe roots govern the
spin degrees of freedom of the system and M � N/2 gives
the total z component of spin, Sz = N/2 − M. The solutions to
equations of type (52) are well studied in the literature [33,34].
The solutions λα can be real or take complex values in the
form of strings. In order to have a nonvanishing wave function
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they must all be distinct, λα �= λβ . In addition, the values
λα = (0, iπ/2u) should also be discarded as they result in a
vanishing wave function [34]. Bethe equations of the type (52)
are reflective symmetric, that is they are invariant under λα →
−λα transformation. Due to this symmetry, solutions to the
Bethe equations occur in pairs {−λα, λα}. The integers n j and
Iα arise from the logarithmic branch and serve as the quantum
numbers of the states. The quantum numbers Iα correspond to
the spin degrees of freedom while the quantum numbers nj

are associated with the charge degrees of freedom and they
must all be different. Iα and n j can be chosen independently
implying the charge spin decoupling. Minimizing the ground
state energy results in a cutoff such that the π |nj |/L < πD
where D = N/L is the density [16].

C. The SSS phase

This corresponds to the regions A and the GN line, as
displayed in Fig. 1. We shall consider them separately in the
following.

1. Region A

The ground state is given by the particular choice of charge
and spin quantum numbers n0

j , I0
α , where n0

j are consecutively
filled from the lower cutoff −LD upwards, and the integers I0

α

take consecutive values which corresponds to real valued λα

roots in the region A. In the limit N → ∞ the Bethe roots fill
the real line and the ground state can be described by ρ(λ) the
density of solutions λ, from which the properties of the ground
state can be obtained. Reflection symmetry of the Bethe equa-
tions (52) allows us to define λ−α = −λα, λ0 = 0 [35] and
introduce the counting function ν(λ) such that ν(λα ) = Iα .
Differentiating (52), and noticing that ρ(λ) = d

dλ
ν(λ) [36], we

obtain the following integral equation,

hA(λ) = ρA(λ) +
∫ +∞

−∞
dμ a2(λ − μ)ρA(μ), (54)

where ρA stands for the ground state density distribution in the
region A and hA(λ) = Na1(λ + σ f /2u) + a2(λ) + a1(λ) −
b1(λ) where

an(x) = u

π

sin(nu)

cosh(2ux) − cos(nu)
, (55)

bn(x) = − u

π

sin(nu)

cosh(2ux) + cos(nu)
. (56)

Note that we have excluded the root λ = 0 and also applied
the restriction λα �= λβ .

Solving (54) by Fourier transformation [37] we obtain the
Fourier transformed ground state distribution of Bethe roots
in the region A

ρ̃A(ω) =
N cos

[ f ω
2u

]+ 1
2

( sinh((π−2u)(ω/2u))+sinh(ω/2)
sinh((π−u)(ω/2u)) + 1

)
cosh

[
ω
2

] .

(57)

The term which is proportional to N corresponds to the bulk
contribution while the terms of order N (0) can be associ-
ated with the boundaries at x = (−L/2, L/2). The number of

Bethe roots MA in the ground state of region A is given by

2MA + 1 =
∫ +∞

−∞
dλ ρA(λ), (58)

from which the z component of spin (Sz )A of the ground state
in this region is obtained using the relation Sz

A = N/2 − MA.
Taking into account that ρ̃(0) = ∫

dλ ρ(λ) along with (57)
we find that in the scaling limit, i.e., when |g‖| � 1, |g⊥| �
1, u � 1,

(Sz )A = 0. (59)

We thus find from (25) that the ground state in the region A
has an even number of fermions and hence an even fermion
parity P = +1. It is nondegenerate and is a Z2 singlet.

2. GN line

On the GN line, the Bethe equations can be obtained by
taking the limit f , u → 0, f /u = 1/g, which leads to the limit

log

(
sinh(u(x + iy))

sinh(u(x − iy))

)
→ log

(
x + iy

x − iy

)
,

log

(
cosh(u(x + iy))

cosh(u(x − iy))

)
→ 1 (60)

in (52). We obtain the following integral equation

hGN (λ) = ρGN (λ) +
∫ ∞

−∞
dμ ρGN (μ) ϕ(λ − μ, 1), (61)

where ρGN stands for the ground state density distribution
on the GN line and hGN (λ) = ∑

σ=± 2Nϕ(2λ + σ/g, 1) +
2ϕ(2λ, 1) + ϕ(λ, 1) where

ϕ(x, a) = (1/π )(a2 + x2)−1. (62)

Solving (61) by Fourier transformation [19] we obtain the
ground state distribution on the GN line,

ρ̃GN (ω) =
N cos

[
ω
2g

]+ 1
2 + 1

2 e− |ω|
2

cosh
[

ω
2

] . (63)

The number of Bethe roots is given by an equation similar to
(58), using which we obtain

(Sz )GN = 0, (64)

for the ground state in the region GN . Exactly as in the
region A in the SSS phase, the ground state on the GN line
is nondegenerate and has an even fermion parity P = +1. It
is actually, on top of being a Z2 singlet, an SU (2) singlet.

In summary, we have seen that, although the descriptions
of the ground state in terms of the Bethe root distribution
is different in the region A and on the GN line, the ground
state belongs to the even fermion parity sector P = +1. It is
nondegenerate, has a zero total spin Sz = 0, and is at least a
Z2 singlet. Labeling the SSS ground state as |0〉 we have

Sz|0〉 = 0, P|0〉 = |0〉, τ |0〉 = |0〉, (65)

where P = (−1)N is the fermionic parity operator and τ is
the total spin flip operator generating the Z2 symmetry group
(5). As in the case where periodic boundary conditions are
imposed, the ground state properties are the same in these
regions and there is no phase transition between them.
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D. The STS phase

This corresponds to the regions Â and the ĜN line. As
already emphasized, in the STS phase the boundary term in
the Bethe equations (52) leads to a change in the ground state
degeneracy as we shall now see.

1. Region ̂A

By following the same procedure as before, we obtain the
following integral equation

hÂ(λ) = ρÂ(λ) +
∫ ∞

−∞
dμ a2(λ − μ)ρÂ(μ), (66)

where ρÂ stands for the ground state density distribution in the
region Â and hÂ(λ) = Na1(λ + σ f /2u) + a2(λ) − a1(λ) +
b1(λ). Solving (66) by Fourier transform we obtain the ground
state distribution in region Â

ρ̃Â(ω) =
N cos

[ f ω
2u

]+ 1
2

( sinh((π−2u)(ω/2u))−sinh(ω/2)
sinh((π−u)(ω/2u)) − 1

)
cosh

[
ω
2

] .

(67)

Notice that the second and third term of the boundary contri-
bution in the above expression have opposite sign compared
to those in region A (57). As a consequence, using (58), we
find that the ground state in region Â has a nonzero spin

(Sz )Â = 1
2 , (68)

which, from (25), corresponds to an odd number of particles
N and hence has an odd fermion parity P = −1. Due to the
Z2 symmetry (5) we immediately deduce that there is another
ground state in the same fermion parity sector, degenerate
with the above, which has the opposite spin

(Sz )Â = − 1
2 . (69)

Actually, this state can be obtained by choosing the Bethe
reference state with all spins down instead of up [38]. The two
states Sz = ±1/2 have the same Bethe root distribution and
transform into each other under the action of the Z2 generator
τ . This is to be contrasted with the situation in the region A
where the ground state, having Sz = 0, has an even fermion
parity P = +1 and is a Z2 singlet.

2. ̂GN line

The Bethe equations on the ĜN line are rational just as in
the case of GN . They can be obtained by taking the isotropic
limit (60) of the Bethe equations in region Â. We obtain the
following integral equation

hĜN (λ) = ρĜN (λ) +
∫ ∞

−∞
dμ ρĜN (μ) ϕ(λ − μ, 1), (70)

where ρĜN stands for the ground state density distribution
on the ĜN line and hĜN (λ) = ∑

σ=± 2Nϕ(2λ + σ/g, 1) −
2ϕ(2λ, 1) + ϕ(λ, 1).

Solving (70) by Fourier transformation we obtain the fol-
lowing distribution of Bethe roots in the ground state on the
ĜN line

ρ̃ĜN (ω) =
N cos

[
ω
2g

]− 1
2 + 1

2 e− |ω|
2

cosh
[

ω
2

] . (71)

Using an equation similar to (58) we obtain two degenerate
ground states with spins

(Sz )ĜN = ± 1
2 . (72)

As in the region Â these two states have an odd fermion parity
and transform into each other under τ . Notice that, contrarily
to the ground state on the GN line, they are obviously not
SU (2) singlet states. This is consistent with the fact that on
the ĜN line the model is only U (1)s ⊗ Z2 symmetric and that
the enlarged ̂SU (2) symmetry (8) is nonlocal.

Just as in the SSS phase, despite having a different de-
scription in terms of the Bethe root distributions, there is
no phase transition between these regions in the STS phase.
Here the ground state belongs to the odd fermion parity sector
P = −1 and is doubly degenerate, each ground state having
spins Sz = ±1/2. The degeneracy here is to be understood as
the consequence of the nonvanishing of the spin in the ground
state and of the Z2 symmetry which reverses the total spin.
This is to be contrasted with what happens in the SSS phase
where the ground state, having a spin zero, is not degenerate.

As we shall see, besides the two degenerate states with
Sz = ±1/2, there is one more state with Sz = 0 which is
degenerate with the ground states in the large system size limit
L → ∞. This state is a solution of the Bethe equations that
involve a boundary string which corresponds to a boundary
mode.

E. Bulk excitations

Excitations correspond to states whose quantum numbers
n j or Iα have been modified from their ground state config-
urations. Note that we can choose n j and Iα independently,
meaning that the spin and charge degrees of freedom are
decoupled [16,39,40]. In the charge sector the excitations are
constructed by removing a number nh < 0 from the sequence
n0

j and adding an extra np > 0. The energy of this excitation
is δE = 2π (np − nh)/L > 0. Gapless excitations such as this
are known as holons. The structure of excitations in the spin
sector is more complicated as they arise from solutions to the
Bethe ansatz equations (52) for non-ground-state configura-
tions of the Iα quantum numbers. The lowest energy spin bulk
excitation is of two spinons which is constructed by removing
two arbitrary Bethe roots λh

1, λ
h
2 from the ground state distribu-

tion [16]. Each hole corresponds to a single spinon with spin
+1/2. The energy of this excitation in all the regions except
on the GN and ĜN lines is

δE =
2∑

l=1

D arctan

[
cosh(πλh

l /u)

sinh ( f π/2u)

]
. (73)

From this we find that the system has dynamically generated
a superconducting mass gap in the spin sector

m = D arctan [sinh( f π/2u)]−1. (74)

Universality

Having obtained a dynamically generated mass gap we
may remove the cutoff D and obtain universal answers, in
other words taking the scaling limit D → ∞ while holding the
physical mass m fixed. This corresponds to g‖ �1, g⊥ �1, or
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u � 1. In this limit we have that m = 2De− f π/2u and the exci-
tation energy of a single spinon becomes ε(λ) = m cosh (λ),
where π/u is absorbed into λ. On the GN and ĜN lines,
the excitation energy and the mass gap is obtained by the
replacement f /u → 1/g.

F. Boundary excitations

The boundary modes arise as purely imaginary solutions
of the Bethe equations. These purely imaginary Bethe roots,
which correspond to the bound states, appear as poles in the
dressed or physical boundary S matrix [24–26,41]. By obser-
vation we see that, in the limit N → ∞, the Bethe equations
(52) have a unique solution

λ = ±i/2, (75)

as the two ± strings lead to the same state by reflection
symmetry. This is to be true both in the region Â and on the
ĜN line. Adding the boundary string to either the Sz = 1/2
or the Sz = −1/2 ground state a unique state is found. The
reason is that two Bethe states are equivalent if they are
described by the same root distribution and in addition have
the same total spin Sz values. As already mentioned, both the
states with Sz = ±1/2 have the same root distribution. The
states obtained by adding the boundary string solution to these
states with Sz = ±1/2 will again have the same root distribu-
tion. It turns out that these resulting states both have Sz = 0
and hence they both are equivalent.

1. Region ̂A

Adding the boundary string (75) to the Bethe equations in
region Â (52) results in the following equation

−2iπ Iα +
∑
σ=±

N�(λα + σ f /2u, 1/2) − 2�(λα, 1/2)

= �(λα, 1/2) + �(λα, 3/2) +
M−1∑
β=1

∑
σ=±

�(λα + σλβ, 1).

(76)

The above equation can be solved by following the same
procedure as in the ground state. We obtain the following
distribution of Bethe roots

ρ̃b
Â = ρ̃Â + �ρ̃b

Â, (77)

where ρ̃Â is the ground state distribution given by (67) and the
shift

�ρ̃b
Â = − sinh((π − 2u)(ω/2u))

sinh((π − u)(ω/2u))
(78)

is due to the presence of the boundary string. In the presence
of the boundary string, the relation between the number of
Bethe roots and the density distribution also takes a different
form as compared to (58). Namely

2Mb
Â − 1 =

∫ +∞

−∞
dλ ρb

Â(λ), (79)

from which, using (Sz )b
Â

= N/2 − Mb
Â
, we find, in the scaling

limit u � 0, the spin of this state

(Sz )b
Â = 0. (80)

Thus the resulting state corresponding to the boundary string
(75) is a spin singlet which has fermion parity P = +1. From
the analysis of the Bethe equations of XXZ spin chain [26]
with equal boundary terms, we expect that the wave function
associated with this unique fundamental boundary string is
exponentially localized near both the left and right boundaries.
Furthermore it is symmetric upon the exchange of both bound-
aries or under space parity x → −x. However since it has a
total spin Sz = 0, we cannot infer how this state transforms
under the Z2 symmetry (5). As we shall now see the situation
is similar on the ĜN line.

2. ̂GN line

On the ĜN line we find that the addition of the boundary
string leads to the following change in the distribution of the
Bethe roots

ρ̃b
ĜN = ρ̃ĜN + �ρ̃b

ĜN , �ρ̃b
ĜN = −e−|ω|/2. (81)

Using an equation similar to (79) we find in the scaling limit

(Sz )b
ĜN = 0. (82)

Again, as expected, we obtain a unique state with Sz = 0 by
adding the boundary string to either of the ground states with
spins ±1/2 on the ĜN line.

3. Boundary string energy

As seen, the addition of the boundary string to the ground
state with either spins Sz = ±1/2 in the STS phase leads, in
each of the regions Â and ĜN , to a single new state with spin
Sz = 0 that includes a boundary excitation. To get the energy
of this state, or of the boundary string, we notice that it is given
by the energy difference, up to chemical potential, between
the ground states with Sz = 0 and Sz = ±1/2

EB = EN − 1
2 (EN−1 + EN+1). (83)

Here EN refers to the energy of the state with an odd number
of particles which, in our system, corresponds to the ground
states in the topological phase with spin Sz = ±1/2. Similarly
EN+1 and EN−1 refer to the energies of the states with an even
number of particles and spin Sz = 0. The latter states include
the added boundary string. The expression (83) is defined in
Ref. [15] as the binding energy, which precisely measures
the energy cost of adding an electron to the system, where
it is shown that this is equal to only the charging energy in
the topological phase and is equal to the mass gap in the
topologically trivial phase.

As it can be shown, the value of the boundary string energy
is the same in both the region Â and on the ĜN line. We shall
consequently evaluate EB in the region Â. To this end we use
(53), from which we obtain the following expression for total
energy of a state with N fermions

E =
N∑

j=1

π

L
nj + iD

2

∫ ∞

−∞
dλ �

(
f

2u
− λ,

1

2

)
ρÂ(λ). (84)
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From (83) we find that EB has two contributions, one from
the charge degrees of freedom and one from the spin degrees
of freedom: EB = Echarge + Espin. The charge contribution is
given by the charging energy

Echarge =
N∑

j=1

π

L
nj − 1

2

(
N+1∑
j=1

π

L
nj +

N−1∑
j=1

π

L
nj

)
. (85)

Note that the charge quantum numbers take all the values
from the cutoff −DL upwards. In the ground state with Sz =
±1/2 they fill all the slots from nj = −N to n j = −1. In
the state with one extra particle they fill all the slots from
n j = −N to n j = 0. In the state with one less particle there
is an unfilled slot at n j = −1 which corresponds to a holon
excitation. Hence we obtain

Echarge = − π

2L
. (86)

The spin contribution is given by the expression

Espin = E0 + iD

2

∫ +∞

−∞
dλ �

(
f

2u
− λ,

1

2

)
�ρb

A(λ), (87)

where E0 = iD
2 �( f /2u, 1) and �ρb

A(λ) is the shift of the
Bethe roots distribution due to the boundary string which
is given in (77). Evaluating (87) we find that the spin part
of the energy of the boundary string is exactly zero in the
thermodynamic limit. Hence this corresponds to a zero energy
boundary bound state localized at the two ends of the system
in a finite system, the boundary string, which is a solution
to the Bethe equations in the limit N → ∞, have corrections
of the order 1/N . Since finite size corrections to the Bethe
equations are generally expected to be exponentially small in
the system size we expect that Espin ∼ e−mL also. As a result,
we thus find that the energy of the boundary string is, to the
exponential accuracy in the system size, given by the charging
energy (85)

EB = − π

2L
(88)

and hence vanishes in the thermodynamical limit.
We thus find that in the regions Â and ĜN of the STS

phase the ground state is only threefold degenerate in the limit
of infinite size in contrast with the fourfold degeneracy pre-
dicted by the semiclassical analysis of the preceding section
(Sec. III). The three ground states in the STS phase are given
by the two Sz = ±1/2 ground states found in the odd fermion
parity sector (IV D) plus a single Sz = 0 state in the even
fermion parity sector which is obtained from them by adding
the boundary string λ = ±i/2. Labelling the ground states in
the STS phase by their spins∣∣∣∣− 1̂

2

〉
,

∣∣∣∣+ 1̂

2

〉
, |̂0〉, (89)

with Sz| ± 1̂
2 〉 = ± 1

2 | ± 1̂
2 〉 and Sz |̂0〉 = 0, we have P| ± 1̂

2 〉 =
−| ± 1̂

2 〉 and P |̂0〉 = |̂0〉. However, although we clearly have

τ | ± 1̂
2 〉 = | ∓ 1̂

2 〉, we cannot infer from our analysis whether
the state |̂0〉 is symmetric or antisymmetric under the Z2 sym-
metry group generator τ (5). In either case, when comparing
the semiclassical prediction given in Eq. (43) to Eq. (89),

one notes that one extra spin singlet state is expected but not
obtained from the solution to the Bethe equations. One may
then wonder whether the fourfold degeneracy predicted in the
semiclassical approximation survives into the full quantum
regime. We shall argue in the following that this is the case.

G. Asymmetric boundary conditions

Actually, in the presence of symmetries not all states are
given as solutions of the Bethe ansatz equations. A well
known example is the bulk spin one triplet excitation of the
SU (2) invariant Gross-Neveu model where the Sz = 0 com-
ponent is not given by a solution of the Bethe equations unlike
the Sz = ±1 components. This state is obtained by applying a
spin lowering operator to the Sz = 1 triplet excitation [42]. In
the present case due to the space parity symmetry we obtain
a unique boundary string solution which occurs as a double
pole in the Bethe equations of the STS phase, see Appendix
Eq. (A41). Hence one may expect that it should count as two
states, namely, that there exists another state |̂0′〉 with Sz = 0
in addition to the state |̂0〉. Such a state cannot be obtained
simply by a lowering operator as was the case for the SU (2)
multiplets, discussed earlier, since Z2 representations are all
one dimensional.

To circumvent this problem we break the space parity sym-
metry by considering asymmetric boundary conditions, which
splits the double pole and yields another boundary string so-
lution. As a result the second spin singlet state is obtained as a
solution to the Bethe equations leading to two quasidegenerate
ground states in the limit of infinitesimal asymmetry with
wave functions localized at either the left or the right edge.
These two states, in properly renormalized symmetric limit,
account for a twofold degeneracy of the ground state missed
by the Bethe ansatz analysis of the symmetric case.

We consider now the following asymmetric OBC

�Ra(L/2) = −Bab�Lb(L/2), (90)

�Ra(−L/2) = −�Lb(−L/2), (91)

where

Bab = 1

cosh( f /2)

(
cosh( f /2 + iε) 0

0 cosh( f /2 − iε)

)
,

(92)

and ε > 0 is an asymmetry parameter. The latter boundary
conditions, which break both space parity and the Z2 sym-
metry (5), give back the symmetric OBC in the limit ε → 0.
Remarkably enough the problem is still integrable when ε �= 0
and the resulting Bethe equations (see Appendix A 2) are
given by

−2π Iα +
∑
σ=±

N�(λα + σ f /2u, 1/2)

−�(λα + iτπ/2u, 1/2)

−�(λα + iτπ/2u, (1 − ε′)/2)/2)

=
M∑

β=1

∑
σ=±

�(λα + σλβ, 1), (93)
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where τ = (1, 0) in the regions A and Â, respectively, and

ε′ = 2ε/u. (94)

As we can readily see, unlike (52), the latter equations display
two different boundary terms. These equations can be solved
by following the same procedure as for symmetric boundary
conditions. In order to obtain a nontrivial solution in the scal-
ing limit, where u → 0, one needs to take also simultaneously
the limit ε → 0 with ε′ maintained fixed and small. In this
limit it is ε′ that plays the role of the physical asymmetry
parameter.

In the SSS phase, we find that the ground state in the
region A and on the GN line has total spin Sz = 0 in the
scaling limit and that there is no boundary string solutions
just as in the symmetric case. In this phase the asymmetry
in the boundary conditions plays a marginal role. This is not
the case in the STS phase. This is due to the fact that, in
the symmetric case, the two degenerate ground states carry a
nonzero spin Sz = ±1/2. The asymmetry at the right bound-
ary, which distinguishes between up and down spins, will then
lift the degeneracy. Indeed for a positive ε > 0 we find that
the ground state has a spin Sz = −1/2 while the state with
Sz = +1/2 has a higher energy. On top of that, due to the
presence of the two different boundary terms in (93), there
exists now two different boundary strings at

λ = ±i/2, λ = ±i(1 − ε′)/2. (95)

For a positive ε > 0 one can only add these two boundary
strings to the state with the higher spin Sz = +1/2. Doing that
we end up with two different spin singlet states with Sz = 0

|̂0〉ε′ → λ = ±i/2,

|̂0′〉ε′ → λ = ±i(1 − ε′)/2. (96)

The calculation of the energy of the two boundary strings
(95), and hence of the two states (96), proceed as in the
symmetric case. For both strings the above energy splits into a
charge and a spin part: EB = Echarge + Espin. While the charge
contribution is still Echarge = −π/2L for both strings (95), the
spin contributions are different. In the limit of large system
size it is zero [to order O(e−mL )] for the first string while the
second string has a finite energy which is precisely the energy
splitting between the two Sz = ±1/2 states. Therefore, as far
as the spin degrees of freedom are concerned, in the presence
of a nonzero ε > 0, the ground state is twofold degenerate and

consists of two states (|̂0′〉ε′ , | − 1̂
2 〉ε′). The two other states

(|̂0〉ε′ , |̂ 1
2 〉ε′) have a higher energy δEε′ = m sin(ε′π/2). The

calculation of this energy and discussion about the structure
of the ground states and associated symmetries in the presence
of asymmetric boundary conditions goes beyond the scope of
this work, hence it will be discussed in further works.

When ε′ → 0, the energy splitting between these states
δEε′ goes to zero, and the two spin singlet states (96) are
quasidegenerate in the limit of infinitesimally small asym-
metry ε′ � 1. They correspond to two zero energy boundary
bound state modes which are localized at the two ends of the
system. Although the above analysis does not tell us about the
status of the two states with respect to the Z2 (5), i.e., whether
they are symmetric or antisymmetric under the action of τ , it

does tell us that there are two states in the spin singlet sector
when 0 < ε′ � 1. On physical grounds, we do not expect
anything special to happen to the number of states in the
symmetric limit which should be two when ε′ → 0. Of course,
when ε′ = 0, the two boundary strings (95) become identical
and the two states in (96) overlap. However, as in the XXZ
spin chain [26], we expect that, in a suitable renormalized
limit ε′ → 0, the two states |̂0〉ε′ and |̂0′〉ε′ yield different spin
singlet states |̂0〉 and |̂0′〉 in the symmetric limit.

These two singlet states together with the two odd fermion
parity Sz = ±1/2 spin states account for the fourfold degen-
eracy found in the semiclassical analysis. However, as in the
symmetric case, the present analysis cannot explain the status
of the two singlet states with respect to the Z2 symmetry and
hence we are unable to relate these states with the Majorana
construction given in the preceding section. We hope to come
back to this nontrivial issue in a further publication.

V. DISCUSSION

We have provided the exact solution of the U (1) Thirring
model on a finite line segment with both symmetric and asym-
metric open boundary conditions (OBC). We showed that
the fourfold ground state degeneracy found by semiclassical
analysis [1] can be understood as being due to the presence of
two zero energy boundary bound states localized at the edges
of the system. These bound states correspond to two boundary
strings solutions of the Bethe equations in the presence of
slightly asymmetric OBC. Our results are consistent with the
semiclassical analysis based on the presence of spin ±1/4
localized at the two edges of the system and support the
fact that the massless spin-triplet superconducting topological
state, predicted in the anisotropic regime g‖ � 1, survives
strong quantum fluctuations at least in the region Â and on
the dual ĜN line.

However, our Bethe ansatz approach cannot track down the
two zero energy Majorana modes (γL, γR) [see Eqs. (45)], as-
sociated with the Z2 symmetry (5), which are responsible for
the topological order in a given fermion parity sector. Probing
these Majorana modes would require a detailed calculation of
the wave functions in real space associated with the boundary
bound states. This is a formidable task in the present fermionic
field theory. However, related work on the XXZ spin chain
[26], where the boundary bound states wave functions can
be obtained with asymmetric boundary fields, suggests that
one could possibly probe these Majorana modes in a suitable
symmetric limit.

Although the second spin singlet state |0̂′〉 was obtained by
considering slightly asymmetric OBC, it is not a solution of
the Bethe equation in the symmetric case. An alternative way
would be to construct an analog of a lowering operator acting
on a highest weight spin-1 state to obtain the Sz member of the
multiplet, though in itself it cannot be obtained as a solution
of the Bethe ansatz equation [42]. Similarly, in our present
case one would need to construct a “raising” or “lowering”
operator � which, when acting on the singlet solution |̂0〉,
gives the desired state, i.e.,

�|̂0〉 = |0̂′〉. (97)
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In the topological phase such an operator would be provided
by one of two zero energy Majorana modes � = (γL, γR) of
Eq. (45) associated with the Z2 symmetry (5) with [�, H] =
[�,P] = 0, {�, τ } = 0, and �2 = 1.

Last but not least, it would be interesting to understand
what happens in the regions C(Ĉ). Although we have obtained
the Bethe equations in these regions we find that there are is-
sues when one wants to obtain universal answers. This leaves
open the question of the topological nature of the STS phase in
the region Ĉ. We hope to come upon all these topics in further
works.

ACKNOWLEDGMENTS

The work reported here was begun while N.A. was visiting
the IPhT Saclay. He wishes to thank H. Saleur for his kind
hospitality. P.A. thanks A. Kesselman and E. Berg for enlight-
ening discussions. P.P. acknowledges illuminating discussions
with C. Rylands.

APPENDIX: BETHE ANSATZ

In this section we derive the Bethe equations of the model
subject to the following asymmetric boundary conditions

�Ra(L/2) = −Bab�Lb(L/2), �Ra(−L/2) = −�Lb(−L/2)

(A1)

where

Bab = 1

cosh( f /2)

(
cosh( f /2 + iε) 0

0 cosh( f /2 − iε)

)
,

(A2)

and ε > 0 is an asymmetry parameter. The left boundary has
the usual open boundary condition whereas the right bound-
ary has a ‘slightly twisted’ boundary condition. This breaks
the space parity and Z2 symmetry which gives rise to two
fundamental boundary string solutions. Symmetric boundary
condition can be obtained by taking the limit ε → 0 which
restores the broken space parity and the Z2 symmetry.

1. N-particle solution

The Hamiltonian commutes with total particle number,
N = ∫

ψ
†
+(x)ψ+(x) + ψ

†
−(x)ψ−(x), and H can be diagonal-

ized by constructing the exact eigenstates in each N sector.
Since N is a good quantum number we may construct the
eigenstates by examining the different N particle sectors sep-
arately. We start with N = 1 wherein we can write the wave
function as an expansion in plane waves,

|k〉 =
∑

a j=↑↓,σ=±

∫ L
2

− L
2

dx eiσkxAσ
a1

ψ†
σ,a1

(x)|0〉.

|0〉 is the drained Fermi sea and Aσ
a1

are the amplitudes for
an electron with chirality σ and spin a1. The two boundary S
matrices S1R

a1b1
, S1L

a1b1
exchange the chirality of a particle.

A−
a1

= S1R
a1b1

A+
b1

(A3)

A+
a1

= S1L
a1b1

A−
b1

. (A4)

The asymmetric boundary conditions (A2) lead to the fol-
lowing boundary S matrices

S1R
ab = B†

ab, S1L
ab = Iab. (A5)

Applying the boundary condition at the left boundary also
quantizes the bare particle momentum k.

We now consider the two particle sector, N = 2, were the
bulk interaction plays a role. Since the two particle interaction
is pointlike we may divide configuration space into regions
such that the interactions only occur at the boundary between
two regions. Therefore away from these boundaries we write
the wave function as a sum over plane waves so that the most
general two particle state can be written as

|k1, k2〉 =
∑
σ,a

∫ L
2

− L
2

d2x F σ1σ2
a1a2

(x1, x2)e
∑2

j=1 iσ j k j x j

×ψ†
σ1a1

(x1)ψ†
σ2a2

(x2)|0〉, (A6)

where we sum over all possible spin and chirality configura-
tions and the two particle wave function, F σ1σ2

a1a2
(x1, x2), is split

up according to the ordering of the particles,

F σ1σ2
a1a2

= Aσ1σ2
a1a2

[12]θ (x2 − x1) + Aσ1σ2
a1a2

[21]θ (x1 − x2). (A7)

The amplitudes Aσ1σ2
a1a2

[Q] refer to a certain chirality and spin
configuration, specified by σ j , a j as well as an ordering of
the particles in configuration space denoted by Q. For Q = 12
particle 1 is to the left of particle 2 while for Q = 21 the order
of the particles are exchanged. Applying the Hamiltonian to
(A6) we find that it is an eigenstate with energy E = k1 + k2

provided that these amplitudes are related to each other via
application of S matrices. The amplitudes which differ by ex-
changing the chirality of the leftmost or the rightmost particle
are related by the boundary S matrices.

Aσ1−[12] = S2R Aσ1+[12], A+σ2 [12] = S1L A−σ2 [12], (A8)

A−σ2 [21] = S1R A+σ2 [21], Aσ1+[21] = S2L Aσ1−[21]. (A9)

As discussed above in the one particle case, the boundary
S matrices are S1R = B†, S1L = I, S2R = B†, S2L = I . For
ease of notation we have suppressed spin indices. It is under-
stood that S1R, S1L act in the spin space of particle 1 whereas
S2R, S2L act in the spin space of particle 2.

There are two types of two particle bulk S matrices denoted
by S12 and W 12 which arise due to the bulk interactions and
relate amplitudes which have different orderings. The first
relates amplitudes which differ by exchanging the order of
particles with opposite chirality

A+−[21] = S12A+−[12], (A10)

A−+[12] = S12A−+[21], (A11)

where S12 acts on the spin spaces of particles 1 and 2. Explic-
itly it is given by [17]

Si j =

⎛⎜⎜⎜⎝
1

sinh( f )
sinh( f +η)

sinh(η)
sinh( f +η)

sinh(η)
sinh( f +η)

sinh( f )
sinh( f +η)

1

⎞⎟⎟⎟⎠, (A12)
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where η = −iu and f , u are related to g‖ and g⊥ through the
relations cos(u) = cos(g‖ )

cos(g⊥ ) and sin(u)
tanh( f ) = sin(g‖ )

cos(g⊥ ) . In obtaining
the above form of the S matrix we have ignored an unim-
portant overall factor. While the second type of S matrix
relates amplitudes where particles of the same chirality are
exchanged,

A−−[21] = W 12A−−[12], (A13)

A++[12] = W 12A++[21]. (A14)

Unlike (A12), W 12 is not fixed by the Hamiltonian but rather
by the consistency of the construction. This is expressed
through the Yang-Baxter equations

S23 S13 W 12 = W 12 S13 S23, (A15)

W 23 W 13 W 12 = W 12 W 13 W 23, (A16)

S2R S12 S1R W 12 = W 12 S1R S12 S2R, (A17)

S2L S12 S1L W 12 = W 12 S1L S12 S2L, (A18)

which need to be satisfied for the eigenstate to be consistent.
We take W 12 = P12 which can be explicitly checked to satisfy
(A15)–(A18). The relations (A6)–(A14) provide a complete
set of solutions of the two particle problem.

We can now generalize this to the N-particle sector and find
that the eigenstates of energy E = ∑N

j=1 k j are of the form

|{k j}〉 =
∑

Q,	a,	σ

∫
dN x θ (xQ)A{σ }

{a} [Q]
N∏
j

eiσ j k j x j ψ†
a jσ j

(x j )|0〉.

(A19)

Here we sum over all spin and chirality configurations
specified by {a} = {a1 . . . aN }, {σ } = {σ1 . . . σN } as well as
different orderings of the N particles. These different order-
ings correspond to elements of the symmetric group Q ∈ SN .
In addition θ (xQ) is the Heaviside function which is nonzero
only for that particular ordering. As in the N = 2 sector the
amplitudes A	σ

	a [Q] are related to each other by the various S
matrices in the same manner as before, i.e., amplitudes which
differ by changing the chirality of the leftmost particle are
equal as S jL = I , the amplitudes which differ by changing
the chirality of the rightmost particle are related by S jR and the
amplitudes which differ by exchanging the order of opposite
or same chirality particles are related by Si j and W i j respec-
tively. The consistency of this construction is then guaranteed
by virtue of these S matrices satisfying the following Yang-
Baxter equations [30–32]

W jk W ik W i j = W i j W ik W jk, (A20)

S jk Sik W i j = W i j Sik S jk, (A21)

S jR Si j SiR W i j = W i j SiR Si j S jR, (A22)

S jL Si j SiL W i j = W i j SiL Si j S jL, (A23)

where W i j = Pi j and as before the superscripts denote which
particles the operators act upon.

2. Bethe equations

In this section we derive the Bethe equations (3). Enforcing
the boundary condition at x = −L/2 on the eigenstate (A19)
we obtain the following eigenvalue problem which constrains
the k j ,

e−2ik j LA{σ }
{a} [1] = (Zj )

{σ },{σ }′
{a},{a}′ A{	σ ′}

{	a′} [1]. (A24)

Here 1 denotes the identity element of SN , i.e., 1 = 12 . . . N
and the operator Zj is the transfer matrix for the jth particle
given by

Z j = W j j−1 . . .W j1S j1...S j j−1S j j+1...S jN S jRW jN ...W j j+1,

(A25)

where the spin indices have been suppressed. This operator
takes the jth particle from one side of the system to the other
and back again, picking up S-matrix factors along the way as
it moves past the other N − 1 particles, first as a right mover
and then as a left mover. Using the relations (A20)–(A23) one
can prove that all the transfer matrices commute, [Z j, Zk] = 0
and therefore are simultaneously diagonalizable. In order to
determine the spectrum of H we must therefore diagonalize
Z j, ∀ j. Here we choose to diagonalize Z1. To do this we use
the method of boundary algebraic Bethe ansatz [30,31,34]. In
order to use this method we need to embed the bare S matrices
in a continuum [36], that is, we need to find the matrices R(λ),
K (λ) such that for certain values of the spectral parameter λ,
we obtain the bare S matrices of our model. Note that the S
matrix S12 is of the form of XXZ R matrix

Ri j (λ) =

⎛⎜⎜⎜⎝
1

sinh(λ)
sinh(λ+η)

sinh(η)
sinh(λ+η)

sinh(η)
sinh(λ+η)

sinh(λ)
sinh(λ+η)

1

⎞⎟⎟⎟⎠. (A26)

We can see that Ri j (0) = W i j, Ri j ( f ) = Si j . The K matrix
is given by [30]

K j (λ) = 1

cosh(λ)

(
cosh(λ − iε) 0

0 cosh(λ + iε)

)
(A27)

and it is related to the right boundary S matrix as S jR =
K j ( f /2). The transfer matrix Z1 is related to the Monodromy
matrix �τ (λ) as Z1 = t ( f

2 ) = Trτ�τ ( f
2 ), where

�τ (λ) = R1τ

(
λ + f

2

)
...RNτ

(
λ + f

2

)
Kτ (λ)RNτ

(
λ − f

2

)
...R1τ

(
λ − f

2

)
. (A28)

Here τ represents an auxiliary space and Trτ represents the trace in the auxiliary space. Using the properties of the R matrices
one can prove that [t (λ), t (μ)] = 0 [34] and by expanding t (μ) in powers of μ, obtain infinite set of conserved charges which
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guarantees integrability. By following the boundary Algebraic Bethe ansatz approach we obtain the following Bethe equations
in the region A, corresponding to the reference state with all up spins

e2ik j L = β−1( f /2) �M
α=1�σ=± γ ( f /2, σλα, u/2), (A29)

γ (x, y, z) = sinh(x + y − iz)

sinh(x + y + iz)
, β(x) = cosh(x − iε)

cosh(x)
, (A30)

where λα , α = 1, . . . , M are the Bethe roots which satisfy the following equations

�σ=±γ N (λα, σ f /2, u/2)γ (λα, iπ/2,−u/2)γ (λα, iπ/2,−(u − 2ε)/2) = �M
β=1,σ=±γ (λα, σλβ, u). (A31)

By rescaling λα → uλα and applying logarithm we obtain the following Bethe equations in the region A with asymmetric
boundary conditions.∑

σ=±
N�(λα + σ f /2u, 1/2) − �(λα + iπ/2u, 1/2) − �(λα + iπ/2u, (1 − ε′)/2) =

M∑
β=1

∑
σ=±

�(λα + σλβ, 1) + 2iπ Iα

(A32)

k j = πn j

L
+ i

2L

(
log[β( f /2)] +

M∑
β=1

∑
σ=±

�( f /2u + σλβ, 1/2)

)
, (A33)

where �(x, y) = log ( sinh(u(x+iy))
sinh(u(x−iy)) ) and ε′ = 2ε/u. To obtain the Bethe equations in the topological region Â, we can work with

g‖, g⊥ < 0 in the Hamiltonian and then take the limit f → −iπ − f [18] in the obtained Bethe equations. We obtain a different
set of Bethe equations

e2ik j L = β̂−1( f /2) �M
α=1�σ=± γ ( f /2, σλα, u/2), β̂(x) = sinh(x − iε)

sinh(x)
(A34)

�σ=±γ N (λα, σ f /2, u/2)γ (λα, 0,−u/2)γ (λα, 0,−(u − 2ε)/2) = �M
β=1,σ=±γ (λα, σλβ, u). (A35)

Applying logarithm to the above equation and rescaling the Bethe roots we obtain the Bethe equations in the region Â with
asymmetric boundary conditions,∑

σ=±
N�(λα + σ f /2u, 1/2) − �(λα, 1/2) − �(λα, (1 − ε′)/2) =

M∑
β=1

∑
σ=±

�(λα + σλβ, 1) + 2iπ Iα, (A36)

k j = πn j

L
+ i

2L

(
log[̂β( f /2)] +

M∑
β=1

∑
σ=±

�( f /2u + σλβ, 1/2)

)
. (A37)

The Bethe equations corresponding to the reference state with all down spins can be obtained by taking the limit ε → −ε′
[30] in the above Bethe equations. Note that when symmetric boundary conditions are applied the Bethe equations corresponding
to the reference state with all up spins are the same as those corresponding to the reference state with all down spins.

As already mentioned in the main text the asymmetric boundary conditions (A2) break the Z2 symmetry; this shifts the spin
Sz of all the states in the regions A and Â by a term which is proportional to ε. In the scaling limit u � 1, one also needs to take
the limit ε � 1 while holding ε′ = 2ε/u fixed. In this limit the shift in the values of Sz of all the states goes to zero, and therefore
the ground state in any certain region of the phase diagram with asymmetric boundary condition has the same total spin Sz as
that in the corresponding region with symmetric boundary condition. The profound effect of applying the asymmetric boundary
conditions is that we now have two fundamental boundary string solutions λ = ±i/2, λ = ±i/2(1 − ε′).

To obtain the Bethe equations with symmetric boundary conditions in region A we can take the limit ε′ → 0 in the equations
(A31). We get

e2ik j L = �M
α=1�σ=± γ ( f /2, σλα, u/2), (A38)

�σ=±γ N (λα, σ f /2, u/2)γ 2(λα, iπ/2,−u/2) = �M
β=1,σ=±γ (λα, σλβ, u). (A39)

To obtain the Bethe equations with symmetric boundary conditions in region Â we can take the limit ε′ → 0 in the equations
(A35). We get

e2ik j L = �M
α=1�σ=± γ ( f /2, σλα, u/2), (A40)

�σ=±γ N (λα, σ f /2, u/2)γ 2(λα, 0,−u/2) = �M
β=1,σ=±γ (λα, σλβ, u). (A41)
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