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The weak-coupling limits of the gap and critical temperature computed within Eliashberg theory surprisingly
deviate from the BCS theory predictions by a factor of 1/

√
e. Interestingly, however, the ratio of these two quan-

tities agrees for both theories. Motivated by this result, here we investigate the weak-coupling thermodynamics
of Eliashberg theory, with a central focus on the free energy, specific heat, and the critical magnetic field. In
particular, we numerically calculate the difference between the superconducting and normal-state specific heats,
and we find that this quantity differs from its BCS counterpart by a factor of 1/

√
e, for all temperatures below Tc.

We find that the dimensionless ratio of the specific-heat discontinuity to the normal-state specific heat reduces
to the BCS prediction given by �CV (Tc )/CV,n(Tc ) ≈ 1.43. This gives further evidence to the expectation that all
dimensionless ratios tend to their “universal values” in the weak-coupling limit.

DOI: 10.1103/PhysRevB.102.214505

I. INTRODUCTION

The thermodynamic properties of superconductors [1] are
interesting macroscopic quantities that afford insight into the
excitation spectrum, the pairing gap, and also the nature of
heat transfer in superconductors. The specific heat is one
such quantity of great interest due to the fact that, for a
second-order, mean-field-like phase transition, it exhibits a
discontinuity as the temperature is decreased towards the crit-
ical temperature. In addition, the presence of a pairing gap
leads to an exponential suppression in the low-temperature be-
havior of the specific heat, in contrast to the linear temperature
dependence of a normal-state metal [2,3]. Indeed, experi-
mental measurements [4] of the specific heat can provide
a diagnostic on the importance of strong-coupling correc-
tions and elucidate the nature of the gap. In the context
of the Eliashberg theory [5] of superconductivity, the spe-
cific heat has primarily been addressed in the context of the
strong-coupling limit [6,7]. Motivated by recent work [8,9]
elucidating the differences in the gap and critical temperature
for weak-coupling Eliashberg theory and BCS theory, here we
investigate the thermodynamics of Eliashberg theory in the
weak-coupling limit.

To determine the specific heat, which is proportional to the
second derivative of the free energy with respect to temper-
ature, one must first calculate the free energy. In Ref. [10],
Luttinger and Ward developed the requisite theoretical for-
malism for calculating the thermodynamic potential of an
interacting system. In general, the thermodynamic potential
can be calculated by summing all bare closed-loop diagrams
[10]. However, summing such a perturbative expansion proves
to be difficult [11]. Luttinger and Ward showed that a partial
resummation could be performed by constructing a functional
consisting of all closed-loop skeleton diagrams with the bare
Green’s function replaced by the full irreducible Green’s func-
tion. An expression for the thermodynamic potential can then

be calculated, and the first-order variation of this function,
with respect to the self-energy, vanishes for a Green’s function
obeying Dyson’s equation. The thermodynamic potential is
thus self-consistent, and an additional important facet of this
approach is that it ensures the satisfaction of macroscopic
conservation laws [12].

The free energy [13] for an interacting electron-phonon
system [5] was then given by Eliashberg. However, the ex-
pression is computationally intractable. Nevertheless, with the
aid of several plausible assumptions, the momentum integra-
tion appearing in this expression can be performed, and by
considering the difference between the superconducting and
normal-state free energies, a far more tractable expression
can be obtained. Bardeen and Stephen [14] derived such a
formula, and its utility lies in the fact that it only requires
performing a summation over Matsubara frequencies; thus,
once the mean-field parameters are determined, the thermo-
dynamic properties of superconductors are readily amenable
to calculation. The result in Ref. [14] is equivalent to a less
rapidly convergent expression obtained by Wada in Ref. [15].

In Ref. [14] the analysis was confined to the case of an
isotropic Fermi surface with a constant density of states.
The free-energy difference for a system with an energy-
dependent density of states was derived in Ref. [16] by
Mitrovic and Carbotte; these authors also included the effects
from the Coulomb interaction and (nonmagnetic) impurities.
The extension of the Luttinger-Ward formalism to more gen-
eral Eliashberg-type theories has also recently been achieved
[17,18].

The modification of the critical magnetic field due to strong
electron-phonon coupling was studied in Ref. [19]. Numeri-
cal analysis of the free-energy difference for strong-coupling
Eliashberg theory was performed by Daams and Carbotte
[20]. In Ref. [21], Marsiglio et al. computed the specific heat
in the asymptotic limit of Eliashberg theory, as the interac-
tion strength approaches infinity. Using the Bardeen-Stephen
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formula, the condensation energy of a superconductor with
a generalized pairing interaction was studied by Tsoncheva
and Chubukov [22] from weak- to strong-coupling strengths.
Further discussion on the numerical and experimental analysis
of superconductors, within the Eliashberg framework, can be
found in Ref. [7]. For a recent review of when Eliashberg
theory is valid, see Ref. [23].

In this paper we consider the thermodynamics of weak-
coupling Eliashberg theory. The motivation for this limit is
due, in part, to the surprising (and not widely appreciated)
result [8,9,24–26] that the weak-coupling limit of Eliash-
berg theory does not reduce to BCS theory. Indeed, in the
weak-coupling limit, the critical temperature Tc and the zero-
temperature limit of the gap function �0 both have corrections
of 1/

√
e in comparison to their BCS counterparts. Neverthe-

less, the ratio of these two quantities was known [27] early on
to limit to the BCS prediction. In Ref. [8] one of the present
authors considered the weak-coupling Eliashberg theory on
the imaginary axis, and in Ref. [9] we extended this analy-
sis to the real axis, thus obtaining a complete understanding
of the gap and renormalization functions for weak-coupling
Eliashberg theory. Here we complement these studies and
investigate the specific heat and critical magnetic field.

The outline of the paper is as follows. In Sec. II we use
the Bardeen-Stephen formula to study the zero-temperature
and critical-temperature limits of weak-coupling Eliashberg
theory. We obtain the expected corrections to the BCS results;
however, the dimensionless ratios agree. The numerical cal-
culations of the specific heat and the critical magnetic field
are then discussed in Sec. III and finally Sec. IV presents the
conclusion.

II. THEORETICAL ANALYSIS

Determining the free energy in the superconducting phase,
within the Eliashberg theory framework, is a nontrivial
endeavour. However, the Bardeen-Stephen formula [14] pro-
vides a useful method to numerically compute the difference
between the superconducting and normal-state free energies.
This formula is given by

�F

N (0)
= −πT

∞∑
m=−∞

[√
ω2

m + �2(iωm) − |ωm|
]

×
[

Zs(iωm) − Zn(iωm)
|ωm|√

ω2
m + �2(iωm)

]
. (2.1)

Here, T is the temperature, N (0) is the single-spin electronic
density of states at the Fermi energy, and �(iωm) is the
frequency-dependent gap function where ωm = (2m − 1)πT ,
with m ∈ Z, is a fermionic Matsubara frequency. The renor-
malization factors in the superconducting and normal states
are respectively defined as Zs(iωm) and Zn(iωm). Natural units
h̄ = kB = c = 1 are used throughout the paper. An important
feature of this expression is that it requires knowledge of the
gap function only on the imaginary frequency axis. Thus,
the subtleties [9,28,29] involved with analytic continuation to
the real-frequency axis are absent. In the case where the gap
function is frequency independent, as in BCS theory, Eq. (2.1)
reduces to the BCS result [30] for the free-energy difference.
One point to keep in mind is that the � appearing here is the

self-consistent gap function, that is, in this expression F is not
an arbitrary functional of � and as a result d�F/d� is not
zero.

The Eliashberg equations [7] consist of the following cou-
pled equations for the superconducting gap �(iωm) and the
normal and superconducting renormalization factors Zn(iωm)
and Zs(iωm):

Zn(iωm) = 1 + πT

ωm

[
λ + 2

m−1∑
n=1

λ(iνn)

]
, (2.2)

Zs(iωm) = Zn(iωm) + πT

ωm

∞∑
m′=−∞

λ(iωm − iωm′ )

×
⎡
⎣ ωm′√

ω2
m′ + �2(iωm′ )

− sgn(ωm′ )

⎤
⎦, (2.3)

�(iωm)Zs(iωm) = πT
∞∑

m′=−∞
λ(iωm − iωm′ )

�(iωm′ )√
ω2

m′+�2(iωm′ )
.

(2.4)

The bosonic Matsubara frequencies are νn = 2nπT , where
n ∈ Z, and the electron-phonon coupling is

λ(iωm − iωm′ ) = 2AωE

ω2
E + (ωm − ωm′ )2

. (2.5)

Here, ωE is the Einstein frequency and A = λωE/2 is the
weight of the spectral function, where λ > 0 is a fixed in-
teraction strength. In the next two sections we obtain an
expression for the free-energy difference of weak-coupling
Eliashberg theory in the zero-temperature limit and near the
critical temperature. These expressions will both differ from
the BCS results by a factor of 1/e.

A. Zero-temperature limit

In the zero-temperature limit, that is, in the limit T =
T/ωE � 1, the Matsubara frequency summation becomes an
integration according to the prescription [11]

T
∞∑

m=−∞
→

∫ ∞

−∞

dω

2π
. (2.6)

The weak-coupling limit is defined [8] by Tc/ωE � 1;
thus, for any T < Tc, in this limit one also has T/ωE �
1, and therefore weak coupling is synonymous with the
zero-temperature limit. In the weak-coupling limit, the zero-
temperature gap function, on the imaginary frequency axis,
can be approximated as [8]

�(iωm) = �0

1 + ω2
m

, (2.7)

where �0 = �0/ωE (in general Q = Q/ωE ) is the gap param-
eter, determined by the condition �0 = Re�(ω = �0) [31].
In Eq. (2.1), we use the above approximation for �; however,
we drop the denominator. In the region of small frequencies
this is permissible, since the denominator is near unity, and
for large frequencies this is also valid since the O(ω2

m) term
under the square root in Eq. (2.1) dominates. In the weak-
coupling limit Zs ≈ Zn ≈ 1 + λ ≡ Zλ [8]. We first define a
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dimensionless free-energy difference � f by

� f = �F

N (0)ωE Zλ

. (2.8)

Using this definition, Eq. (2.1) then reduces to

� f = −
∫ ∞

0
dω

(√
ω2 + �

2
0 − ω

)⎛
⎝1 − ω√

ω2 + �
2
0

⎞
⎠

= lim
L→∞

(
ω2 − ω

√
ω2 + �

2
0

)∣∣∣∣
L

0

= −1

2
�

2
0. (2.9)

In Ref. [9] it was shown that the gap parameter �0 is given in
the weak-coupling limit as

�0 = 2√
e

exp

(
−1 + λ

λ

)
= 1√

e
�0,BCS, T → 0. (2.10)

Here, we define �0,BCS to be the zero-temperature limit of the
BCS gap function with renormalization effects included [8].
Thus, the weak-coupling free-energy difference is

� f = 1

e
� fBCS, T → 0. (2.11)

The right-hand side of this equation means that Eq. (2.1)
is calculated with the BCS gap used for the gap function.
This result can be easily understood as follows. The low-
temperature limit of the free-energy difference is the square of
the gap function [11] and, as previously shown [9], since the
weak-coupling limit of the gap function has a factor of 1/

√
e

different from the BCS limit, the free-energy difference thus
acquires a prefactor of 1/e in comparison to the BCS limit. In
Sec. III we shall numerically confirm this result.

B. Critical-temperature limit

In the limit T → Tc the gap function satisfies �(iωm) �
Tc. By performing a small �/Tc expansion in Eq. (2.1), the
free-energy difference can be expanded in powers of � as
follows:

�F

N (0)Zλ

→ −π

4
Tc

∞∑
m=−∞

�(iωm)4

|ωm|3 , T → Tc. (2.12)

As in Sec. II A, the gap function can be approximated as
�(iωm) ≈ �0. In Ref. [9] it was numerically proved that,
for weak-coupling Eliashberg theory, �0(T )/�0(T → 0) is
in good agreement with the BCS ratio for this quantity. The
temperature dependence of the gap parameter, as T → Tc, can
thus be approximated in the weak-coupling limit by the BCS
result [11,32]:

�0(T )

Tc
= π

√
8

7ζ (3)

√
1 − T

Tc
. (2.13)

Note that the weak-coupling factor of 1/
√

e would be present
in the numerator and denominator of the left-hand side of
this expression, and thus it drops out from this ratio. Af-
ter performing the Matsubara frequency summation [11], the

free-energy difference becomes

� f = − 4π2

7ζ (3)

(
1 − T

Tc

)2

T
2
c . (2.14)

The analytical approximation for T c in the weak-coupling
limit was determined in Ref. [8] to be

T c = 2eγ

π
√

e
exp

(
−1 + λ

λ

)
= 1√

e
T c,BCS, (2.15)

where γ ≈ 0.5772 is the Euler-Mascheroni constant. Here, we
define T c,BCS to be the critical temperature for the BCS gap
function with renormalization effects included [8]. Thus, the
weak-coupling free-energy difference is

� f = 1

e
� fBCS, T → T c. (2.16)

Combining this equation with the result in Eq. (2.11) we
find that, in both the zero-temperature and critical-temperature
limits, the weak-coupling free-energy difference has a cor-
rection of 1/e compared to the BCS result. Since the
weak-coupling limit is synonymous with the zero-temperature
limit, this explains why the 1/e correction factor in the free-
energy difference is expected to persist for all temperatures
T < Tc:

� f = 1

e
� fBCS, 0 � T � T c. (2.17)

Here we have analytically confirmed this result for T → 0
and T → T c, and in the next section we numerically con-
firm this for a range of intermediate temperatures. Another
way to understand why the correction factor 1/e between
weak-coupling Eliashberg theory and BCS theory free-energy
differences is the same for all temperatures is due to the fact
that both the zero-temperature gap parameter and Tc receive
the same weak-coupling correction. That is, the two pertinent
energy scales in the respective limits have the same weak-
coupling correction, and thus the same correction appears at
all temperatures.

The specific heat (at constant volume) is defined as

CV = −T

(
∂2F

∂T 2

)
V

. (2.18)

The specific-heat difference is �CV = CV,s − CV,n, where the
normal-state specific heat is [7]: CV,n(T ) = 2π2

3 ZnN (0)T . Us-
ing Eqs. (2.14) and (2.18) we find that �CV ∼ T c, as T →
Tc, and since the weak-coupling result for Tc in Eq. (2.15)
has a prefactor of 1/

√
e, the specific-heat difference also

has a factor of 1/
√

e different from the BCS result. How-
ever, the normalized change in the specific-heat difference
�CV /CV,n|T →Tc

reduces to the BCS result

�CV

CV,n

∣∣∣∣
T →Tc

= 12

7ζ (3)
≈ 1.43. (2.19)

Thus, the normalized specific-heat difference in the weak-
coupling theory limits to the BCS prediction, despite the fact
that Tc and �0 receive 1/

√
e corrections. As alluded to earlier,

we expect that this agreement persists for all temperatures
T < Tc. In the numerical analysis presented in the next section
this will be verified.
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FIG. 1. A plot of f /�
2
0,BCS versus T/Tc. The self-consistent

equations (2.2)–(2.4) are solved for �(iωm ), Zs, and Zn, which are
then inserted into Eq. (2.1). The blue curve corresponds to Eliashberg
theory with λ = 0.2, whereas the green curve is the BCS result, and
the fuchsia curve is the BCS result multiplied by 1/e. There is very
good agreement between Eliashberg theory and 1/e times the BCS
result.

III. NUMERICAL ANALYSIS

A. Specific heat

In Fig. 1 we plot � f /�
2
0,BCS versus T/Tc for Eliashberg

theory with λ = 0.2, for BCS theory, and also for 1/e times
the BCS result. From Eq. (2.9), the zero-temperature limit of
this quantity is expected to be −1/2 for BCS theory, whereas
for weak-coupling Eliashberg theory the zero-temperature
limit is expected to be corrected from the BCS result by 1/e,
namely, −1/(2e) ≈ −0.184. As shown in the figure, the nu-
merically computed free-energy difference for weak-coupling
Eliashberg theory clearly exhibits a 1/e correction compared
with the BCS result, for all temperatures 0 � T � T c.

In Fig. 2 we plot the superconducting specific heat CV,s(T ),
normalized by the quantity 2π2

3 ZλN (0), versus T/Tc for the
λ = 0.3 Eliashberg theory and for BCS theory. For this

FIG. 2. A plot of cV,s(T ) ≡ CV,s(T )/[ 2π2

3 ZλN (0)] versus T/Tc.
For the λ = 0.3 Eliashberg plot (blue), T c = 0.009923. For the BCS
plot (green) we set T c = 0.009923

√
e ≈ 0.01636, which is valid in

the weak-coupling approximation.

FIG. 3. A plot of CV,s(T )/CV,n(Tc ) versus T/Tc. The Eliashberg
theory results correspond to coupling constants λ = 1 (red) and λ =
0.3 (blue), whereas the BCS result (with � determined by solving
the BCS gap equation) is given in green.

choice of coupling constant, the Eliashberg case has [9] T c =
0.009923; for the BCS case we use T c = 0.009923

√
e ≈

0.01636. This figure verifies the analytical analysis of the
previous section; near T = Tc we find that CV,s ∼ T c, and
thus the respective specific heats in the Eliashberg and BCS
theories differ by a factor of 1/

√
e. This difference of 1/

√
e

appears at all temperatures below Tc. To illustrate this fact in
another fashion we proceed as follows. In Fig. 3 we plot the
ratio of the superconducting and normal-state specific heats,
CV,s(T )/CV,n(Tc), versus T/Tc for the Eliashberg and BCS the-
ories. At the critical temperature there exists a discontinuity in
CV , which illustrates the occurrence of a second-order phase
transition, and CV,s is noticeably larger than CV,n. The specific-
heat ratio for Eliashberg theory with λ = 0.3 and BCS theory
shows excellent agreement. However, for Eliashberg theory
with λ = 1, we observe a deviation from the BCS result. One
should bear in mind that while this specific-heat ratio agrees
for the two theories, the specific heat itself (CV,s) exhibits
a 1/

√
e difference between weak-coupling Eliashberg theory

and BCS theory, as evinced in Fig. 2.
In Fig. 4 we plot �CV (T )/�CV (Tc) versus T/Tc for the

Eliashberg and BCS theories. For the case of λ = 0.3, the
weak-coupling Eliashberg theory curve is in good agree-
ment with the BCS result. Again, we emphasize the fact that
�CV (T ) for weak-coupling Eliashberg theory will differ by
1/

√
e from the BCS result: it is the dimensionless ratio of

specific heats that is the same for the two theories. For small
temperatures the λ = 0.3 curve is below the λ = 1 curve and
both plots are negative, whereas for temperatures T/Tc � 0.6,
both curves change sign and the λ = 0.3 curve lies above the
λ = 1 curve. The weights of these curves that reside above or
below the temperature axis is constrained by the continuity of
entropy [11,32,33]. Indeed, entropy is related to specific heat
by CV = T (dS/dT )|V and thus, if we integrate this equation
with respect to temperature and use the third law of ther-
modynamics, then we obtain S(T ) = ∫ T

0 dT ′CV (T ′)/T ′. The
number of configurations of a system is a discrete quantity,
and moreover it must be a continuous function of temper-
ature; since entropy is proportional to the logarithm of the
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FIG. 4. A plot of �CV (T )/�CV (Tc ) versus T/Tc for the Eliash-
berg and BCS theories. The λ = 0.3 weak-coupling Eliashberg plot
(blue) and the BCS plot (green) are similar. However, the λ = 1
Eliashberg plot (red) is different.

number of configurations, it follows that entropy is a con-
tinuous function of temperature and thus �S(Tc) = 0. Hence,
when the curves in Fig. 4 are divided by T and the integral
over temperature from T/Tc = 0 to T/Tc = 1 is performed,
the result must vanish. This explains the sign change in the
plots of �CV .

B. Critical magnetic field

The critical magnetic field is defined by [7,33]

Hc = √−8π�F , (3.1)

where �F is the free-energy difference, which we determine
via Eq. (2.1). In BCS theory, the zero-temperature limit of the
critical magnetic field is [11,33]

Hc(T )

Hc(0)

∣∣∣∣
BCS

→ 1 − 1

3
e2γ

(
T

Tc

)2

, T → 0. (3.2)

The numerical value of the coefficient in front of the T 2 term
in the equation above is 1

3 e2γ ≈ 1.06, which is close to unity
[11]. The zero-temperature critical magnetic field appearing
above is defined by H2

c (0)/(8π ) = N (0)�2
0/2.

As T → Tc, the critical magnetic field, as computed within
BCS theory, is [11]

Hc(T )

Hc(0)

∣∣∣∣
BCS

→ eγ

√
8

7ζ (3)

(
1 − T

Tc

)
, T → Tc. (3.3)

The numerical value of the prefactor is ≈1.74 [11]. In Fig. 5,
the normalized critical magnetic field Hc(T )/Hc(0) versus
T/Tc is shown for Eliashberg theory, for λ = 1 and λ = 0.3,
and also for BCS theory, and there is good agreement between
weak-coupling Eliashberg theory and BCS theory. Indeed, this
figure shows that the normalized critical magnetic field ratio,
computed using weak-coupling Eliashberg theory, is in good

FIG. 5. A plot of the normalized critical magnetic field versus
reduced temperature for Eliashberg theory with λ = 1 (red), λ = 0.3
(blue), and also for BCS theory (green).

agreement with the asymptotic limits for BCS theory written
in Eqs. (3.2)–(3.3).

IV. CONCLUSION

In this paper we have extended the understanding of weak-
coupling Eliashberg theory by studying its thermodynamic
properties. Combined with the previous weak-coupling anal-
yses of the gap and renormalization parameters, the present
complementary analysis of the free energy, specific heat, and
critical magnetic field culminates in a thorough elucidation
of the single-particle properties of weak-coupling Eliashberg
theory. In particular, we applied the Bardeen-Stephen formula
for the free-energy difference between the superconducting
and normal states and used this to show that, in the weak-
coupling limit, the free-energy difference of Eliashberg theory
has a correction of 1/e in comparison to the BCS case, for
all temperatures below the critical temperature. Furthermore,
we showed that, while there is a correction of 1/

√
e in the

respective specific-heat difference in Eliashberg theory and
BCS theory, when normalizing this quantity by Tc we find
agreement between these two theories. We also illustrated this
agreement in the normalized weak-coupling properties of the
critical magnetic field. Moreover, we showed that the discon-
tinuity in the specific heat, as the temperature approaches the
critical temperature, is the same for weak-coupling Eliashberg
theory and BCS theory. This provides credence to the notion
that the “universal” ratios in BCS theory are recovered in
weak-coupling Eliashberg theory.
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