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Staggered superfluid phases of dipolar bosons in two-dimensional square lattices
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We study the quantum ground state of ultracold bosons in a two-dimensional square lattice. The bosons interact
via the repulsive dipolar interactions and s-wave scattering. The dynamics is described by the extended Bose-
Hubbard model including correlated hopping due to the dipolar interactions, and the coefficients are found from
the second quantized Hamiltonian using the Wannier expansion with realistic parameters. We determine the
phase diagram using the Gutzwiller ansatz in the regime where the coefficients of the correlated hopping terms
are negative and can interfere with the tunneling due to single-particle effects. We show that this interference
gives rise to staggered superfluid and supersolid phases at vanishing kinetic energy, while we identify parameter
regions at finite kinetic energy where the phases are incompressible. We compare the results with the phase
diagram obtained with the cluster Gutzwiller approach and with the results found in one dimension using the
density-matrix renormalization group.
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I. INTRODUCTION

Ultracold atoms in optical lattices are an ideal plat-
form to simulate complex quantum many-body systems of
condensed-matter physics [1–4]. One paradigmatic example
is the Bose-Hubbard model [5,6]. Here, the possibility to tune
the model’s coefficients by means of external fields permits
one to experimentally characterize the quantum phase transi-
tion between superfluid (SF) and Mott insulator (MI) [7,8].

The recent experimental realization of ultracold dipolar
gases in optical lattices [9–15] opens the perspective to study
the quantum properties of matter in a lattice emerging from
the interplay between long-range interactions, contact inter-
actions, and quantum fluctuations. In the theoretical model,
long-range dipole-dipole interactions give rise to additional
terms in the Bose-Hubbard model. These are density-density
repulsive interactions, frustrating the occupation of neighbor-
ing sites, and correlated tunneling terms, including tunneling
of pairs of bosons and hopping depending on the site den-
sity [16–20]. Similar additional interaction terms also play
a key role in determining the properties of superconductors
[21–23]. Most theoretical studies of the phase diagram of
dipolar bosons include solely the density-density repulsive
term. These works showed that the competition of this term
with tunneling and contact interactions can give rise to density
modulations [24,25]. The corresponding phases are denoted
by a charge density wave (CDW) when the phase is in-
compressible and by a supersolid (SS) when the phase is
a superfluid (for a review, see Refs. [26,27]). Moreover, in
one dimension the same model for unit mean density hosts a
topological Haldane insulator phase [28,29].

The phases emerging from correlated hopping are rela-
tively unexplored. They are known in the condensed-matter
context, where, for instance, density-dependent tunneling has
being coined as bond-charge interaction [30]. In standard
solid-state materials, however, the role of interaction-induced
tunneling is experimentally difficult to observe. In con-
trast, ultracold dipolar gases in optical lattices provide the
unique possibility to fully characterize the role of correlated
hopping in determining the quantum phases and dynamics
[12,19]. Theoretical studies predict that correlated tunneling
can strongly modify the phase diagram [31] and is responsible
for the appearance of novel SF phases [16,32]. To mention
some, it can give rise to superfluidity with complex order
parameters [33,34] or suppress the SS phase and give rise to
phase separation [18]. Investigations at fractional density 3/2
predict interesting anyonic excitations [35,36]. The interplay
between contact and dipolar interactions was analyzed in one
dimension in Refs. [16,20,37,38], also taking care of varying
the parameters according to the physical constraints of the
system. The studies of Refs. [37,38], in particular, determined
the ground-state properties by means of the density-matrix
renormalization group (DMRG) approach [39] and reported
so-called staggered superfluid phases, namely, superfluid
phases whose order parameter is staggered. Moreover, in
Ref. [38] it was predicted that correlated and single-particle
hopping can interfere destructively, resulting in incompress-
ible phases even for a relatively shallow lattice, where one
would otherwise expect superfluidity.

In this paper, we theoretically analyze the phases of
a two-dimensional lattice of ultracold dipolar bosons by
means of a Bose-Hubbard model which consistently includes
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density-density interactions and correlated hopping. We are
particularly interested in the fate of the interference between
correlated and single-particle hopping in two dimensions and
in a square lattice. We determine the quantum ground state
using primarily the single-site standard Gutzwiller mean-field
(SGMF) approach [40–42] truncating the dipolar interactions
first to nearest-neighbor (NN) and then to next-nearest-
neighbor (NNN) terms. We then analyze the role of quantum
fluctuations in the staggered phases using cluster Gutzwiller
mean-field (CGMF) theory [43–48].

This paper is structured as follows. In Sec. II we introduce
the extended Bose-Hubbard model as the basis of our inves-
tigations and discuss the theoretical approaches employed in
this paper. The ground-state phase diagrams at fixed average
densities are presented in Sec. III. In Sec. IV we examine the
phase diagram at fixed nearest-neighbor interaction. Finally,
we discuss the conclusions and outlook in Sec. V.

II. MODEL AND METHODS

We consider a gas of ultracold bosons which are confined
in two dimensions in a square optical lattice. The motion in the
direction orthogonal to the plane is assumed to be frozen out.
The bosons interact via the contact potential and the dipolar
interactions. The dipoles are polarized perpendicularly with
respect to the plane of the lattice; thus they interact repulsively
and isotropically in the plane. In this section we introduce the
extended Bose-Hubbard model as the basis of our investiga-
tion, discuss the parameter regime on which we focus, and
describe the theoretical methods that we employ in order to
determine the quantum ground state.

A. Extended Bose-Hubbard model

We assume a grand canonical ensemble. The bosons are
confined by a square lattice in the x-y plane with L = Lx ×
Ly sites and periodic boundary conditions. We denote by
b̂p,q and b̂†

p,q the operators annihilating and creating, respec-
tively, a particle at site {p, q} with commutation relations
[b̂p,q, b̂†

p′,q′ ] = δp,p′δq,q′ . Here, p(q) is the lattice site index

along the x(y) direction. Let n̂p,q = b̂†
p,qb̂p,q denote the cor-

responding number operator. The extended Bose-Hubbard
model (eBHM) that we consider is described by the Hamil-
tonian Ĥ , which we separate into the contribution of on-site,
nearest-neighbor, and next-nearest-neighbor interactions:

Ĥ = Ĥ0 + Ĥ (1) + Ĥ (2). (1)

Here, Ĥ0 is the standard Bose-Hubbard model:

Ĥ0 = −t
∑
p,q

(
b̂†

p+1,qb̂p,q + b̂†
p,q+1b̂p,q + H.c.

)

+
∑
p,q

n̂p,q

[
− μ + U

2
(n̂p,q − 1)

]
, (2)

where t is the hopping term due to single-particle effects
and is isotropic, U denotes the on-site interaction term, and
μ is the chemical potential. The nearest-neighbor (NN) and
next-nearest-neighbor (NNN) contributions to the Hamilto-
nian contain the terms due to both the contact and the dipolar

interactions. In detail,

Ĥ (1) = V
∑
p,q

n̂p,q(n̂p+1,q + n̂p,q+1)

−T
∑
p,q

[
b̂†

p+1,q(n̂p,q + n̂p+1,q )b̂p,q

+b̂†
p,q+1(n̂p,q + n̂p,q+1)b̂p,q + H.c.

]

+P

2

∑
p,q

(
b̂†2

p+1,q + b̂†2
p,q+1

)
b̂2

p,q + H.c., (3)

where V is the density-density interaction between neigh-
boring sites, T is the amplitude scaling density-dependent
tunneling, and P is the pair tunneling coefficient. The Hamil-
tonian corresponding to the NNN coupling is specific to a
two-dimensional (2D) square lattice and couples sites along
the diagonals of the lattice. Explicitly,

Ĥ (2) = Vdiag

∑
p,q

n̂p,q(n̂p+1,q+1 + n̂p−1,q+1

+ n̂p+1,q−1 + n̂p−1,q−1)

− Tdiag

∑
p,q

[
b̂†

p+1,q+1(n̂p,q + n̂p+1,q+1)b̂p,q

+ b̂†
p−1,q+1(n̂p,q + n̂p−1,q+1)b̂p,q + H.c.

]
. (4)

The coefficients scale the corresponding terms as in Eq. (3).
The subscript “diag” indicates that we accounted for the lattice
geometry in evaluating the interactions between NNNs, as we
specify in the following.

B. Parameters

The coefficients of the extended Bose-Hubbard model
[Eq. (1)] are here calculated by taking into account the al-
gebraic scaling of the dipolar interactions, which is truncated
at the NN or at the NNN, and the lattice geometry. Moreover,
in determining the phase diagram we tune the strength of the
contact interactions and of the dipolar interactions: All other
coefficients are systematically scaled. The procedure extends
the one implemented in Ref. [38] to a two-dimensional square
lattice. We now provide some details of how we determine the
coefficients and refer the reader to Ref. [38] for details.

The potential confining the bosons in the x-y plane has the
form Vlatt (r) = V0[sin2(kx) + sin2(ky)], with k being the wave
number and r = (x, y), while the motion in the z direction
is frozen out. Moreover, the bosons interact via the contact
interaction, Ug(r), and the repulsive dipolar potential Udip(r),
which decays with the distance r as r−3. The bosons are
at zero temperature, and the lattice depth V0 is sufficiently
deep so we may limit the analysis to the lowest band. We fix
V0 = 8ER with the recoil energy ER = h̄2k2/2m, where m is
the particle’s mass. The single-particle tunneling coefficient is
given by the overlap integral [6]

ti j = −
∫

dr wi(r)

[
− h̄2

2m
∇2 + Vlatt (r)

]
w j (r), (5)

where wi(r) is a product of standard (real-valued) Wannier
functions at i ≡ {p, q}. Note that due to separability of Vlatt

the coefficients ti j are nonzero only along x or along the
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y directions. Therefore “diagonal” tunnelings such as, e.g.,
i ≡ {p, q} and j ≡ {p + 1, q ± 1} are strictly vanishing. The
situation is different for the interaction terms.

We denote the interactions by the potential Uint (r) =
Ug(r) + Udip(r). The corresponding interaction coefficients in
the site basis read

Vi jst = 1

2

∫
dr dr′wi(r)w j (r′)Uint (r − r′)ws(r′)wt (r) (6)

and contribute to the interaction Hamiltonian term

Hint =
∑
i jst

Vi jst b̂
†
i b̂†

j b̂sb̂t . (7)

By truncating up to the NNN terms we then obtain terms such
as pair tunneling and density-dependent tunneling terms.

In our calculations we keep the lattice depth constant. Due
to our choice of V0, standard approximations are justified;
in particular, a direct calculation shows that tunneling coef-
ficients ti j between sites separated by more than one lattice
spacing are negligible (this is not so in more shallow lattices;
see, e.g., Ref. [49]). We note that the strength of the coeffi-
cients of the Hamiltonian (3) and (4) follow |V | > |T | � |P|
and that we can neglect terms where Vi jst couple four different
lattice sites. Moreover, |Vdiag| > |Tdiag|. In our isotropic lattice
geometry the overlap integral giving P is orders of magnitude
smaller than V or T ; moreover, it is much smaller than the
coefficients appearing in Ĥ (2). We have checked explicitly that
taking it into account does not modify our results. For that
reason, from now on we omit the term proportional to P in
Eq. (3): This also justifies that the corresponding term is also
missing in Eq. (4) from the very beginning. For completeness,
we remark that the pair tunneling coefficient can be enhanced
by modifying the confinement in the z direction [16].

Let us repeat that in our calculations we vary the parame-
ters by keeping the lattice depth constant and tuning both the
contact and the dipolar interactions. While the contact interac-
tions are tuned by means of Feshbach resonances [50], dipolar
forces can be varied by rotating the orientation of dipoles as
proposed in Ref. [51] and demonstrated in Refs. [12,52]. A
similar effect may also be obtained—within the limitations
mentioned above—by changing the depth of the optical lattice
and the contact potential, keeping the strength of the dipolar
interaction fixed.

In Ref. [38] we analyzed the parameter regime where
T < 0. In particular, mean-field considerations predict that the
density-dependent tunneling term scaling with T can interfere
destructively with the single-particle hopping scaling with t .
Destructive interference is found when the condition

t = |T |(2ρ − 1) (8)

is fulfilled at average densities ρ > 1/2 [38]. In Ref. [38]
we verified that this interference cuts the phase diagram into
two topologically different superfluid phases. In particular,
where correlated hopping dominates, the SF order parameter
is staggered. This is the regime we analyze in this paper.

C. Gutzwiller mean-field theory

We study the ground-state properties of the model by
means of the so-called site-decoupled Gutzwiller mean-field
(SGMF) approach [40–42]. In its standard version the bosonic
annihilation (creation) operator is decomposed as

b̂p,q = 〈b̂p,q〉 + δb̂p,q,

where

〈b̂p,q〉 ≡ φp,q

is the SF order parameter, which signals long-range phase
coherence, and δb̂p,q is the fluctuation operator. In the pres-
ence of density-dependent tunneling and pair tunneling this
approach has to be generalized including additional order pa-
rameters connected with density-dependent and pair hopping
[32], which we define below.

The many-body wave function is given by the Gutzwiller
ansatz

|�GW〉 =
∏
p,q

|ψp,q〉 =
∏
p,q

nmax∑
n=0

c(p,q)
n |n〉p,q, (9)

where |n〉p,q are the occupation number basis states, nmax is the
maximum number of bosons at each site, and c(p,q)

n are basis
expansion coefficients of |ψp,q〉. The state |�GW〉 is normal-
ized to unity by imposing

∑ |c(p,q)
n |2 = 1. Using Eq. (9), the

SF order parameter reads

φp,q = 〈�GW|b̂p,q|�GW〉 =
∑

n

√
n c(p,q)

n−1

∗
c(p,q)

n . (10)

It is finite for the SF, the SS, and their respective staggered
phases, whereas it is zero for incompressible phases.

The average density ρ is given by

ρ =
∑
p,q

np,q/L,

where L = Lx × Ly is the system size and np,q is the density
at the (p, q)th site:

np,q = 〈�GW|n̂p,q|�GW〉 =
∑

n

n
∣∣c(p,q)

n

∣∣2
. (11)

Finally, we introduce the density-assisted correlation order
parameter, which reads

ηp,q = 〈�GW|n̂p,qb̂p,q|�GW〉 =
∑

n

√
n(n − 1)c(p,q)

n−1

∗
c(p,q)

n .

(12)
Its behavior allows us to identify staggered phases [32].

Using these definitions, the mean-field Hamiltonian of the
system may be written as a sum of single-site Hamiltonians
ĤMF = ∑

p,q ĥp,q. For NN interactions the individual sum-

mands ĥp,q read

ĥp,q = −t
[
(φ∗

p+1,qb̂p,q + b̂†
p,qφp−1,q − φ∗

p+1,qφp,q) + (φ∗
p,q+1b̂p,q + b̂†

p,qφp,q−1 − φ∗
p,q+1φp,q) + H.c.

]

+U

2
n̂p,q(n̂p,q − 1) − μn̂p,q + V

[
n̂p,q(〈n̂p+1,q〉 + 〈n̂p,q+1〉 + 〈n̂p−1,q〉 + 〈n̂p,q−1〉) − 〈n̂p,q〉(〈n̂p+1,q〉 + 〈n̂p,q+1〉)

]

214503-3



KULDEEP SUTHAR et al. PHYSICAL REVIEW B 102, 214503 (2020)

−T
[
(b̂†

p,qηp−1,q + φ∗
p+1,qn̂p,qb̂p,q + η∗

p+1,qb̂p,q + b̂†
p,qn̂p,qφp−1,q − φ∗

p+1,qηp,q − η∗
p+1,qφp,q)

+(b̂†
p,qηp,q−1 + φ∗

p,q+1n̂p,qb̂p,q + η∗
p,q+1b̂p,q + b̂†

p,qn̂p,qφp,q−1 − φ∗
p,q+1ηp,q − η∗

p,q+1φp,q) + H.c.
]
. (13)

The mean-field Hamiltonian corresponding to higher-order
(NNN) terms is found by applying the same procedure and
has a similar form. This form makes evident that density-
assisted tunneling and single-particle hopping can interfere
when both the SF order parameter and ηp,q are different from
zero.

We solve the model by diagonalizing the single-site Hamil-
tonians coupled through the mean field self-consistently
[6,24,32,53–62]. In order to solve the on-site Hamilto-
nian [Eq. (13)], we initialize the Gutzwiller coefficients by
1/

√
nmax on each site and then evaluate the corresponding

initial order parameters. We then sequentially diagonal-
ize the local Hamiltonians, and the order parameters are
redefined using the ground states found from these diago-
nalizations. With each diagonalization the order parameters
φ and η are updated, and this procedure is repeated until
the convergence criteria of the order parameter are satis-
fied. For the present work, we consider the convergence
criterion of 10−12 in φ for two consecutive iterations. The
ground state of the system is obtained by checking the
initial order parameters with uniform density and with den-

sity wave orders and by then analyzing the energy of the
system.

D. Cluster Gutzwiller mean-field theory

In the SGMF theory, the intersite coupling is incorporated
through the mean fields. For instance, the nearest-neighbor
hopping is through the SF order parameter. This accounts for
the poor resolution of intersite correlations. This shortcoming
can be partially overcome by the application of the CGMF
method. In CGMF one make partitions of the entire system,
say Lx × Ly lattice, into W clusters of dimension M × N .
Here, W = (Lx × Ly)/(M × N ) is an integer, and the system
Hamiltonian is written as a sum of the cluster Hamiltonians.
A cluster Hamiltonian has two types of terms: first, the intr-
acluster terms involving lattice sites from within the cluster
only and, second, the intercluster terms which couple the
lattice sites at the boundary of the cluster with the sites of
the neighboring clusters. Only the latter are treated in the
mean-field level as in SGMF. The detailed implementation
of the CGMF can be found in Refs. [43–48,59,62–64]. The
Hamiltonian of a single cluster is

ĤC = −t
′∑

p,q

(b̂†
p+1,qb̂p,q + b̂†

p,q+1b̂p,q + H.c.) − t
∑

p,q∈δC

(φ∗
p+1,qb̂p,q + b̂†

p,qφp−1,q + φ∗
p,q+1b̂p,q + b̂†

p,qφp,q−1 + H.c.)

+U

2

∑
p,q

n̂p,q(n̂p,q − 1) − μ
∑
p,q

n̂p,q + V
′∑

p,q

n̂p,q(n̂p+1,q + n̂p,q+1)

+V
∑

p,q∈δC

n̂p,q(〈n̂p+1,q〉 + 〈n̂p,q+1〉 + 〈n̂p−1,q〉 + 〈n̂p,q−1〉)

−T
′∑

p,q

(b̂†
p+1,q(n̂p,q + n̂p+1,q )b̂p,q + b̂†

p,q+1(n̂p,q + n̂p,q+1)b̂p,q + H.c.)

−T
∑

p,q∈δC

[
(b̂†

p,qηp−1,q + φ∗
p+1,qn̂p,qb̂p,q + η∗

p+1,qb̂p,q + b̂†
p,qn̂p,qφp−1,q )

+(b̂†
p,qηp,q−1 + φ∗

p,q+1n̂p,qb̂p,q + η∗
p,q+1b̂p,q + b̂†

p,qn̂p,qφp,q−1) + H.c.
]
. (14)

The prime in the summation of the intracluster terms is to
indicate that the lattice sites (p + 1, q) and (p, q + 1) are also
within the cluster. Here, δC is the set of lattice sites at the
boundary of the cluster.

The ground state of the cluster Hamiltonian is

|�c〉 =
∑

l

Cl |�c〉	, (15)

where

|�c〉	 =
N−1∏
q=0

M−1∏
p=0

|n〉p,q , (16)

where |n〉p,q is the occupation number basis at the
(p, q) lattice site of the cluster and 	 ≡ {n00, n10,

. . . , nM−1,0, n01, n11, . . . nM−1,1, . . . , nM−1,N−1} is the index
quantum number to identify the cluster state. The ground state
of the entire system, as in the SGMF, is the direct product of
the cluster ground states

∣∣�c
GW

〉 =
∏

k

|�c〉k , (17)

where k is the cluster index and varies from 1 to W . To
solve the cluster Hamiltonian [Eq. (14)], we initialize the
order parameters in our model. We then diagonalize the
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cluster Hamiltonians and then update the values of the order
parameters based on the ground states obtained during the
diagonalization. As in SGMF, this procedure is repeated until
it converges.

E. Observables

To examine the ground-state properties of the system, we
compute the single-particle correlation

Mb(k) = 1

L2

∑
j, j′

eik·(r j−r j′ )〈b̂†
j b̂ j′ 〉 (18)

as well as the density-density correlation or the structure fac-
tor defined as

S(k) = 1

L2

∑
j, j′

eik·(r j−r j′ )〈n̂ j n̂ j′ 〉. (19)

In the above definitions, k = (kx, ky ) is the dimensionless
wave vector and r j ≡ (p, q), r j′ ≡ (p′, q′). Finite values of
Mb(k) and S(π, π ) correspond to off-diagonal long-range
order and diagonal long-range order, respectively [65–67].

Using the Gutzwiller wave function given by Eq. (9),
Mb(k) and S(k) can be rewritten as

Mb(k) = 1

L2

∑
j, j′

eik·(r j−r j′ )φ∗
j φ j′ ,

S(k) = 1

L2

∑
j, j′

eik·(r j−r j′ )n jn j′ .

In the CGMF theory, the correlated wave function in Eqs. (15)
and (17) prevents the replacement of the operators by their
expectation values. Instead, the observables with operators
from within a single cluster are calculated using the cluster
wave function defined in Eq. (15), and the total wave function
(17) is used to calculate the observables with operators from
different clusters.

The classification of various quantum phases can be ob-
tained using the behavior of correlation and structure factor
at zero and finite momentum k. When truncating the Hamil-
tonian to the NN, the effect of the interactions is to give
rise to spatially periodic structures with 2 × 2 cells. Peri-
odic density modulations, in particular, can be characterized
by their sublattice distributions (na, nb) with a ≡ (p, q) and
b ≡ (p′, q′), where (p′, q′) is the nearest-neighbor lattice site
of (p, q). Similarly, correlated tunneling gives rise to periodic
modulation of the SF order parameter of the phase [32]. The
onset of these structures is signaled by the finite values of S
and Mb, respectively, at the wave vector k = (π, π ).

The inclusion of NNN terms breaks this symmetry. In gen-
eral, it is known that the NNN repulsion tends to stabilize the
striped order of the supersolid phase. The coexistence of NN
and NNN stabilizes various solid orders; for V � 2Vdiag(V <

2Vdiag), a checkerboard (striped) solid ordered state is formed
[47,68,69]. Here, in order to distinguish between various or-
ders of solid, supersolid, and staggered phases, we determine
the Fourier transform of the single-particle correlations Mb(k)
and the structure factor S(k) at k = (π, π ), (0, π ), and (π, 0).
A finite value of those observables at (π, π ) reflects checker-
board order, whereas a finite value at (0, π ) or (π, 0) shows

striped order. Correspondingly, a finite value of Mb(k) and
S(k) at k = (π, π ), (0, π ), and (π, 0) is the characteristic
property of a quarter-filled ordered superfluid phase [70,71].
Depending on the ratio between Mb(0, 0) and Mb(π, π ), the
quarter-filled ordered superfluid phase is either a staggered
or a normal superfluid. In this paper, we will find quarter-
filled ordered staggered SS phases, which we will label by
the acronym QF-SSS. Table I summarizes the properties of
different quantum phases in terms of the correlation and order
parameters.

Finally, for convenience, in the following we also use the
average SF order parameter

φavg =
∑
p,q

|φp,q|/L, (20)

as well as the average density-correlated order parameter

ηavg =
∑
p,q

|ηp,q|/L. (21)

These two order parameters serve to define quantum phases of
eBHM. Here, we consider the absolute values of φ’s and η’s
as for staggered phases their distributions over the lattice sites
alternate in sign and, in particular, for staggered superfluidity
these observables become zero otherwise.

III. PHASE TRANSITIONS AT FIXED DENSITY

We numerically determine the ground states of the system
in the grand canonical ensemble and at fixed density. For this
purpose, we first obtain the values of the chemical potential
μ corresponding to a constant average density. The model
parameters are obtained using Wannier function formalism as
described in Sec. II B, where we change T and V by varying
the interaction strength (see Ref. [38] for details). Below we
choose to plot V instead of the interaction strength. We remind
the reader that finite values of V also imply finite values of T .

The phases are identified by analyzing the behavior of cor-
relations and order parameters (see Sec. II E). We first discuss
the role of NN interaction and density-dependent tunneling.
We then investigate the role of NNN terms in determining the
ground-state properties. Note that below we label the coor-
dination number as the parameter z. In our lattice geometry,
z = 4.

A. Phase diagram for nearest-neighbor interactions

1. Average density ρ = 1

We now discuss the phase diagram at density ρ = 1. We
first recall that the properties of the ground state are very well
studied in the absence of density-dependent tunneling (for
T = 0). In this limit the inclusion of NN density-density inter-
action in the Bose-Hubbard model (BHM) leads to additional
quantum phases, which we briefly review in the following
[26,27,29,72]. For large V , bosons occupy every alternate
lattice site, forming a CDW phase, an incompressible phase
which spontaneously breaks sublattice symmetry. When the
NN interaction V is comparable to the on-site repulsion, the
system breaks both U(1) gauge symmetry and translational
invariance to form a SS phase. The SS phase of eBHM is
found to be stable in a wide range of interaction strengths

214503-5



KULDEEP SUTHAR et al. PHYSICAL REVIEW B 102, 214503 (2020)

TABLE I. Classification of phases: sublattice values of the occupation n = (na, nb), single-particle correlations, and structure form factor.
When single-particle correlations and structure form factor do not vanish, we report the value at which k = kmax, at which their absolute value
is maximum and which identify the phase. The details of the QF-SSS phase are discussed in Sec. II E. See also Ref. [32].

Phase Acronym n Mb(k) S(π, π )

Mott insulator MI (n, n) 0 0
Charge density wave CDW (na, nb) 0 �= 0
Superfluid SF (n, n) kmax = (0, 0) 0
Supersolid SS (na, nb) kmax = (0, 0) �= 0
Staggered superfluid SSF (n, n) kmax = (π, π ) 0
Staggered supersolid SSS (na, nb) kmax = (π, π ) �= 0
Quarter-filled staggered supersolid QF-SSS other other other

[24,55,73,74]. For unit filling or density the stability of the SS
of soft-core bosons has been demonstrated in Refs. [75,76].
When 4V � U , the system exhibits a MI-SF phase transition
as t increases. At stronger NN interactions 4V ≈ U , the MI
phase becomes unstable, and a CDW phase replaces the MI
phase [25,56,73,76]. Numerical studies of one-dimensional
lattices reveal the existence of a topological Haldane phase
separating MI and CDW phases [29,77,78]. The dependence
of the hopping parameter t on various phase transitions for
fixed densities has been discussed [79]. We report the corre-
sponding phase diagram with T = 0 in the Appendix.

The effect of correlated hopping on determining the phases
is now visible in Fig. 1, which displays the correlation Mb

at (0,0) and (π, π ), the average SF order parameter, and the
structure form factor S(π, π ). These quantities are reported
in the t-V plane and have been obtained using the SGMF ap-
proach. The properties of Mb and S(π, π ) allow us to identify
the phases. At V/U � 0.25, as t increases, Mb(0, 0) remains
nonzero, whereas it vanishes at (π, π ). In addition, S(π, π )
is zero in this region. The region where both Mb(0, 0) and
S(π, π ) vanish is MI, whereas the region with finite Mb(0, 0)
is SF. At lower V we recover the MI-SF transition of the BHM
[5,6]. The critical hopping strength of the MI-SF transition
tc increases for 0 � 4V � U with finite T . This shift is due
to the finite value of correlated hopping, which interferes
destructively with single-particle tunneling.

At V/U � 0.25 we observe the onset of periodic density
modulations, which are signaled by the finite value of S(π, π ).
The CDW phase corresponds to the large region with van-
ishing off-diagonal order, Mb(k) = 0. This region is centered
about the line of perfect interference |T | = t [Eq. (8)]. There
is a direct MI-CDW transition for a finite range of values t/U
at V/U � 0.25, which is characterized by a fast increase in
S(π, π ) from zero to the maximum value. In the presence of
SF this increase is gradual and characterized by the appear-
ance of a finite value of Mb(π, π ). We identify this region
with the SS phase since |Mb(π, π )| < |Mb(0, 0)| (see Table I).
The boundary tc/U of the transition CDW-SS increases with
V . We have checked that tc/U is shifted to larger values with
respect to the phase boundary one obtains by setting T = 0;
see the Appendix. The resulting domain of the CDW phase is
larger. We attribute this effect to the destructive interference
between single-particle and correlated hopping.

At larger values V ≈ 2U and for vanishing t/U we observe
the appearance of finite off-diagonal long-range order with
|Mb(π, π )| > |Mb(0, 0)|, which we identify with a staggered

supersolid (SSS). This phase is due to correlated hopping,
which becomes dominant at large ratios V/U .

These behaviors can be understood on the basis of mean-
field considerations: Correlated hopping favors staggered SF
for t/U → 0. The size of this region increases as V (and
thus the strength of the dipolar interactions) increases. At
large ratios t/U , instead, the kinetic energy dominates, and
the phase is SF. The two contributions interfere destructively
in an intermediate region, where the phase is incompressible.
Diagonal long-range order is found for V/U � 0.25. We ob-
serve that the size of the SSS region at V/U � 0.25 is now
significantly smaller.

FIG. 1. Observables for the ground state of the 2D eBHM at
ρ = 1 for the mean-field Hamiltonian [Eq. (13)], truncated at NN.
Here, the ground state was calculated by means of the SGMF ap-
proach. (a) and (b) show the Fourier transform of the off-diagonal
single-particle correlation Mb at (kx, ky ) = (0, 0) and (kx, ky ) =
(π, π ), respectively. The transition from MI to SF is identified
by a finite value of Mb(0, 0) � Mb(π, π ). In contrast, the stag-
gered superfluid phases correspond to the regions where Mb(0, 0) <

Mb(π, π ). (c) shows the average SF order parameter [Eq. (20)].
The structure factor S(π, π ) is shown in (d). Its finite value signals
density-modulated phases. The system size is L = 12 × 12, periodic
boundary conditions are assumed, and the maximum occupancy per
lattice site nmax is taken to be 8.
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FIG. 2. Observables for the ground state of the 2D eBHM at ρ =
2 for the mean-field Hamiltonian [Eq. (13)], truncated at NN. Here,
the ground state was calculated by means of the SGMF approach.
(a) and (b) show the Fourier transform of the off-diagonal single-
particle correlation Mb at (kx, ky ) = (0, 0) and (kx, ky ) = (π, π ),
respectively. (c) displays the average SF order parameter [Eq. (20)].
The structure factor S at (kx, ky ) = (π, π ) is shown in (d). As for
ρ = 1, we consider a 12 × 12 system with periodic boundary condi-
tions and nmax = 8.

2. Average density ρ = 2

Figure 2 displays the phase diagrams of the relevant quan-
tities in the t-V plane for the average density ρ = 2. Similarly
to the unit-filling case, for V/U < 0.25 the phase is either
MI or SF. The phase boundary tc separating the two phases
depends on the strength of the dipolar interactions due to the
interference between correlated hopping and single-particle
hopping. For V/U � 0.25 the structure form factor S(π, π )
is different from zero and signals the onset of density modula-
tions. Compared with quantum phases at unit filling (Fig. 1),
the size of the region of insulating CDW phase is reduced,
whereas the size of the SSS parameter region is significantly
larger. A striking difference with respect to the phase diagram
at unit filling is the appearance of staggered superfluid (SSF)
at V/U ∼ 0.25 and t/U → 0.

The behavior reported in Fig. 2 qualitatively agrees with
the phase diagram calculated for the same model, but in one
dimension and using DMRG [38]. However, it is worth not-
ing that the parameter regime of SSF is shifted to lower V
values compared with 1D. This is due to the larger coordi-
nation number of square lattices. For d-dimensional lattices
we expect the staggered superfluidity to exist at and around
2dV ≈ U , where 2d = z is the lattice coordination number.
As in Ref. [38], the finite value of T is responsible for the
appearance of SSF at V/U ∼ 0.25 and t/U → 0. The size
of the SSF phase is now significantly smaller. In order to
perform a systematic comparison with the one-dimensional
case, we now consider a small, fixed value t/U and analyze
the phases as a function of V/U . Figure 3 displays the be-
havior of Mb(π, π ) as a function of V/U for t/U = 0.002

FIG. 3. Off-diagonal single-particle correlation Mb(π, π ) as a
function of V/U . The blue lines report the behavior corresponding to
Fig. 2(b) for hopping strengths t/U = 0.002, 0.02, 0.23, 0.35. The
values of t/U are reported in (a)–(d). The dashed red lines are
obtained using a 2 × 2 cluster in CGMF theory. Here, we consider
the maximum occupancy per lattice site nmax = 8: This choice of nmax

is sufficient to obtain converging results for the densities considered.

[Fig. 3(a)], t/U = 0.02 [Fig. 3(b)], t/U = 0.23 [Fig. 3(c)],
and t/U = 0.35 [Fig. 3(d)]. For t/U = 0.002 the phase is
first MI. In the atomic limit, at V/U = 0.25, MI and sev-
eral CDW phases are degenerate. Here, the phase becomes
SSF due to the prevailing role of correlated hopping and is
signaled by the peak of Mb(π, π ) at V/U ∼ 0.25. This peak
was also observed in one dimension and exhibits features of
a continuous phase transition [38]. At higher V the value
of Mb increases again with V , and together with the finite
value of the structure form factor we identify this phase as
SSS. At t/U = 0.02, the phases SSF and SSS are separated
by an incompressible CDW phase. At higher t in Fig. 3(c),
single-particle hopping dominates over correlated tunneling.
Here, the system is driven first from SF to SS and then to SSS
with an intermediate insulating CDW phase. The width of the
CDW phase in between the SS and SSS phases increases and
the region of the SSS phase reduces with t . This is evident
from the behavior of Mb at t/U = 0.35 shown in Fig. 3(d).

In order to examine the effects of quantum fluctuations
within our mean-field ansatz, we use the CGMF method and
compute the Mb(π, π ) with a 2 × 2 cluster. The resulting
behavior is reported by the dashed red lines in Fig. 3. At
t/U = 0.002 the domain of the SSF phase, signaled by the
peak in the Mb(π, π ), is the same as in the SGMF method,
while the SSF-SSS transition becomes sharper. For t/U =
0.02 [Fig. 3(b)] the critical value of V/U for the CDW-SSS
transition shows a small increase compared with the SGMF
transition. When t/U is increased to t/U = 0.23 [Fig. 3(c)],
we observe a shift in the peak of Mb(π, π ), signaling the SS
phase, to higher values of V/U . In detail, the peak occurs at
V/U = 0.3 with SGMF, and this shifts to V/U = 0.36 with
the 2 × 2 cluster. We note that the shift between the boundary
SF-SS predicted by CGMF and the one predicted by SGMF is
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FIG. 4. Observables for the ground state of the 2D eBHM at ρ =
1 for the mean-field Hamiltonian [Eq. (13)], truncated at NNN and
calculated by means of the SGMF approach. (a), (b), and (c) show
the Fourier transform of the off-diagonal single-particle correlation
Mb at (kx, ky ) = (0, 0), (0, π ), and (kx, ky ) = (π, π ), respectively.
At V/U � 1.5, the finite values of Mb both at (0, π ) and (π, π )
signal the quarter-filled ordered phase. The phase is QF-SSS because
|Mb(0, 0)| < |Mb(0, π )|, |Mb(π, π )|. (d) displays the average SF
order parameter.

consistent with the findings reported in Refs. [62,76] for the
SF-SS transition.

B. Phase diagram for next-nearest-neighbor interactions

We now include the NNN terms in our mean-field treat-
ment. We first recall that the quantum phases of eBHM
due to competition between NN and NNN repulsion at var-
ious fillings have been studied before in the absence of the
density-dependent tunnelings [71,80–82]. We now include
density-dependent tunneling and analyze the ground state of
the model Hamiltonian in Eq. (13) when the NNN terms
of density-density repulsion and of correlated tunneling are
included.

We first discuss the phase diagram at density ρ = 1.
Figure 4 displays the single-particle correlations and the aver-
age SF order parameter. Some qualitative features are similar
to the NN case; compare with Fig. 1. A striking difference
from the NN case is the decrease in the size of the insulating
CDW phase. Moreover, correlated hopping here gives rise to
a QF-SSS phase.

These features become more enhanced as the density is
increased. Figure 5 shows the correlations and average SF
order parameter for density ρ = 2. With respect to the NN
case (cf. Fig. 2) we observe that the SSS phase now disap-
pears above a critical value V/U ∼ 1.5 and becomes QF-SSS.
The size of the QF-SSS phase is significantly larger than for
unit filling. In particular, the phase boundary of the CDW-to-
QF-SSS transition weakly depends on t/U . These behaviors
qualitatively agree with the one-dimensional phase diagram of
Ref. [38]. Important differences are that the SSF phase results

FIG. 5. The Fourier transform of the single-particle correlations
Mb for ρ = 2 with NNN at (a) (kx, ky ) = (0, 0), (b) (kx, ky ) = (0, π ),
and (c) (kx, ky ) = (π, π ). Unlike at unit filling, here for lower values
of NN interaction a CDW-SSS transition occurs, and at V/U � 1.5,
the system enters into a QF-SSS phase. The QF-SSS phase region
is characterized by a finite value of Mb(0, π ) (b) and of Mb(π, π ) >

Mb(0, 0) (c). Note the existence of the SSF phase at V/U ∼ 0.25 in
the presence of the NNN density-density interactions. (d) shows the
average SF order parameter in the vicinity of the SSF phase.

to be smaller and that, moreover, the nature of the QF-SSS
phase could not be uniquely identified in Ref. [38].

Figure 6 displays the average SF order parameter φavg and
the average density-correlated order parameter ηavg [Eq. (21)]
as a function of V/U and fixed values of t/U . We first consider
the value t/U = 0.02 [Fig. 6(a)]. Here, at V = 0 the phase is
MI. As V is increased, the transitions MI-SSF-SSS take place
at V/U ∼ 0.25 and are here signaled by a sharp increase and
a local maximum of both parameters. Finally, at the transition
from SSS to QF-SSS, ηavg increases, whereas φavg decreases.
At t/U = 0.3, the system shows SF-SS-CDW-SSS transitions
as V/U is increased. The corresponding trends of ηavg and φavg

are visible in Fig. 6(b).

FIG. 6. The average SF [Eq. (20)] and density-correlated order
parameter [Eq. (21)] as a function of V/U for ρ = 2 with NNN terms
of the eBHM [Eq. (4)]. (a) has been calculated for t/U = 0.02, and
(b) has been calculated for t/U = 0.3. Here, the solid blue (dashed
red) lines are ηavg (φavg).
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FIG. 7. The off-diagonal single-particle correlations Mb(0, 0)
and Mb(π, π ) as a function of μ/U and t/U for V/U = 0.25 [(a) and
(b)] and V/U = 2 [(c) and (d)]. (a) and (c) show the contour plot of
Mb(0, 0), and (b) and (d) show the contour plot of Mb(π, π ). The
diagram has been calculated using the SGMF method and truncating
the interactions to the NN terms.

IV. PHASE TRANSITIONS AT FIXED V/U

We now discuss the ground-state phase diagrams in the
t-μ plane and for fixed values of V/U . For these values
the NN repulsion energy becomes comparable to the on-site
interaction energy, and the insulating phases are CDW [56].
At 4V = U , in particular, the MI phase with n0 bosons per
site becomes degenerate with the CDW with occupancies
(2n0, 0). Moreover, the CDW phases with (n0 + 1, n0) and
with (2n0 + 1, 0) are degenerate [56]. We vary μ from 0 up
to 4U in order to include the density ρ = 2. In the t-μ plane
the line of destructive interference [Eq. (8)] moves to higher t
values as μ is increased, since the density ρ = ρ(μ) increases
monotonically with μ.

A. Results using SGMF

Figure 7 displays the phase correlation functions Mb(0, 0)
and Mb(π, π ) for V/U = 0.25 [Figs. 7(a) and 7(b)] and
V/U = 2 [Figs. 7(c) and 7(d)]. The phase diagram is separated
into two regions by the sequence of insulating CDW lobes,
which are localized along the values of ρ and t fulfilling
Eq. (8). On the left side, where correlated hopping dominates,
the phase is SSS. The size of this region increases with V
and thus with the value of |T |. The SSF phase is observed
only for V/U = 0.25 and at sufficiently high values of μ,
here at μ � 3, where ρ ≈ 2. Here, a direct SSF-CDW tran-
sition is observed in a small parameter region at μ ≈ 3.2. On
the right side, single-particle hopping is responsible for the
emergence of the SS phases. At higher t , the system enters
into the SF phase. At V/U = 2 we observe the SS-SF phase
boundary, which varies linearly as a function of t . This feature

FIG. 8. Ground-state phase diagram of Eq. (1) with NN inter-
actions and density-dependent tunneling. The solid and dashed lines
are phase boundaries obtained using the SGMF and CGMF methods,
respectively, for simulating Eq. (1). The CGMF method uses 2 × 2
clusters. The CDW phases are indicated by their sublattice occu-
pancies (na, nb). The insets zoom into regions of the phase diagram
where CGMF predicts an increase in the size of the SSF phase (a) and
a decrease in the size of the SSS phase (b) with respect to the SGMF
predictions.

is consistent with the findings of quantum Monte Carlo studies
of 2D eBHM [76]. It is important to note that the choice
of boundary conditions strongly affects the phases and their
transitions. As mentioned previously, we consider periodic
boundary conditions, while the use of open boundary condi-
tions leads to nonuniform densities at the edges, which hinders
the identification of quantum phases.

B. Comparison between SGMF and CGMF

We explore the effects of quantum fluctuations and the in-
tersite correlations on the quantum phase transitions by means
of the CGMF method using a 2 × 2 cluster. We restrict our
model here to the NN case. Figure 8 shows the ground-state
phase diagram of our model in the t-μ plane for V/U = 0.25
and V/U = 2. To illustrate the differences, the boundaries
between various phase transitions computed with the SGMF
and CGMF methods are shown. For V/U = 0.25 [Fig. 8(a)],
the CGMF method predicts smaller domains of the (n0, 0)
CDW lobes. For instance, the phase boundary separating the
CDW (1,0) from the SS phase is at tc/U ≈ 0.093 for SGMF,
and it is decreased to tc/U ≈ 0.089 with the CGMF. A similar
trend of the phase boundary tc/U for the CDW-SS transition
was reported in Ref. [62] for V/U = 0.2. It is to be noted that
the size of the SSF phase increases with the CGMF method.
This is visible in the inset of Fig. 8(a). At μ/U = 3.8, the
SSF phase persists up to t/U ≈ 0.023 using SGMF, and with
CGMF this is modified to t/U ≈ 0.03. Our computations
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show that CGMF predicts an increase in the size of the SSF
phase while the SSS-CDW phase boundary remains unaf-
fected. This results in a reduction in the SSS phase domain.
Thus the quantum fluctuations captured by the CGMF tend
to correct the SGMF predictions by increasing the size of
uniform density phases such as the SSF and the SF, while the
domains of structured density phases such as the CDW, SSS,
and SS are tendentially decreased. As with the V/U = 0.25
case, the CGMF results show a decrease in the domain of
the SS phase in the phase diagram with V/U = 2, from the
inset in Fig. 8(b). In contrast, the domain of the CDW phase
remains unaffected.

V. CONCLUSIONS

We have studied the zero-temperature phase diagram of
dipolar bosons in a 2D optical lattice using a mean-field ap-
proach and investigated the effects of the interplay between
single-particle hopping and correlated tunnelings when these
can destructively interfere. The mean-field study, by means
of both the site-decoupled and cluster Gutzwiller approaches,
confirms the findings of the 1D phase diagrams for den-
sity ρ = 2 obtained using DMRG [38]. Moreover, it extends
them to the grand canonical ensemble: The interference cuts
the phase diagram into two topologically different superfluid
phases. In particular, where correlated hopping dominates, the
SF order parameter is staggered. Comparison of the domains
of SSS and SSF at fixed nearest-neighbor interactions exhibits
the suppression of SSS phase with the enhancement of SSF
phase when the intersite correlations are accounted for. When
next-nearest-neighbor terms are included, a quarter-filled su-
persolidity appears at large dipolar strengths. The present
study has been performed for experimentally consistent pa-
rameters and can serve as a guide for a possible observation
of staggered quantum phases of dipolar bosons in 2D optical
lattices. The recent experimental realization of the extended
Bose-Hubbard model for ultracold gas with strong dipolar
interaction is an ideal setup where the quantum states here
studied could be observed [12].

Finally, we have verified that the quantum phases and phase
diagrams reported in this paper are robust to the system size,
by repeating the calculations for a 30 × 30 lattice site system.
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APPENDIX

We discuss here the ground-state phase diagram of the
model considered in the absence of the density-dependent tun-
nelings (T is put to zero by force). In Fig. 9, the single-particle
correlations Mb at (0,0) and (π, π ) are shown for the average
densities ρ = 1 and ρ = 2. We first discuss the quantum phase
transitions at ρ = 1. The Mb(0, 0), which is a measure of off-
diagonal long-range order, has a finite value for compressible
SF and SS phases, whereas it remains zero for insulating
MI and CDW phases. At low NN interaction V/U � 0.25,
there is a MI-SF transition where the critical hopping tc is
independent of V . When NN interaction is comparable to or
overcomes the on-site interaction V/U � 0.25, the transition
between density-modulated quantum phases CDW and SS oc-
curs. The tc of the CDW-SS transition increases as a function
of V [79]. The finite value of Mb(π, π ) for the SS phase
clearly demarcates it from the SF and CDW phases, as evident
from Fig. 9(b). At t/U = 0.05, the MI-CDW transition of
ρ = 1 as a function of V is consistent with the previous quan-
tum Monte Carlo study [75]. At ρ = 2, the qualitative features
of various phase transitions remain similar to the ρ = 1 case;
however, quantitatively, the critical hopping varies [Figs. 9(c)
and 9(d)].
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