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We theoretically study the superconducting proximity effect in a quantum dot coupled to two superconducting
leads when the intradot interaction between electrons is made attractive. Because of the superconducting
proximity effect, the electronic states for the embedded quantum dot are either spin-polarized states with an
odd occupation number or BCS-like states with an even occupation number. We show that in the presence of
an external magnetic field, the system can exhibit quantum phase transitions of fermion parity associated with
the occupation number. In this paper, we adopt a self-consistent theoretical method to extend our considerations
beyond the so-called superconducting atomic limit in which the superconducting gap for the leads is assumed to
be the largest energy scale. This method enables us to numerically investigate the electronic structure of the dot
as a result of the attractive interaction. For energy phase diagrams in the regime away from the atomic limit, we
find a reentrant behavior where a BCS-like phase of the dot exists in an intermediate range of the hybridization
strength between the quantum dot and the leads. We also consider Josephson current-phase relations and identify
a number of examples showing 0-7 phase transitions that may offer important switching effects.
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I. INTRODUCTION

Introducing localized magnetic impurities into a host su-
perconductor (SC) leads to the formation of the so-called
Yu-Shiba-Rusinov (YSR) states [1-3]. In such a system, quan-
tum phase transitions (QPTs) associated with fermion parity
switches of the YSR states can be achieved via tuning exper-
imental knobs such as gate voltages and external magnetic
fields [4,5]. Recently, there has also been interest in topo-
logical properties of a chain of magnetic impurities on the
surface of a superconductor because Majorana bound states,
which are regarded as candidates of fault-tolerant quantum
computers, may emerge in such a solid-state system [6,7].
Therefore exploring the physics behind the QPTs of YSR
states can help researchers to advance quantum information
science. A similar and closely related setup that also enables
one to study the physics of QPTs is a tunnel junction that
consists of quantum dots (QDs) and two superconducting
electrodes. The latter is the main focus of this paper.

Because physical properties of QDs can be easily tuned
by varying their sizes, shapes, electron densities, and elec-
trode voltages, solid-state systems containing QDs have been
proved to have useful applications in many fields including
biomedical applications [8] and quantum information technol-
ogy [9]. In the latter, qubits, the building blocks of a quantum
computer, are implemented by charge or spin degrees of
freedom in QDs. Owing to size-tunable emissions of QDs,
their optical properties are suitable for fluorescence biomed-
ical applications. Quantum dots can also be used to build
single-electron transistors [10] because of their pronounced
Coulomb blockade effect originating from the presence of a
strong Coulomb repulsion.
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The physics of heterostructures composed of both super-
conductors and quantum dots has become an important and
exciting research topic. When a quantum dot is in contact
with superconducting electrodes, the electronic structure of
the quantum dot is drastically modified due to the local for-
mation of Cooper pairs via the superconducting proximity
effect. The quantum dot thus can possess BCS-like states
in contrast to their original discrete states [11], which are
under a more direct influence of the Coulomb blockade effect.
Furthermore, one of the most important consequences of the
SC-QD coupling is the emergence of Andreev bound states
(ABSs) [12-14], carrying important information on phase
transitions of the dot in SC-QD heterostructures.

Important physical quantities such as the spectral weights
[13] and Josephson currents [15] of the SC-QD heterostruc-
tures have been studied in the literature. In Ref. [13], the
superconducting proximity effect on the local spectral prop-
erties of the dot is investigated. It is found that the low-energy
spectrum is determined by the superconducting gap of the
leads. The situation depicted there is similar to a Kondo impu-
rity embedded in a superconductor. Consequently, the Kondo
effect plays an important role in SC-QD heterostructures, and
it is necessary to compare the energy scales of the supercon-
ducting gap A and the Kondo temperature Tx. As discussed
in Refs. [13,16], for cases where A « T, the ground state of
the dot is a Kondo-BCS singlet state due to the assistance of
the Kondo effect. In this regime, the Kondo coupling between
the superconducting electrodes and the quantum dot helps
the establishment of superconducting correlations in the dot.
However, as demonstrated in Ref. [17], the ground state is a
BCS singlet with weak and repulsive Coulomb interaction and
crosses over to a Kondo singlet when the repulsive interaction
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is strong. For the other extreme limit, A > Tk, there are
essentially no states around the Fermi level because of the
large gap. Therefore the Kondo effect is suppressed, and the
ground state of the dot is a Kramers doublet state as long as
the time-reversal symmetry is preserved.

Another important aspect of the QD-SC coupling is its
effect on transport properties of SC-QD-SC junctions. Specif-
ically, the Josephson effect evaluated in Refs. [15,18] can
be used to detect signatures of the phase transitions of the
quantum dot. As illustrated in the above, a BCS-like state of
the dot occurs when A « Tk, and as a result, the transport
of a singlet Cooper pair from one of the superconducting
electrodes to the other does not require a sign flip of the
singlet pair. On the other hand, when A > Tk, the dot is in
the doublet state and acts as a single magnetic impurity. A
Cooper pair is then affected by the magnetic impurity, and a
negative sign is acquired when it is transported from one side
to the other. It is clear that for the latter case, the associated
Josephson current also gets inverted and the SC-QD-SC is
a m junction. The doublet-singlet phase transitions can thus
be experimentally confirmed by measuring the current-phase
relations of the junctions.

One simple and elegant model to describe a quantum dot
coupled to superconducting leads is the Anderson impurity
model. Intradot Coulomb interaction U and the coupling be-
tween the dot and leads are two important competing energy
scales in the model. The Coulomb interaction between elec-
trons involves four operators, and as a result, the Anderson
Hamiltonian cannot be simply recast into a bilinear form.
Since the Coulomb interaction has important implications in
transport properties, it cannot be neglected in the problem. For
example, when the dot is singly occupied, it is unlikely to have
another electron flowing through the dot when the Coulomb
interaction is strong and repulsive. This phenomenon is known
as the Coulomb blockade [19,20]. Nevertheless, there exist
several ways in the literature to estimate the contribution from
the Coulomb interaction including the perturbation expan-
sion in the Coulomb interaction [19,21,22], mean-field theory
[21,23], noncrossing approximation (NCA) [24], the numer-
ical renormalization group (NRG) [18,25-27], or quantum
Monte Carlo and functional methods [28].

In Ref. [29], the authors carefully discuss the physics
of SC-QD-SC Josephson junctions under the influence of a
Zeeman interaction in the dot. In particular, they use both
functional renormalization group (fRG) methods and the the-
ory of self-consistent Andreev bound states (SCABS) to study
the interplay between the Zeeman field, gate voltage, and
flux dependence of Andreev levels. They found a very good
agreement between these techniques even though the compu-
tational requirements for the fRG approach are rather high.
The SCABS technique is adopted in the present paper be-
cause it is numerically less demanding while still offering an
elegant way to gain insights into the physics in SC-QD-SC
hybrids. Very recently, relevant experimental results on the
Kondo screening-unscreening transition have been reported
[5]. There, they demonstrated how to use a magnetic field
to tune the QPTs of a quantum dot coupled to superconduct-
ing leads in a transistor geometry. Also, they found that the

magnetic field gives rise to a reentrant transition due to the
competition between the Zeeman shift of the lowest spin-
polarized level and the reduction of the superconducting gap.

In some special semiconducting quantum-dot devices
made from LaAlOj or SrTiO3 [30-32], the electron-electron
interaction can be made attractive by tuning the gate voltage
[31]. It is also demonstrated that in carbon nanotubes the
excitonic mechanism brings about an attractive interaction
between two electrons [33]. In these special QD devices,
the attractive interaction not only has an impact on the full
counting statistics [34] but also causes a charge Kondo effect
[35-40] instead of a spin Kondo effect. The attractive U
charge Kondo effect is associated with the fluctuations in de-
generate ground states with different even charge occupations.
It is illustrated in Ref. [41] that both the empty and doubly
occupied states have energies lower than those of the singly
occupied states or, equivalently, the spin-polarized states. This
leads to ground-state fluctuations in the charge channel rather
than the spin channel. Experimentally, PbTe doped with TI,
studied in Refs. [42-45], is the first material that exhibits
pieces of evidence of the charge Kondo effect. Its direct con-
sequences on transport properties in QDs with normal leads
have also been revealed in Refs. [46-50], where theoretical
results including susceptibilities and thermoelectric powers
are presented.

The above discussion outlined the importance of consid-
ering the Zeeman effect as well as attractive interaction in
SC-QD-SC devices. In the absence of the Zeeman effect,
the Kondo-BCS singlet state is always energetically favor-
able when compared with the spin-polarized states for an
attractive Coulomb interaction. Nevertheless, we show in this
paper that with the inclusion of an applied magnetic field,
Kondo-BCS singlet and the spin-polarized states still ener-
getically compete with each other even when the intradot
interaction is attractive. We investigate the SC-QD-SC struc-
tures that are not necessarily in the superconducting atomic
limit and obtain several important results in the framework
of the SCABS theory. Under an applied magnetic field, the
Zeeman energy split of the quantum dot is usually much
larger than that of the superconductors in SC-QD-SC junc-
tions, because the g factor for a semiconducting quantum
dot (especially for materials with extremely strong spin-orbit
coupling) is usually much higher than that for a supercon-
ducting material [51]. In this paper, we therefore assume
that the Zeeman splitting in the superconducting electrodes is
negligible.

In this paper, we adopt the perturbative SCABS method
developed in Ref. [12]. We aim to go beyond the supercon-
ducting atomic limit and to study the interplay between a
Zeeman field and an attractive U interaction. Here, we study
specifically phase diagrams and Josephson current-phase rela-
tions. We shall consider several relevant parameters including
hybridization strengths, single-particle energies of an electron
in the QD measured from the Fermi surface, superconducting
gaps and phase differences for the superconducting electrodes,
and strengths of the Coulomb interaction and Zeeman field.
In Sec. II, we present a general description of the SCABS
method. The results and relevant discussion are presented in
Sec. ITII. We summarize the paper in Sec. IV.
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II. THEORETICAL MODEL
A. Hamiltonian

We start with the Hamiltonian of the Anderson impurity
model for a quantum dot coupled to two superconducting
electrodes. The Hamiltonian is given by

H=" H+H+ Y Hy, M
i=L,R i=L,R
where
H; = kel ki — Y _(Aicgycly )+ He), (2a)
ko k
Hy = (eq + h)d]dy + (64 — h)d[d, — Unyny,  (2b)
Hy, =Y (td}ciei + He.). (2¢)
ko

In this total Hamiltonian, H; is the Hamiltonian for the
superconducting electrodes with i = L, R denoting the left
and right electrodes, respectively. For an electron in the ith
lead with a wave vector k and spin o, its kinetic energy is
&k. Ckoi and c;im. are the annihilation and creation operators
of the electron, respectively. A; is the superconducting order
parameter of the ith lead, and H.c. is the Hermitian conjugate.
H, is the QD Hamiltonian, and we consider only a single en-
ergy level, g4, for the dot. d, (d;) is the annihilation (creation)
operator of a dot electron with spin o. U is the Coulomb
interaction between two electrons in the orbital of QD, # is
a Zeeman interaction, and n, = d; d, is the number operator
of the dot level with spin o. Note here that U > 0 denotes an
attractive interaction in our convention. Hy, is the interaction
between the quantum dot and superconducting leads, and ¢
is the corresponding coupling strength directly related to the
superconducting proximity effect.

Here, we consider an experimentally more relevant situa-
tion [5] where the leads are identical s-wave BCS supercon-
ductors with a possible nonzero relative phase. Therefore both
of them have the superconducting order parameter of the form
A; = Ae'®, where A is a constant isotropic gap and ¢; is its
phase. The phase difference between the leads is denoted by
¢ = ¢ — Ppr. We assume that the density of states (DOS) in
an energy interval [—D, D] that is of interest is a constant
and specified by p = 1/(2D). Thus the total number of states
in the energy interval is independent of the choice of the
bandwidth D. Finally, the coupling strength ¢ is a real number
and is the same for both leads.

As mentioned in Sec. I, the Coulomb interaction U plays an
important role in determining physical properties of SC-QD
hybrids. When the superconducting gap is much larger than
all the other energy scales in the problem including U, the
hybrids are considered to be in the superconducting atomic
limit. Although it is straightforward to compute relevant phys-
ical quantities in the atomic limit, the superconducting gap
in a realistic situation is usually comparable to the energy of
the atomic level in QD. Therefore it is crucial to study cases
where the gap is finite while varying other energy scales such
as the Zeeman energy and the Coulomb interaction. In view
of this, we follow closely the perturbation method presented
in Refs. [12,29], where the Green’s function technique is em-

ployed and the superconducting atomic limit is treated as the
unperturbed situation. In addition, it is shown in Refs. [12,29]
that the results obtained from the SCABS technique agree
rather well with those from the heavy numerical fRG calcu-
lations.

In this paper, our aim is to investigate the superconducting
proximity effect on physical behaviors of SC-QD hybrids.
To do so, we first define the quantum-dot Green’s function
Gaa(t, 1) = —(T, W)W} (1)), where W, = (d;, dI)T. In or-
der to simplify the calculation of finding the Green’s function,
we use the Matsubara imaginary time formalism and the fact
that Gy(t,t') = Gyt —t',0) tosett’ — Oandt — ' — .
We then have

Gaa(t) = —(T, Wa(T)¥(0))

=_[<de¢<r>d;<0>> <deT<r>d¢<0>>] 3
(T:d[(T)d[(0))  (Tod[(t)d,(0)) ]

Next, we use Fourier transformation and the Heisenberg equa-
tion of motion to find the Green’s function in the frequency
domain. It is written as

Goiliwy) =io,+h—es6.—1> Y Y 0:Guio, (@)
i=L,R Kk

where w, is the fermionic Matsubara frequency and Gy is
the bare Green’s function of the BCS Hamiltonian of the lead
i. It is written as

A . 1 iw, — &k Aé*
Gkki = (lw, — H;)™" = —ig
—Ae ii lw, + €k
iw,+ex Aeli
_ | Gouy—E2 (iwy)*—E}
- ( Ae i iw,—Ex ’ (5)
(iwy)*—E} (iwy)*—E}

where Ex =, /sﬁ + AZ2. Note here that we have temporarily

suppressed the Coulomb interaction in deriving Eq. (4).

We use the assumption that the density of states of the leads
is a constant p to perform the momentum sum in Eq. (4). The
relation G, = iw, — HY allows us to identify the effective
Hamiltonian of the dot. It is given by

Hyy = (eq + h)dia% + (64 — h)dId¢ - F¢(d'T"dI +H.c),
(6)

where 'y = F% arctan(%)cos (%) and T = 271%p. In de-
riving the effective Hamiltonian, we have set A > w,, a
consequence from the superconducting atomic limit. Finally,
when the Coulomb interaction is taken into account, we obtain
the full local effective Hamiltonian,

Her = (64 + Wd}dy + (eq — h)d|dy — Ty(d{d] + H.c.)

- %Z(d;da — 1% (7

B. Spectrum of the effective Hamiltonian

In this section, we wish to determine the eigenstates of
the effective Hamiltonian, Eq. (7), and corresponding energy
eigenvalues. We first discuss the four eigenstates for a single-
orbital quantum dot in the absence of superconducting leads.
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We use |0) to denote a situation where the orbital is not
occupied (empty state). Note here that the empty state has
even fermion parity. The other state also with even fermion
parity is the doubly occupied state (paired state), |1 ). The
remaining two singly occupied states, which have odd fermion
parity, are denoted as the spin-up state, |1), and the spin-down
state, || ). If the superconducting leads were to be absent,
the aforementioned four states would be the eigenstates of
the single-orbital quantum dot. However, when the dot is
coupled to superconducting leads, it is clear that the empty
and paired states themselves alone are no longer eigenstates
of the effective Hamiltonian, Eq. (7). As shown below, the
superpositions of the empty and paired states similar to that
of the variational BCS ground state are the eigenstates. By
employing the following Bogoliubov transformation,

[+) = ultl) +v[0), (8a)
[—) = —vItl) +ul0), (8b)
we obtain
1 &a
U= — |14+ ———, (9a)
ﬁ\ Jéi+T;
1 §a
V= — |1 - ———. (9b)
ﬁ\ JEi+ T

For the singly occupied states, |1) and || ), their eigenen-
ergies are not the same when the time-reversal symmetry is
broken by the Zeeman interaction 4,

E}, =t £h, (10)

where 4 and — signs correspond to E? and Ei) for the |1) and
|{) states, respectively. For the BCS-like states, |+) and |—)

J

in Egs. (8a) and (8b), their eigenenergies are given by
U
Bl =—2 % /6§ + 1]+, a1
respectively.

In order to find ground-state phase transitions, we first note
that EO (E}) is always less than EY (EY). Therefore the ground
state is either the || ) state or the |—) state. Therefore we only
need to compare E° with Ef, and phase transitions occur

when Ei) = E°. The equation below characterizes a phase

boundary.
U
1/S{?—}—Fzz—z + h. (12)

It is obvious that when the Coulomb interaction is attractive
(U > 0), h cannot be zero in order for the system to transition
between the spin-polarized state, || ), and the BCS-like state,
|—), which is consistent with experiment [32].

C. Perturbation expansion

In Sec. II B, we took the limit that the energy gap A is
infinite, whereas in reality, the energy gap is usually a few
kelvins for most conventional s-wave superconducting mate-
rials. To incorporate this, we adopt the formalism developed
in Ref. [12] to consider situations where other energy scales
such as U and & are comparable to the gap. Since the details of
SCABS have already been reported in the literature, we shall
not reproduce them here and shall only write down the central
equations. As previously discussed, we regard the effective
Hamiltonian, Eq. (7), in the atomic limit as the unperturbed
Hamiltonian. As a result, the action can be separated into the
local effective action corresponding to Eq. (7) and the action
of the perturbation that contains terms not included in Eq. (7).

The energy corrections §E; (where s = +, —, 1, |) to these
four levels can thus be obtained from the SCABS theory, and
they are given by

1

1
8Ey, = —1° [
Xk: Ex+E)—E

2A :
+E_kuv COSE'(Ek+E9._E?¢_Ek+E9_E?¢>:|’ (13a)
SE, = g2 Z[ 10 o T 10 0
k Ek—(E+_ET) Ek_(E+_E¢)
2A :
_—kuv cos EKE]( T —E?) + Ex — (EY —Ei))):|
o (13b)
1 1
SE_ = 422.(: [Ek “(ET—E)) - (0~ ED)
2kt @)
Ex 2|\Ex — (E® — E?) Fic = (B2 — Ei))
+2|Ty |uv, (130)
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where Ex = /el + A2. The perturbed energy is then ex-
pressed as E; = ES0 + SE;.

III. RESULTS AND DISCUSSION

A. Phase diagram

In this section, we present our theoretical results on phase
diagrams and current-phase relations. We first discuss the
phase diagrams. Phase-transition lines are determined by
comparing the energies for the four possible states, |+), |—),
[1), and || ). The perturbed energies for these states are given
by E; = ES0 + 8E;, where s = 4+, —, 1, |. As mentioned in
Ref. [12], the singularities in the integrands of Eqs. (13a)—
(13c) lead to a limitation of the validity range of the theory.
However, one can extend the range by using renormalized
self-energies instead of bare energies as in the Brillouin-
Wigner perturbation theory. To do so, we replace E?, which
appeared in the denominators of Eqs. (13a)-(13c), by E;.
As can be seen from the revised expressions, all the energy
corrections are now coupled with each other, and the corre-
sponding solutions must be determined self-consistently. We
find numerically that in the self-consistent scheme, |—) or || )
is the lowest energy state, and thus they are competing with
each other. Accordingly, phase-transition lines are determined
from the condition when E| = E) + 8E, = E° +8E_ =E_.

In Fig. 1, we present phase diagrams for various situations.
Here, the bandwidth D of the leads is fixed to be 57T, and
the mutual interaction between electrons in the dot is made
attractive, —U < 0. In the top panel of Fig. 1, we show the
phase diagrams for three different superconducting gaps with
a fixed Zeeman interaction strength 2 = U. The presence of
breaks the time-reversal symmetry, and a Kramers doublet is
no longer a good eigenstate. The dot becomes spin polarized
when the ground state of the system is the spin-down state.
This spin-polarized phase corresponds to regions inside the
domes in the top panel of Fig. 1. When I'y, is large enough,
the system turns to the BCS-like phase, |—), corresponding
to regions outside the domes due to a large superconducting
proximity effect. In the atomic limit (A — 00), the radius
of the dome can be directly determined analytically by solv-
ing for Eq. (12). (One can also obtain the same result by
considering D > A > I' in the SCABS framework). Using
the self-consistent approach, we study systems away from
the atomic limit (A is finite). It is interesting to note that the
widths of the domes are not changed. However, the heights
of the domes decrease with increasing A. This means that
the region for the BCS-like phase shrinks. This phenomenon
is opposite to the results presented in Ref. [12], where for
a repulsive intradot interaction the region for the BCS-like
phase shrinks when A/TI" is lowered.

In the middle panel of Fig. 1, we show a blowup of the
A = 51T case of the top panel. We find an unexpected reen-
trant behavior: When &; 2 0.5U, as ', /U increases from 0,
the system first enters into the spin-polarized state and turns
back to the BCS-like state. A similar phenomenon is also
reported in ferromagnet-superconductor heterostructures [52]
and an atomic Fermi gas [53]. We find that the reentrance is
ubiquitous near &; = 0.5U for different ratios of A/I", and

0.1¢ — A=5mT

A=rf — A-oo

-0.6 -04 -0.2 0.0 0.2 0.4 0.6
éqlU

0.15¢ — A=57 ]

0.500 0.505

U

0.495 0.510

0.0 - : :
-1.0 -0.5 0.0 0.5 1.0

éqlU

FIG. 1. Phase diagrams of a single dot coupled to superconduct-
ing leads. The system is in the spin-down (BCS-like) state below
(above) each curve (see main text for details). The bandwidth of the
superconducting leads is D = 5xI". For the top panel, we show the
phase diagrams of three different A with a fixed exchange interaction
h = U. The middle panel is a blowup showing the case A = 57T’
near the edge of the dome in the top panel. In the bottom panel, we
consider three different ratios of 4/U for a fixed A/T" = 7.

we chose to show the case of A/I" = 57 because it is more
prominent for illustrative purposes.

In the bottom panel of Fig. 1, the superconducting gap for
the leads is fixed to be A = 7 [", and the phase boundaries for
three /U are shown. For the finite gap, the phase transitions
for I'y /U — 0 occur at the same positions as in the atomic
limit of an infinite gap [see Eq. (12)]. From Eq. (12), one can
also infer that the applied magnetic field only affects the radii
of domes. The range for the spin-polarized phase is expanded
when the applied magnetic field increases. This is because
the magnetic field tends to break Cooper pairs, and BCS-like
states become unfavorable.

In Fig. 2, we fix the single-particle energy of the quantum
dot to be at the particle-hole symmetric point, £&; = 0, and
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A/t

-um

FIG. 2. Phase diagrams of a single dot coupled to superconduct-
ing leads with a fixed single-particle energy of the bare quantum dot,
&, = 0. The bandwidth of the leads is D = 10z [". Several strengths
of an applied magnetic field are considered. The lower left and
upper right corners correspond to the BCS-like phase and the spin-
polarized phase, respectively. (See main text).

present phase diagrams by plotting the superconducting gap
versus the Coulomb interaction (we include both attractive
and repulsive interaction in the diagrams) for several h. To
the right of each transition line, the Coulomb interaction is
either more repulsive or less attractive depending on the sign
of U, and the quantum dot prefers to reside in the single-spin
state, || ). We note that for a given A, the phase-transition
points move to the left as & increases. As in the bottom panel
of Fig. 1, when the magnetic field is stronger, Cooper pairs
become less stable, and the region for the single-spin state is
enhanced. Therefore the effect of an applied magnetic field is
similar to that of a repulsive Coulomb interaction. As a result,
at a given energy gap, a stronger magnetic field shifts the
transition point to a less repulsive or more attractive Coulomb
interaction. Furthermore, we find that these phase-transition
curves are smooth when the Coulomb interaction is continu-
ously changed from being attractive to repulsive. It can also be
seen from the effective unperturbed energies [Eq. (12)] that
the influences of these two different types of interaction are
added together. In the atomic limit, the Coulomb interaction
only shifts the energies of BCS-like states, and it does not af-
fect single-spin states. Similarly, the magnetic field only shifts
the energies of single-spin states, but not BCS-like states, in
the unperturbed level. Here, we see that the perturbed energies
of the system have the same trend. Furthermore, we note that
when the applied magnetic field is strong, the |—) state may
still be the ground state when the mutual attractive interaction
is sufficiently large.

The top panel of Fig. 3 plots transition lines, between the
BCS-like state, |—), and the spin-down state, || ), for U as
functions of & at A = " for several &;. Here, we choose
D = 5nT. To the right of the transition lines, the influence
of the Zeeman interaction is strong, and the ground state is
the spin-polarized state for a fixed intradot interaction. For a
fixed Zeeman interaction, the system is in the BCS-like regime
below the transition lines, where the Coulomb interaction U is
either repulsive but small or attractive (—U < 0). This is con-
sistent with the physical picture of a Cooper pair consisting of
a pair of electrons bound with each other in that a smaller

-umr

0.0 0.5 1.0 1.5 2.0
hir

d(-U)/dh

0.0 0.5 1.0 1.5 2.0
hir

FIG. 3. The top panel shows phase diagrams of a single dot
coupled to superconducting electrodes with a fixed gap A == T.
Four different energy levels, &,, of the bare dot are considered. For
a given &, the area in the upper right (lower left) of each curve
corresponds to the spin-down (BCS-like) states. In the bottom panel,
we consider the slopes of the curves in the top panel. (See main text).

repulsive U is less detrimental to BCS-like states. For an
attractive U, the system prefers to be in the BCS-like state. We
consider four different £; and find that when it decreases, the
BCS-like region shrinks. This is because the system is away
from the particle-hole symmetric point and the BCS-like state
of the quantum dot becomes more robust when &, increases.
If we consider a given U, the system is in the single-spin state
to the right of the transition lines where 4 is large.

From Eq. (12), we can see that for a fixed I'y and &, the
transition lines are linear in the atomic limit because —U /2 +
h is a constant. Although the transition lines in the top panel
of Fig. 3 appear to be linear when A is finite, we still compute
their slopes in the bottom panel of Fig. 3. The results indicate
that they deviate from the linear relationship and show that
the system behaves quite differently when it is away from the
atomic limit. In fact, the slope in the atomic limit is universal
regardless of the sizes of I'y and &, and it is always equal to
—2. However, we clearly see that only when # is strong does
the system behave as if it is in the atomic limit.

From Figs. 1-3, one can infer that the Coulomb interaction
U and Zeeman effect /1 both similarly affect phase-transition
lines. A large and repulsive U increases the energy of the
BCS-like state, while a high & decreases the energy of the
single-spin state not only at the unperturbed level but also at
the perturbed level to a certain degree. As a result, a large
and repulsive U requires only a small or vanishing 4 for the
system to stay in the single-spin state. The above discussion

214507-6



QUANTUM PHASE TRANSITIONS IN ...

PHYSICAL REVIEW B 102, 214507 (2020)

shows that it is necessary to go beyond the atomic limit to
understand the physics of the SC-QD-SC junctions.

B. Josephson current

Next, we discuss Josephson currents in our system.
Josephson currents can be computed by using the formula J =

Zeg—g, where F = — 4 — —M is the free energy and
B = 1/kgT . For simplicity, we consider the zero-temperature
limit where the free energy is reduced to the ground-state
energy Eg. Therefore we first numerically determine the
ground-state energy as a function of the phase difference ¢ be-
tween the two superconductors in our self-consistent scheme.
The corresponding supercurrent can then be explicitly com-
puted by taking the numerical derivative of Eg with respect to
¢.

In the top panel of Fig. 4, we show the Josephson current-
phase relations for four different Zeeman energies: 7 = 0,
0.5T', T', and 2I". When ¢ — 0, Ty = I'2 tan~!(2) cos(%)
is at its maximum, and the energy for the |—) state, E_ =
E° +8E_, is in principle at its minimum. As a result, the
ground-state energy is usually in the BCS-like phase when ¢
is small or near 27r. Furthermore, the current-phase relation in
these ¢ regimes is given by J = Jy sin ¢ corresponding to an
ordinary O junction. On the other hand, when ¢ — 7, I'y =
I'Z tan~!(2)cos($) is at its minimum, and E_ = E® + §E_
is higher. As a result, in a suitable range, the ground state
may be the spin-polarized state, || ), and the current-phase
relation becomes J = Jy sin(¢ — 7 ), corresponding to a so-
called 7 junction. However, we find that the supercurrent
in the 7 junction is small relative to that in the 0 junction.
This is because the spin-polarized state behaves similarly to a
magnetic Kondo impurity that prevents other electrons from
passing through the quantum dot. In addition, it can be un-
derstood by considering the superconducting correlations of
the dot as discussed in Ref. [12]. Because the spin-polarized
state always carries a weaker superconducting correlation, the
associated Josephson supercurrent is smaller.

In the top panel of Fig. 4, we also find that the 0-7 phase-
transition points are shifted: the region for the 7 junction is
increased as & increases. We also find that when &; = 0, the
dot is in the O phase for the entire range of ¢ when i = 0. This
is because the 0 phase corresponds to the BCS-like state, and
without an exchange interaction the dot is never driven to the
single-spin state for all possible phase differences. We note
that when ¢ = 7, there is a sudden jump from a large positive
current to a large negative current. This suggests that the dot is
in the clean limit. The sudden jumps may disappear if we in-
clude the contribution from the states in the energy continuum
or when the dot is not at the particle-hole symmetric point. It
is not surprising to see that the 7 junction is not energetically
favorable for 7 = 0 because the system cannot stay in the
single-spin state without the inclusion of 4. When the Zeeman
interaction is strong enough (h = 2T"), the spin-polarized state
is energetically more favorable for all ¢, and the junction turns
into a complete 7 junction. In Ref. [28], it is demonstrated
that when U is strong and repulsive, the Josephson junction
is also a complete 7 junction. This confirms the fact that the
effect of increasing the Zeeman interaction is similar to that of
increasing the repulsive Coulomb interaction. This important

0.4

h=0.5"
— h=T
— h=2r

0.2r

0.0

Ji2el’

-0.2+

-04
0

0.3

0.2f
0.1f
0.0

J/2el

-0.1}

-0.2f

-0.3

J/2el

FIG. 4. Josephson currents as functions of a relative phase dif-
ference ¢ for a single dot coupled to two superconducting leads. The
bandwidth of conduction electrons in the superconductors is fixed
to be D = 10xT", and the superconducting gaps are the same for
both leads and given by A = ' [". In the top panel, we consider four
different exchange interactions for a fixed mutual intradot interaction
U =T, and the bare quantum-dot energy level is given by &; = 0.
For the middle panel, current-phase relations are plotted for three dif-
ferent £, when h = U = I'. The bottom panel shows cases for three
different Coulomb interactions U/T" for a fixed Zeeman interaction
h =T at the particle-hole symmetric point §; = 0.

property can be applied to nanodevices because switching
effects here can be easily controlled by tuning the strength
of an external magnetic field. On the other hand, the strength
of Coulomb interaction is usually material dependent, and it
is more difficult to directly control its associated switching
effects for practical purposes.

In the middle panel of Fig. 4, we consider two addi-
tional, slightly larger bare quantum-dot energies &; at fixed
h and U. We find that as &; increases, the region for the
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7 phase is shrinking, and the BCS-like state is more stable.
The reason behind this is similar to previous consideration.
When &, is away from the particle-hole symmetric point, £; =

0, /&3 + Fé becomes larger, and E_ = E° 4+ §E_ becomes

lower. As a result, the BCS-like state (0 phase) is more stable.
For &; = 1.2T, there are even no 0-7 phase transitions across
the entire ¢ range. However, by applying a strong enough
magnetic field, the system can still be driven from the 0 phase
to the m phase (not shown) as clearly demonstrated in the
top panel of Fig. 4. The 0-m phase transitions can thus occur
either by applying a Zeeman field or by tuning the energy
level of the dot via a gate voltage. Although the system is a
0 junction for the entire ¢ range when &; = 1.2I", the size
of the supercurrent is smaller compared with the other two
cases. This is because when &, is large, the superconducting
correlation, and hence the Josephson current, gets weaker.
In the bottom panel of Fig. 4, we consider the particle-hole
symmetric point and & = TI'" for several U. As can be seen
here, the ¢ range for the 7 phase, or the spin-polarized phase,
gets smaller as the attractive interaction gets stronger, as we
anticipate.

IV. CONCLUSION

In this paper, we use a relatively simple model to in-
clude the local effect of an applied magnetic field as
well as the phenomenon of attractive Coulomb interaction
in superconductor—quantum-dot—superconductor Josephson
junctions. To go beyond the superconducting atomic limit, we
follow a quite successful perturbative scheme based on the
path-integral formalism [12]. In this formalism, all relevant
energy scales can be made finite and thereby suitable for more
realistic situations.

We first present phase diagrams of superconductor—
quantum-dot—superconductor junctions under the influence of
the interplay between the magnetic field and the attractive

Coulomb interaction. We use a set of self-consistent equa-
tions to calculate Andreev bound-state energies and Josephson
currents as functions of practical experimental knobs such
as the hybridization energy, a phase difference between two
superconducting electrodes, the strengths of Coulomb and
exchange interaction, and superconducting energy gaps.

We show that in the superconducting atomic limit, the
effect of applying a magnetic field is to shift the energy levels
of single-spin states of the quantum dot by £/ depending on
the type of spin. On the other hand, the Coulomb interaction
shifts the energy levels of BCS-like states (superpositions of
vacuum and paired states) by —U/2. As a result, both the
magnetic field and Coulomb interaction play crucial roles in
determining the phase transition in the atomic limit (% > 1).

We find that the system can exhibit reentrant behavior near
phase boundaries in the perturbative scheme when the system
is away from the atomic limit. For an attractive Coulomb
interaction, the system prefers to reside in a BCS-like state.
For this reason, the system tends to exhibit a pronounced su-
perconducting proximity effect in physical quantities such as
the superconducting correlation and Josephson supercurrent.
In order for the dot to transition from the BCS-like phase to
the spin-polarized phase, an external magnetic field must be
present. We find that O junctions with a higher &;, in general,
have a lower supercurrent. In addition, when U/I" (h/T") is
large (small), the BCS-like regime is enhanced, and 0- phase
transitions occur at a higher relative phase between two super-
conducting leads. All the results presented here indicate that
superconductor—quantum-dot—superconductor junctions pro-
vide a platform to study quantum phase transitions as well
as switching effects in nanodevices.
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