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Timescales in the thermal dynamics of magnetic dipolar clusters
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The collective behavior of thermally active structures offers clues on the emergent degrees of freedom and
the physical mechanisms that determine the low-energy state of a variety of systems. Here, the thermally active
dynamics of magnetic dipoles at square plaquettes is modeled in terms of Brownian oscillators in contact with a
heat bath. Solution of the Langevin equation for a set of interacting x-y dipoles allows the identification of the
timescales and correlation length that reveal how interactions, temperature, damping, and inertia may determine
the frequency modes of edge and bulk magnetic mesospins in artificial dipolar systems.
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I. INTRODUCTION

In the study of dynamical systems, temperature has long
been an ally for the elucidation of new orders and phases of
matter [1–4]. Yet, to capture the thermally active phenomenol-
ogy of a system, a sense of timing is crucial. Therefore, the
accordance of the frequencies used in experimental probes,
with system-proper timescales remains of particular inter-
est [5]. Challenges arise because often there are several
timescales, and worse still, one or few of them result from in-
trinsic interactions in the system [6–8]. A remarkable example
is the case of cuprate metals, where two transport relaxation
times in the transport coefficients has been understood in
terms of scattering processes that discriminate between cur-
rents that are even, or odd under charge conjugation [9].

Taking full benefit of the experimental probes requires un-
tangling of the dynamical response by establishing a hierarchy
of the proper timescales and associating to each of them con-
crete aspects of the system under analysis. This, among other
effects, facilitates the identification of tunable key parameters
to guarantee that a complete thermal equilibrium of the system
can be reached during the observation time.

The study of the dynamical relaxation and the response
of a physical system to external fields is ubiquitous [10–13].
Because of their distinctive behavior, here we choose to high-
light the dynamics of frustrated magnetic systems [14,15].
In these materials the lack of compromise of the interacting
magnetic degrees of freedom with a long-range order may
be due to a plethora of collective low-energy configurations
offered by lattices that often have triangular motifs and/or low
connectivity [16,17]. Prototypical examples are spin glasses
and spin-ice materials [18–20]. In the case of spin glasses,
frustration is derived from bond disorder [21,22]. In this case
no long-range order of ferromagnetic or antiferromagnetic
type can be established. Instead, the materials freeze into a
state where the spins are aligned in random directions [23]
and magnetic correlations cancel out. Therefore, the under-
standing of the glass transition into the freezing state in these
materials relies in the examination of their dynamics [24]. In
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this respect a key aspect of spin-glass research lies in the study
of the time autocorrelation function.

In spin-ice materials the dipolar interactions and the weak
antiferromagnetic superexchange realized in rare-earth py-
rochlores result in an effective ferromagnetic coupling that in
combination with single site anisotropy, yield a frustrated spin
arrangement that mimics the geometric frustration in water ice
[25]. Here, the study of the thermal relaxation processes by
means of a.c. magnetic susceptibility measurements [19,26]
has revealed a magnetic monopole like dynamics mediated by
the Coulomb interaction between charges [27].

Modern lithographic techniques have allowed the fabrica-
tion and study of the artificial counterpart of spin ice in two
dimensions [28,29], the so-called artificial spin ices (ASI)
[30]. They are a subset of artificial dipolar systems [31] which
have become ideal settings for observing dynamical effects
in magnetic systems. In artificial spin-ice structures [32], the
arrangement of moments product of elongated single-domain
nanopatterned magnetic islands can lead to excited states
with magnetic charges [33], analogous to the monopole ex-
citations reported in rare-earth pyrochlores [34]. Recently,
susceptibility measurements [35] of thermally active extended
square ASI [36] revealed that magnetic fluctuations and ex-
citation population depend on lattice spacing and interaction
strength between islands [37]. With the purpose of extract-
ing parameters related to the magnetostatic energies of ASI
arrays directly from the susceptibility measurements [35],
a Vogel-Fulcher-Tammann law [38] has recently been em-
ployed. Nevertheless, the results showed that this approach
fails to address the dynamics of thermal ASI arrays. The
failure of this and other phenomenological models for de-
scribing the dynamic response from frequency measurements
in systems as diverse as spin ices, spins glasses, and super-
conductors [39,40] could be rooted in the ad-hoc timescale
distributions used to complement models originated from De-
bye processes.

In this paper we present a prototype model that illustrates a
different approach aimed to unveil the specific role played by
each of the constituents that characterize a dipolar array in the
stages of dynamical evolution. The model consists of square
plaquettes made out of interacting inertial dipoles which rotate
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in a viscous media in the x-y plane, see Figs. 1, 3(a), and 3(b).
The systems dynamics is modeled by a Langevin equation
with Gaussian thermal noise [41] and dipolar interactions. The
analytical solution of the Langevin equation for small angular
oscillations allows to identify the relevant timescales for the
thermal relaxation dynamics and detect their manifestation
in the time autocorrelation function C(s). We found that the
systems proper frequencies originate from the interplay be-
tween the internal magnetic field due to dipolar interactions,
temperature, and intrinsic features such as inertia and damp-
ing. Further analysis of C(s) allows to exhibit the qualitative
differences in the dynamical response of edge and bulk states
in magnetic arrays. The approximated solution of C(s), valid
for short times, is corroborated and complemented by molecu-
lar dynamics simulations. The numerical approach allows the
study of the magnetization loops of edge and bulk states when
external magnetic fields are applied. Here the anisotropy of
the dipolar interactions sustained by dipoles located at the
edge and the bulk of the lattices manifests as a magnetization
plateau at m = 1/3.

The paper is organized as follows: in Sec. II we give an
overview of the magnetic dipolar energy to account for the in-
teractions between magnets in our system. Then the Langevin
equation is introduced to account for the thermal dynamics
of the dipoles and at the end, we give a brief summary of
the molecular dynamics simulations employed in the paper.
Section III is devoted to the results. In the first part we study
the system-proper timescales obtained from the equations of
motion. Then we derive and examine the time autocorrelation
function in the noninteracting limit by considering the case
of an isolated dipole. Next we address the dynamics of a
set of interacting dipoles by deriving the time autocorrelation
function of a square plaquette and identifying the stages of
relaxation in terms of the system-proper timescales. The fol-
lowing subsection generalizes the previous case to a cluster
made out of four plaquettes with the purpose of comparing the
thermal relaxation of the edges and the bulk of dipolar arrays.
We end Sec. III by addressing the magnetization dynamics
of square clusters. In Sec. IV we summarize our findings.
Technical details are given in the Appendices.

II. MODEL

A. Interaction between magnets

The system consists of a set of x-y interacting dipoles of
length L, mass m, and moment of inertia I = mL2

12 . The mag-
nets are located at the vertices of square plaquettes where the
distance between the centers of two nearest-neighbor dipoles
is

√
2

2 (L + 2�) as shown in Fig. 1. The position of the center
of dipole i is denoted ri and the director vector joining two
dipoles is given by êik = (ri−rk )

|ri−rk | . The rotation of a dipole
occurs in the x − y plane and is described in terms of the
angle αi chosen with respect to its equilibrium position. This
rotation is viscous and the damping parameter is denoted by
η. Here the magnetic moment of a magnet of radius r and
saturation magnetization Ms is mi = m0m̂i. The unit vector
m̂i = (cos αi, sin αi ) and the magnetic moment intensity m0 =
qL ([m2 A]), where q represents a magnetic charge defined as
q = πr2Ms [42].

FIG. 1. Dipolar square plaquette of lattice constant
√

2
2 (L + 2�)

in the vortex configuration. The dipoles with magnetic moment mi,
length L, and moment of inertia I , are represented by black arrows.
They rotate with angle αi in the x-y plane. The system is under finite
temperature T , and the viscous rotation of the magnets is illustrated
by the parameter η. Dotted (cyan) lines joining dipoles illustrate the
magnetic dipolar interaction between them. This interaction gives
rise to the magnetic field B1 = (B1

||, B1
⊥) at the position of the dipole

m1 yielding the magnetic torque T 1
z responsible of the rotation of m1

respect to the ẑ axis.

Dipolar coupling

The magnetic dipoles interact as point dipoles by means of
the magnetic dipolar energy as follows:

Udip = γ

2

n∑
i �=k=1

m̂i · m̂k − 3(m̂i · êik )(m̂k · êik )

|ri − rk|3 , (1)

where γ = μ0 m2
0

4π
([N m4]) and μ0 is the magnetic permeability

in vacuum. In Eq. (1) the geometrical parameter � hidden
in r changes the distance between magnets and therefore it
tunes the strength of the dipolar coupling (Fig. 1). A set of n
dipoles gives rise to a magnetic field at the position of dipole
mi, which has the form

Bi = −μ0m0

8π

n∑
k �=i=1

m̂k − 3êik (m̂k · êik )

|ri − rk|3 . (2)

This magnetic field yields a torque on mi given by T i
z = (mi ×

Bi )z = mi
xBi

y − mi
yBi

x, which rotates mi around the ẑ axis as
illustrated in Fig. 1.

B. Thermal dynamics

Here we address the viscous dynamics of interacting mag-
netic dipoles at finite temperature. For that effect we study
the equation of motion for the angular rotation of the dipoles
in contact with a heat bath. The forces that determine the
torques and thus the rotation of each dipole are (1) the dipolar
forces product of the dipolar interaction between them, (2)
a frictional force due to the viscous rotation of the inertial
magnets, and (3) a random force ξ (t ) which accounts for
thermal fluctuations. Therefore, a dipole k will be modeled
as a Brownian particle in the potential V k

dip = U k
dip/mk and in

contact with a thermal bath of temperature T . Consequently,
its dynamics will be governed by the Langevin equation as
shown next [43].
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Langevin equation

The dynamics of the angular variable αi is described by the
Langevin equation [43]:

I
d2αi

dt2
=

√
2ηkBT ξ (t ) − η

dαi

dt
− T i

z , (3)

where I ([Kg m2]) is the inertia moment of each dipole, and
η ([ Kg m2

s ]) is the damping coefficient that accounts for its vis-
cous rotation. Thermal fluctuations due to the coupling of the
magnet with the thermal bath are modeled by a δ-correlated
Gaussian noise ξ (t ) of zero mean and unit intensity: 〈ξ (t )〉 =
0, 〈ξ (t )ξ (t ′)〉 = δ(t − t ′). The units of ξ (t ) are [1/

√
s] and

kB is the Boltzmann constant. The term T i
z = (mi × Bi )z ac-

counts for the magnetic torque along the z direction on dipole
mi due to the net internal magnetic field originated by all other
dipoles in the system. Such a torque is T i

z = (mi × Bi )z =
m0(Bi

⊥ cos αi − Bi
|| sin αi ), where Bi

⊥ and B|| are, respectively,
the fields perpendicular and parallel to the direction of mi at
equilibrium. The simplified case where (1) dipoles deviate
slightly from their equilibrium positions and (2) at a given
position the total internal fields are such that |Bi

⊥| � |Bi
||| (this

assumption will be justified in Sec. III) yields T i
z ∼ m0Bi

||α
i ≡

Kiαi. Under these circumstances, Eq. (3) becomes

I
d2αi

dt2
=

√
2ηkBT ξ (t ) − η

dαi

dt
− Kiαi. (4)

The simplified version of the Langevin equation, Eq. (4), is
used to compute the analytical results presented along the
paper, while the full version of the Langevin equation, Eq. (3),
is used to address the problem using numerical simulations.

C. Molecular dynamics simulations

Numerical results were obtained by direct numerical in-
tegration of the equations of motion, Eq. (3), for each dipole
interacting with all the others via dipolar interactions. We used
a Verlet method with an integration time step �t = 2×10−6.
To produce ξ (t ), a given temperature T was multiplied by
a random number with a Gaussian distribution. In all sim-
ulations the same parameters for lattice constant, damping,
inertia and magnitude of the magnetic moments of the dipoles
were used (see Appendix B for details), otherwise stated.

III. RESULTS

A. Timescales

Equation (4) allows to identify four meaningful times
scales that determine the thermal dynamics of the dipoles
in the system. The relaxation time of the angular velocity
from the inertial and damping contributions sets the proper
timescale τ1 ≡ I

η
. The angular relaxation time from the damp-

ing and the internal magnetic field set τ2 ≡ η

K . The timescale
given by the rate between inertia (which depends on the length
and mass of the magnetic degrees of freedom) and the internal

dipolar fields set τ3 ≡
√

I
K . Finally, the proper time τth ≡ η

kBT

weighs thermal up to damping energies. Here, we found that
the minimum timescale is set by τ3. Notice that while τ1

and τth are related to the system single particle aspects, τ2

and τ3 arise due to the interaction between dipoles. Since

K ∼ μ0m2
0

�3 (� tune the distance between dipoles in the array)

then τ2 ∼ η�3

μ0m2
0

and τ3 ∼ ( I
μ0m2

0
)1/2�3/2, which demonstrates

that the proper timescales τ2 and τ3 decrease for larger lattice
constants.

The above identified proper frequencies are useful to ex-
press Eq. (4) in its dimensionless form:

d2αi

ds2
=

√
2νξ̃ (s) − dαi

ds
− τ1

τ2
αi, (5)

where s ≡ t
τ1

has become now the dimensionless time and
τ1
τ2

= IK
η2 . The rescaled Gaussian noise has the same statis-

tics as ξ (t ) but now ξ̃ (s) has no units. ν ≡ τ1
τth

= IkBT
η2 is the

rescaled thermal noise.
If the system timescales are such that τ1 � τ2, then the

last term in the right-hand side of Eq. (5) can be neglected.

Furthermore, if τ1 � τ2, then Iμ0m2
0

η2 � �3. Therefore, weight-
ing the lattice constant with respect to the dipoles intrinsic
properties becomes a suitable criterion to estimate whether
a dipolar array behaves as a weakly interacting system
(a strongly damped or diluted) or a strongly interacting one.

B. Noninteracting limit

We begin by examining the case of a dilute array of
magnets. As a noninteracting limit consider the thermal re-
laxation of an isolated dipole right after an initial weak
perturbation has taken it away from equilibrium. Its dimen-
sionless Langevin equation reads d2α

ds2 = √
2νξ̃ (s)− dα

ds , which
corresponds to an Ornstein-Uhlenbeck process [44] with
mean-square angular rotation 〈δα(s)2〉 = ν(s − 1 + e−s),
where δα(s) = [α(s) − α(0)]. The thermal relaxation of the
dipole can be captured through its time autocorrelation
function,

C(s) = 〈m̂(s) · m̂(0)〉 = Re〈eiδα(s)〉. (6)

Because δα(s) is linear in the noise and ξ̃ (s) has a Gaussian
distribution, δα(s) is also Gaussian with a zero mean and a
second moment 〈[δα(s)]2〉 [45]. For a Gaussian variable x,

with a mean μx, and a variance σx, 〈eiA〉 = eiAμx− A2

2 σ 2
x , and

therefore

C(s) = e− 〈[δα(s)]2〉
2 (7)

for a single dipole yields

C1(s) = e−ν(s−1+e−s ), (8)

which depends on the rescaled thermal noise only (see Ap-

pendix A for details). For short times, t � τ1, C (1)(s) ∼ e−ν s2

2 ,
while for long times, t � τ1, C (1)(s) ∼ e−νs. This shows that
in a noninteracting array, the thermal relaxation may be
slowed down by decreasing the temperature or by increasing
the damping to inertia quotient of the magnetic degrees of
freedom in the system.

C. Interacting case

Next we proceed to study the thermal relaxation in the case
of a set of interacting dipoles. Numerical solution of Eq. (3)
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for temperatures T � K (and energy minimization at T = 0)
returned the square plaquette settled into the magnetic vortex
configuration shown in Fig. 1 (or its time reversal).

1. Time autocorrelation function C(s)

Consider, the dipole with magnetic moment m1 in Fig. 1.
The torque sustained by m1 along the z direction due to the
three other magnets is (m1 × B1)z = m0[B1

⊥ cos(β1 + α1) −
B1

|| sin(β1 + α1)], where β1 is its equilibrium angle and α1

is a small angular deviation. In the vortex magnetic config-
uration of Fig. 1, β1 = nπ (n integer), B1

⊥ cancels out and
|B1

||| = m0μ0

(L+2�)3 with  ≡ (1 + 6
√

2) a geometrical factor due
to the point symmetry of the sites forming the lattice. The
square plaquette has four oscillation modes. In the lowest
energy mode, parallel dipoles oscillate in phase and small
deviations out of the equilibrium barely change . Thus,

sin (β1 + α1) ∼ α1 along with B1
⊥

B1
||

(α1) → 0 produce that at

the mean field level |(m1 × B1)z| ∼ μ0m2
0

(L+2�)3 α
1 = Kα1. Sym-

metry ensures that K = μ0m2
0

(L+2�)3 is equivalent for all dipoles at
the square plaquette.

With this approximation the Langevin Eq. (4) can be solved
by constructing the green function G that verifies IG̈ + ηĠ +
KG = δ(t − t ′) as shown in Appendix A. Indeed, we can use
G to find the mean-square angular oscillations of the interact-
ing dipoles in the case of small angular deviations:

〈δα(s)2〉 = ε − ε

ζ 2
[1 − cos (sζ ) + ζ sin (sζ ) + ζ 2]e−s,

where ε ≡ τ2
τth

= �3kBT
μ0m2

0
weights the thermal to the dipolar en-

ergy and ζ ≡
√

4 τ1
τ2

− 1 =
√

μ0m2
0I

η2�3 rates the geometrical and

magnetic aspects of the dipoles to the damping and interac-
tions in the lattice. For τ1 � τ2

4 (or I � η2

4K ), and for short
times t � τ3, the time autocorrelation function becomes

C(s) = e
ε− ε

ζ2 [1−cos (sζ )+ζ sin (sζ )+ζ 2]e−s

. (9)

In the limit of weak interactions Eq. (9) yields C(s) = e− ε
2 s2 =

C (1)(s), the autocorrelation of an isolated dipole.

2. Geometrical factor � and correlation length �

As mentioned above, when the condition τ1 = τ2 is met,
the dynamics of the plaquette changes from a weakly to a
strongly interacting regime. At zero temperature, this transi-
tion occurs when the lattice constant is such that L + 2� =
1/3�.  contains information about the symmetry of the
lattice [for instance, for a triangular plaquette it changes

to  = (3 − √
3)

√
2]. � = ( μ0m2

0I
η2 )1/3, however, sets a new

length scale that depends on the dipoles intrinsic properties
only. Furthermore, � determines a magnetic correlation length
on account of the intrinsic properties of the magnetic degrees
of freedom, such as inertia, damping and the intensity of their
magnetic moments. Therefore, an array can be categorized in
the strongly correlated regime when � � �. While damping
contributes to reduce �, inertial effects increase the correlation
length between magnets, which is also enhanced by increasing
the intensity of their magnetic moments. For the square pla-

quette τ1 = τ2 for �∗ = L+2�

(1+6
√

2)
1
3

. Henceforth, we normalize

all length scales by �, otherwise stated.

3. C(s) versus T, �, and ε.

In what follows we study the evolution of the time auto-
correlation function of the dipoles in the square plaquette in
terms of the temperature of the system, the strength of the
dipolar interactions, and the rate between thermal and dipolar
couplings. To complement the results obtained from Eq. (9)
which are valid for short times (t � τ3) and small angular os-
cillations, we have run molecular dynamics simulations where
T , the strength of the dipolar interactions set by �, and ε have
been varied. I , η, and m0, however, stayed fixed. Details can
be found in Appendix B.

Hereinafter temperature T is measured in units of the mag-
netic energy between two nearest dipoles located in the square
plaquette with � = L, K(L), and � is measured in units of the
correlation length �.

Next, we discuss Fig. 2 respect to aspects such as the onset
of the relaxation, the amplitude A of the oscillations of C(s) at
short times, and the qualitative different stages of its dynami-
cal evolution in terms of the intrinsic features of the magnetic
degrees of freedom and the geometrical aspects of the lattice.
Figure 2(a) shows the numerical solution of C(s) belonging to
a square plaquette that relaxes from a slightly perturbed state
(from its equilibrium configuration Fig. 1) at several values
of T for the case of fixed interactions (� = 0.85). At the
onset of the thermal relaxation (t < τ3) we observe that the
autocorrelations computed at larger values of T (red and blue
curves) decay earlier from 1 than the others. In addition, when
examining Eq. (9) and the formula for the angular deviations,
it is apparent that the amplitude A of the oscillations of C(s) is
controlled by ε, the ratio between thermal and dipolar interac-
tions. Indeed, ε scales like ∼T �3, therefore, when � is fixed
as in Fig. 2(a), larger temperatures increase ε and decrease
the timescale τth triggering an earlier departure of the system
from its initial magnetic configuration. Figure 2(c), shows the
effect of � for fixed values of temperature (T = 10−1). Here
with smaller interactions (larger �) ε grows and therefore
A becomes larger. The growing of � also has the effect of
increasing τ3 and delaying the turning point of C(s). Further,
a reduction of the dipolar coupling amplifies the relative effect
of the inertia of the magnets, which explains the increment in
the size of the oscillations in C(s). It has also the effect of
reducing the effective stiffness of the system due to dipolar
interactions [42] which means that it takes longer for the
magnets to return to its equilibrium state as illustrated by the
increment of τ2 with � as shown in Fig. 2(c). This behavior
is also captured by the analytical counterpart Eq. (9), as is
manifested in Fig. 2(b), which shows a consistent change of
C(s) with ε. Figures 9(a) and 9(b) in Appendix D show A with
respect to T and �3, respectively, consistent with this analysis.

As mentioned above, the evolution before C(s) has reached
its minimum value, is controlled by inertia and interactions
and lasts t ∼ τ3. Figure 2(a) shows that the minimum of
C(s) is reached at roughly the same s for all curves since �

and therefore τ3 remain constant. Last, the compromise be-
tween damping and interactions carries the system back to the
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FIG. 2. C(s) of the square plaquette relaxing into the vortex configuration shown in Fig. 1. s = t
τ1

is the dimensionless time. (a) Numerical
evaluation (ns) of C(s) with � = 0.85 (in units of �). Different curves correspond to different values of T [in units of K(L)]. The different
stages of the evolution of C(s) are associated to the system time and energy scales as explained in the text. A denotes the amplitude of the
early time oscillations. (b) Evaluation of Eq. (9) comparing the early evolution of C(s) for three values of ε. Panel (c) is like panel (a), but now
T = 10−1 and different curves correspond to C(s) computed at different �. (d) Comparison of the numerical solution of C(s) (in red and cyan)
with Eq. (9) (in blue and black) during the early stage of thermal relaxation for two values of � and T = 10−1.

equilibrium vortex configuration after a time t ∼ τ2 has
elapsed in all cases.

In Fig. 2(d) we compare the numerical solution of C(s)
and Eq. (9) for short times, (t � τ3), for two values of � and
T = 10−1, confirming the agreement between Eq. (9) and the
numerical solution at the early stage of thermal relaxation.

D. Edges versus bulk

Aimed to compare the relaxation dynamics of magnets
located at the edge and bulk of a lattice we study a dipo-
lar cluster made out of four square plaquettes of dipoles as
shown in Fig. 3. From a disordered magnetic configuration,
this cluster relaxes into either the antiferromagnetic vortex
state denoted AV and shown in Fig. 3(a) or the ferromagnetic
vortex state denoted FV and shown Fig. 3(b) (along with
their respective time reversal versions). Since in both cases
the total magnetization cancels out, we use the chirality χ =
1
8 (

∑
k m̂k × m̂k+1) · (0, 0, 1) defined as the z projection of the

average vector product of two adjacent magnetic moments
as a suitable order parameter to characterize the magnetic
configurations. AV has χ = − 1

2 , while for FV, χ = 1. The
normalized magnetization of a cluster as a function of χ at
T = 0 is shown in Fig. 7.

Whether after relaxation the system settles into AV or FV
depends on � and T . Energetics dictates that at T = 0 FV is
slightly favored over AV but this difference becomes smaller
as � grows [Appendix C, Fig. 8(a)]. This is also apparent
in Fig. 3(c), where the total dipolar energy density of the
cluster is plotted as a function of χ for several values of �.
We see that for all values of � the energy is minimized for

magnetic states with χ = −1/2 and χ = 1. The small energy
difference between the two diminishes dramatically with �

because the magnitude of the dipolar interactions decrease.
Finite temperatures can overcome the small energy barrier
between any of the two states, because, alike in the previous
case it approaches zero as � grows [Fig. 8(b)].

Next, we use this square cluster as a prototype model for
studying the thermal dynamics of edge and bulk dipoles in
dipolar arrays.

Because of a lower symmetry, edge dipoles will sustain an
anisotropic internal magnetic field becoming more susceptible
to external perturbations than those at the bulk. To illustrate
this point, consider the two magnets highlighted in red, at the
edge and bulk of the clusters shown in Figs. 3(a) and 3(b).
The (red) magnet at the bulk of Fig. 3(a) senses a net mag-
netic field parallel to its magnetic moment from its nearest
collinear dipole (located at its left), because the field due to
all other magnets cancels out. The (red) edge dipole at the
left bottom corner of the lattice, sustains the field due to its
nearest collinear magnet but this is attenuated by the field
contributions from the other four parallel dipoles at the rows
above. Therefore, an edge dipole sustains a lower internal field
and it is more unstable respect to external perturbations that a
dipole at the bulk. The scenario is such that when the system
is subject to external fields, dipoles at the edge of the lattice
respond faster to the external torque than dipoles at the bulk.
A similar situation occurs for the dipoles highlighted in red in
Fig. 3(b).

Indeed, the anisotropy of the internal magnetic field in
a lattice is captured by the geometrical factor  which
in the square cluster splits into (E ) = (6

√
2 − 1) and
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FIG. 3. (a) Antiferromagnetic vortex state (AV) and (b) ferromagnetic vortex state (FV) for a small cluster made out of four square
plaquettes after relaxation. In panels (a) and (b) the red dipoles highlight edge and bulk magnets examined in the text. (c) Dipolar energy
density (in units of K(L)) of the square cluster versus its chirality for several values of �. (d) Numerical results comparing C(s) of edge (in
red) and bulk (in blue) dipoles at the sites of the cluster in the FV state with � = 1.1 and at T = 0.06. The inset shows evaluation of C(s) from
Eq. (9) of edge (using K(E )) and bulk dipoles (using K(B)) with � = 1.1 and T = 0.06.

(B) = (E )+1
2 splitting K into K(E ) and K(B) for edge and bulk

states, respectively. The splitting of K affects the relaxation
dynamics through ε, τ2, and τ3. The final result is the shifting
of C(s) for magnets at the edge and the bulk. This scenario is
verified in Fig. 3(d), which shows the evolution of C(s) of bulk
(curve in blue) and edge (curve in red) dipoles after applying
a small perturbation to a cluster that originally relaxed into
the FV state (with � = 1.1 and at T = 0.06). As expected,
numerical simulations (main figure) show that the dynamics
of dipoles at the edge and bulk is shifted and that edge states
evolve faster than bulk magnets. Furthermore the numerical
solution captures a qualitative difference between the thermal
relaxation in both cases: while edge dipoles evolve in a fash-
ion reminiscent of Fig. 2(a), bulk magnets evolve in a smother
manner. The inset corresponds to the evaluation of Eq. (9)
using K(E ) and K(B) for edge and bulk dipoles, respectively,
which, for short times, yields the same qualitative behavior
that the main figure.

E. Magnetization dynamics

Finally we investigate the thermal dynamics of the square
dipolar clusters under a uniform external magnetic field. To
that effect molecular dynamics simulations are used to solve
the equation

I
d2αi

dt2
=

√
2ηkBT ξ (t ) − η

dαi

dt
− T i

z − T (i,e)
z , (10)

where T (i,e)
z = mi × B and B denotes a uniform magnetic

field applied in the x-y plane.
We prepared two systems by solving the thermal relaxation

[Eq. (3)] of one cluster with � = 1 and at T = 0.02 and a

second one with � = 1.1 and at T = 0.06. In the first case
the system relaxed in the FV and in the second it settled
into the AV state. Next Eq. (10) was numerically solved
for each of them. The resulting magnetization along the x
direction, mx (in units of m0), due to an external magnetic
field applied along the x axis, Bx [in units of K(�)/m0] is
shown in the respective blue and red curves of Fig. 4. We note
that the magnetization loops depict similar behavior in both
lattices. The plateau at mx = 1

3 realized in both cases deserves
special attention. To inspect it further, the loop of Fig. 4 is

FIG. 4. Magnetization parallel to the applied field direction. Blue
curve shows the result for the cluster in the AV [Fig. 3(a)], with
� = 1.1 and T = 6 × 10−2, while the red curve shows the results
of the lattice in the FV [Fig. 3(b)], with � = 1 and T = 2.2 × 10−2.
Magnetization mx is in m0 units and the magnetic field Bx is in units
of K(�)

m0
.
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FIG. 5. (a) Magnetization dynamics along the direction parallel
to the applied field, of dipoles in the bulk of the clusters in the AV
(blue) and FV (red) magnetic orders. Panel (b) is like panel (a) but
for dipoles located at the edge. In all cases mx is in m0 units and the
magnetic field Bx is in K(�)

m0
units.

broken up into the magnetization of dipoles at the bulk and
at the edge of the clusters as shown in Figs. 5(a) and 5(b),
respectively. Now the dissimilar magnetization dynamics of
bulk and edge is apparent in both clusters (the AV is shown
in blue and the FV is shown in red). Consequently, the 1

3
feature is attributed to the anisotropy of the internal dipolar
interactions between bulk and edges dipoles as discussed in
Sec. III D. While dipoles at the edge, Fig. 5(b), respond eas-
ily to very small values of Bx, the four dipoles at the bulk
of the lattices, Fig. 5(a), stay pinned until at Bx ∼ 1.8 they
suddenly rotate to follow the direction of the external field.
Since dipoles in the bulk correspond to one fourth of the
total number of magnets in the system, their action leaves a
signature in the form of a plateau in the magnetization loop.
Therefore, the width of the plateau of Fig. 4 is a measure
of the anisotropy between the internal fields at the edge and
at the bulk of the sample. The small shoulder at Bx ∼ 2 in
the red curves of Figs. 4 and 5 is due to the slightly delayed
flip of one of the bulk dipoles as shown in the supplementary
videos [46].

IV. CONCLUSIONS

Square clusters of magnetic dipoles have been studied as
prototype models to elucidate the role of internal dipolar
interactions, intrinsic properties of the magnetic degrees of
freedom, and the geometric features of a lattice, in the thermal
relaxation and magnetization dynamics of dipolar arrays. By
solving the Langevin equation for the angular rotation of inter-
acting dipoles we found that the early relaxation dynamics of
the systems under study is determined by temperature, dipo-
lar interactions, and inertia, while the long-time relaxation
is defined by the interplay between damping and magnetic
couplings. Temperature, magnitude of dipolar interactions,
damping coefficient, and inertial aspects of the magnets are
imprinted in the timescales that determine the stages of evo-
lution of the time autocorrelation function of an array of
magnets. The study of the Langevin dynamics allows us to
set apart geometrical aspects of the lattice from the magnetic
and inertial properties of the dipoles. Consequently, we define
a magnetic correlation length � in terms of inertia, damping,
and magnetic intensity of the spins, while the symmetry aspect
of the array is stored in a geometric factor which is lattice
dependent. For the case of nanoarrays of mesospins, � could
be a useful length scale to compare with the lattice constant
aimed to determine whether or not internal correlations play a
dominant role in the dynamics of the system at hand.

The anisotropy of the internal magnetic fields in a lattice
is captured by a geometrical factor  which distinguishes the
magnetic torques sustained by dipoles at the bulk and at the
edge of a lattice. The magnetic anisotropy of the internal fields
manifests in the proper timescales of the system which differ
for dipoles at the bulk and the edge. This has consequences
in the time autocorrelation function which shows qualitative
differences for edge and bulk magnets. When such a system
is under an external magnetic field, signatures of the dipo-
lar anisotropy are displayed in the magnetization dynamics
through a plateau that shows up in the magnetization loops of
the clusters. Sorting out the magnetization reversal of edge
and bulk magnets reveals once again the qualitative differ-
ences in the magnetization dynamics of edge and bulk states
in dipolar arrays.
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APPENDIX A: SOLUTION OF EQ. (4)

The Langevin equation that determines the dynamics of the
angular variable αi is [41,44,45]

I
d2αi

dt2
=

√
2ηkBT ξ (t ) − η

dαi

dt
− Kαi, (A1)

where I ([Kg m2]) is the inertia moment of each dipole, and η

([ Kgm2

s ]) is a damping coefficient that accounts for its viscous
rotation in the x-y plane. Thermal fluctuations due to the
coupling of the magnet with the thermal bath are modeled
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by a δ-correlated Gaussian noise ξ (t ) of zero mean and unit
intensity: 〈ξ (t )〉 = 0, 〈ξ (t )ξ (t ′)〉 = δ(t − t ′). T denotes tem-
perature and kB is the Boltzmann constant. The last term
Kαi accounts for the torque on dipole mi due to the internal
magnetic field originated by all other dipoles assuming that
(1) dipoles deviate slightly from their equilibrium positions
and (2) at a given position the internal fields perpendicular
and parallel to mi are such that B⊥ � B||, yields K = m0B|| as
explained in Sec. III C.

Hereafter, the superscript i will be omitted. Consider

α(t ) = αh(t ) + αξ (t ), (A2)

with αh(t ) solution of the homogeneous equation Iα̈h =
−ηα̇h − Kαh. αh(t ) is a linear combination of two indepen-
dent solutions: αh = Aeη0t sin ωt + Beη0t cos ωt , where A and
B are constants to be determined from αh(0) and α̇h(0). In
addition, ω2 = ω2

0 − η2
0, ω2

0 = K
I and η0 = η

2I .
However, αξ is a particular solution related to ξ (t ) and

satisfies the inhomogeneous equation with initial conditions
αξ (0) = α0 and α̇ξ (0) = v0.

αξ can be expressed by the Green function,

αξ (t ) =
√

2ηkBT
∫ ∞

0
G(t, u)ξ (u)du. (A3)

For obtaining G(t, u) we use the solution of the following
homogeneous equation:

Iα̈ + ηα̇ + Kα = 0. (A4)

The solution of Eq. (A4) takes the form: α(t ) = ert , which
once replaced in the homogeneous equation yields

Ir2 + ηr + K = 0. (A5)

Giving two real solutions for r: r± = − η

2I ± β with β =
η

2I

√
1 − 4KI

η2 . Therefore, α1(t ) = exp [(β − η

2I )t] and α2(t ) =
exp [−(β + η

2I )t].
Next we construct the Green function that verifies

IG̈(t, t ′) + ηĠ(t, t ′) + KG(t, t ′) = δ(t − t ′), (A6)

with the initial conditions G(0, t ′) = 0 and Ġ(0, t ′) = 0. G
can be written as a linear combination of solutions of the
homogeneous equation as follows:

G(t, t ′) = c1α1 + c2α2, t < t ′,

G(t, t ′) = d1α1 + d2α2, t > t ′. (A7)

The constants c1, c2, d1, and d2 can be determined from the
initial conditions and the continuity of G(t, t ′) at t = t ′. They
imply that c1 = c2 = 0 and c1α1(t ′) + c2α2(t ′) = d1α1(t ′) +
d2α2(t ′), which yields d1α1(t ′) = −d2α2(t ′).

Integrating Eq. (A6) from t ′+ to t ′−, we obtain
∫ t ′+

t ′−
[IG̈(t, t ′) + ηĠ(t, t ′) + KG(t, t ′)]dt =

∫ t ′+

t ′−
δ(t − t ′)dt .

(A8)

Since G(t, t ′) is continuous, Ġ(t, t ′) can have only a jump
discontinuity, and therefore

Ġ(t, t ′)|t=t ′+ − Ġ(t, t ′)|t=t ′− = 1

I
, (A9)

FIG. 6. Magnetic field ramp used in numerical simulations in
units of K(�)/m0.

yielding

d1(t ′) = 1

2Iβα1(t ′)
,

d2(t ′) = −1

2Iβα2(t ′)
, (A10)

and the Green function becomes

G(t, t ′)=�(t −t ′)
1

2Iβ
e− η

2I (t−t ′ )[eβ(t−t ′ )−e−β(t−t ′ )]. (A11)

Since ξ (t ) is a Gaussian process, αξ (t ) is Gaussian too and
then α(t ) is a Gaussian stochastic process. Because 〈ξ (t )〉=0,
it follows that 〈αξ (t )〉 = 0. Because α(t ) = αh(t ) + αξ (t ), the
mean-square deviation of the particle angle,

〈(δα(t ))2〉 = 〈α2(t )〉 − 〈α(t )〉2, (A12)

using the Green function can now be written as

(α(t ))2 = 2ηkBT

I2ω2

∫ t

0

∫ t

0
dt ′dt ′′e−η0(2t−t ′−t ′′ )

× sin ω(t − t ′) sin ω(t ′ − t ′′)ξ (t ′)ξ (t ′′). (A13)

FIG. 7. Normalized magnetization of the cluster versus χ at
T = 0.
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Taking average over noise realizations yields [47]

〈(δα(t ))2〉 = 〈(δαξ (t ))2〉

= 2ηkBT

I2ω2

∫ t

0
dt ′e−2η0(t−t ′ ) sin2 ω(t − t ′). (A14)

Finally, evaluation of the integral in Eq. (A14) leads to the
mean-square deviation of the angle of a dipole:

〈(δα(t ))2〉 = kBT

K + kBT

Kω2

[
η2

0 cos 2ωt − η0ω sin 2ωt − ω2
0

]
.

(A15)

APPENDIX B: MOLECULAR DYNAMICS SIMULATIONS
OF THE LANGEVIN DYNAMICS

Numerical results were obtained by direct numerical inte-
gration of the Langevin equation of motion for each magnet
interacting with all the others via dipolar interactions, Eq. (3)
or Eq. (10), depending on the case. To solve the system of
equations, we use a Verlet method with an integration time
step dt = 2×10−6 [s] equivalent to ∼2.5×106 time steps. In
all numerical simulations, the time discretization step satisfied
the condition dt < 10−2Min{τ1, τ2, τ3, τth}.

(a)

(b)

FIG. 8. (a) Difference between the dipolar energy of the mag-
netic configurations FV and AV and (b) Difference between the
maximum energy density of the system (the energy barrier reached
when M = 1 and χ = 0.26) and the energy of the magnetic config-
uration FV in terms of � at T = 0. All energies are normalized by
K(L).

For the square plaquette and for the cluster, energy min-
imization and molecular dynamics simulations run at T = 0
from an initial random magnetic configuration, yielded the
minimum energy magnetic state. Next, the system was ini-
tialized such that each dipole was slightly taken away from
its equilibrium orientation by a small random amount. Then
using the Verlet algorithm the system of dipoles follows the
dynamics modeled by Eq. (3) and is left to reach equilibrium
for ∼5 s.

For the magnetization dynamics analysis under an external
field, we used a uniform magnetic field along the x direction
[Eq. (10)], which changed by δB ∼ 10−5 in each time step.
During the simulation interval, the magnitude of the field
increased from 0 up to B = Bmax, next it went back to zero
to decrease down to −Bmax. Then it returned to zero to finally
rise up to Bmax = 3.51 as shown in Fig. 6. The total simulation
time was 5 s. In all data presented here magnetic fields are
normalized by K(�)/m0. In all simulations, the length of the
magnets is L = 1, the moment of inertia I = K(�) × 10−3,
the damping η = 50I , saturation magnetization Ms = 106/π

[A/m], the radius of the magnets r = L × 10−3, the magnetic
charge q = Msπr2 = 1, m0 = Lq = 1, and finally the charac-

teristic length scale � = ( μ0m2
0I

η2 )1/3 = 1.04. To produce ξ (t ),
a given temperature T was multiplied by a random number

(a)

(b)

FIG. 9. (a) The amplitude A of the earliest oscillation of C(s)
of a single square plaquette of dipoles is shown as a function of
temperature T . (b) A in terms of �. Panels (a) and (b) are obtained
from the numerical solution of Eq. (3). T is normalized by K(L).
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with a Gaussian distribution produced by Mathematica 12.0,
routine RandomVariate[NormalDistribution[]] [48]. The range
of temperatures spanned was (10−2, 1).

APPENDIX C: ENERGIES OF AV AND FV AT T = 0

The equilibrium configuration of the cluster after relax-
ation from a random magnetic configuration depends on �

and T. Energetics dictates that at T = 0 the FV is slightly
favorable for all values of �, but decreases as � grows as
shown in Fig. 8(a). Here we show the difference between
the dipolar energy of the cluster divided by the number of
dipoles and normalized by K(L) versus �/�. We see that the
difference between the energy of the two states converges in a
logarithmic fashion with the growing of �.

A similar situation occurs when we examine the difference
between the energy of FV and the energy barrier between the
two equilibrium configurations. The energetic barrier is set by

the maximum dipolar energy of the cluster which occurs when
it realizes a magnetic configuration that has maximum magne-
tization M = 1

12

∑
k |m̂k| = 1 and has χ = 0.26 as shown in

Figs. 8(b) and 3(c), respectively. We can see that the effect of
increasing � is to decrease the dipolar energy of the system
which consequently decreases the energy barrier and the en-
ergy difference between the equilibrium configurations in the
cluster.

APPENDIX D: A VERSUS T AND �

In Figs. 9(a) and 9(b) we show the amplitude A of C(s) at
the onset of the relaxation dynamics in terms of T and �,

respectively. As expected Fig. 9(a) shows the increment of
A with temperature. As � grows the strength of the dipolar
interactions between magnets decreases which means that
inertial effects take over. This is realized by the augment of
A as � grows as shown in Figs. 9(b).
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