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Finite-temperature magnetic properties of Sm2Fe17Nx using an ab initio effective spin model
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In this study we investigate the finite-temperature magnetic properties of Sm2Fe17Nx (x = 0, 3) using an
effective spin model constructed based on the information obtained by first-principles calculations. We find
that assuming the plausible trivalent Sm3+ configuration results in a model that can satisfactorily describe the
magnetization curves of Sm2Fe17N3. By contrast, the model based on the divalent Sm2+ configuration is suitable
to reproduce the magnetization curves of Sm2Fe17. These results expand the understanding of how electronic
structure affects the magnetic properties of these compounds.

DOI: 10.1103/PhysRevB.102.214439

I. INTRODUCTION

The Sm2Fe17Nx nitrides have unusual magnetic anisotropy
properties. The system with x = 3 is a commercially success-
ful permanent magnet and is well known to exhibit stronger
uniaxial magnetocrystalline anisotropy than Nd2Fe14B. In
contrast, the system with x = 0, binary Sm2Fe17, has weak
planar anisotropy, and a recent experiment has revealed that
the magnetization orientation slightly deviates from the basal
plane by about 10◦ at low temperatures [1]. Because the iron
sublattice of this system is expected to have planar magnetic
anisotropy analogous to Y2Fe17, this observation indicates
that the local magnetic anisotropy due to the Sm ions is
uniaxial but comparatively weak in Sm2Fe17. Thus the ni-
trogenation process sensitively changes the electronic states
around the Sm ions, resulting in a sign change of the magne-
tocrystalline anisotropy.

Several efforts have been made to theoretically clarify
the electronic states of Sm2Fe17Nx based on first-principles
calculations [2–6]. Because modern first-principles calcula-
tions still do not treat 4 f electrons properly, some additional
treatment such as the so-called open core method, the
local spin-density approximation with Hubbard correction
(LSDA + U ), or the self-interaction correction (SIC) is
needed to evaluate the magnetic anisotropy of these systems.
Steinbeck et al. [3] calculated the 4 f crystal field parameters
(CFPs) for the Sm ions based on the open core method, as-
suming a plausible trivalent Sm3+ configuration. They found
that the second-order CFP A0

2, which dominates the local
magnetic anisotropy of Sm, is enhanced in amplitude by
nitrogenation. Knyazev et al. [4] calculated the electronic
structure and optical properties of Sm2Fe17 and Tm2Fe17

using the LSDA + U method. The calculated total magnetic
moment including the orbital correction to the contribution
from 4 f electrons is in good agreement with the experimen-
tally measured value [7]. However, they did not discuss the
magnetic anisotropy of the systems. Pandey et al. [5] calcu-

lated the magnetocrystalline anisotropy energy of Sm2Fe17

and Sm2Fe17N3. The predicted directions of magnetocrys-
talline anisotropy for Sm2Fe17 and Sm2Fe17N3 are in good
agreement with the experimental observations. However, the
calculated total moments are smaller than the experimen-
tally measured values [8,9]. According to their results, the
calculated spin magnetic moments of the Sm ions are close
to that of trivalent Sm3+. Recently, Ogura et al. [6] carried
out the self-consistent Korringa-Kohn-Rostoker coherent po-
tential approximation (KKR-CPA) calculations with a SIC
treatment and confirmed that the uniaxial magnetocrystalline
anisotropy increases with increasing nitrogen content x. In
addition, they claimed that the number of f electrons of each
Sm ion is about 6; that is, a divalent Sm2+ configuration is
realized, regardless of x. This result is quite intriguing because
it has been widely believed that the Sm ions have trivalent
electronic states, as claimed in several x-ray absorption spec-
troscopy (XAS) experiments [10].

We notice that these theoretical studies except the work
of Pandey et al. concluded uniaxial magnetocrystalline
anisotropy, not only for Sm2Fe17N3 but also for Sm2Fe17,
which is inconsistent with the reported experimental obser-
vations. It should be also noted here that the KKR-CPA with
SIC calculations showed that the uniaxial magnetic anisotropy
of Sm2Fe17 is fairly small. This is intuitively understandable
because the 4 f electron clouds of divalent Sm2+ should be
more spherical than those of trivalent Sm3+, resulting in a
weaker uniaxial local magnetic anisotropy. Although infor-
mation about the electronic states of Sm is quite important to
understand the magnetic properties, in particular, the magne-
tocrystalline anisotropy, it is difficult to extend the conclusions
of the previous studies by using the first-principles calculation
method itself. Therefore we instead focus on the finite-
temperature magnetic properties of the systems. We construct
a single-ion model, which has long been used to describe
phenomenologically the magnetic properties of rare-earth-
based materials but base it on first-principles calculations. The
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necessary information to construct the model is as follows: the
magnetic moments of each ion, the exchange field acting on
the 4 f electrons, and the CFPs. Once we construct the model,
including the crystal-field Hamiltonian, we can compute the
magnetic anisotropy due to the rare-earth ions for arbitrary
temperatures in the standard statistical mechanical way. For
this purpose, the most suitable way to treat the 4 f electrons in
first-principles calculations is the open core method because
we can easily control the electronic structure and valency of
the Sm ions.

In this study we investigate the magnetization curves of
Sm2Fe17Nx (x = 0, 3) for several temperatures using the
single-ion model based on first-principles calculations. We
prepare the model in two ways: (1) assuming trivalent Sm ions
and (2) assuming divalent Sm ions. We show the differences
between the magnetization curves obtained by (1) and (2) and
discuss which valency and electronic configurations plausibly
describe the experimentally obtained finite-temperature mag-
netic properties.

II. ELECTRONIC STRUCTURE CALCULATIONS
AND MODEL CONSTRUCTION

We use the single-ion Hamiltonian [11–15] to describe
the finite-temperature magnetic properties of Sm2Fe17Nx (x =
0, 3). The Hamiltonian of the ith Sm ion is given as

H(i) = λL4f ·S4f + 2Hm(T )·S4f + HCEF(i)

+ (L4f + 2S4f )·Hex, (1)

where L4f and S4f are the total spin and total angular mo-
mentum operators, λ is the spin-orbit coupling constant of the
4 f shell, Hex is the external magnetic field, and Hm(T ) is
the exchange mean-field acting on the spin components of 4 f
electrons. The crystal-field Hamiltonian HCEF(i) is expressed
in terms of the tensor operator method as follows [12,13]:

HCEF(i) = A0
2(i)

∑
j

r2
j 2U 0

2 (θ j, φ j )+A0
4(i)

∑
j

r4
j 8U 0

4 (θ j, φ j )

+ A0
6(i)

∑
j

r6
j 16U 0

6 (θ j, φ j ) + A6
6(i)

∑
j

r6
j 16

×
(

1

231

) 1
2 [

U 6
6 (θ j, φ j ) + U −6

6 (θ j, φ j )
]
, (2)

where Am
l (i) are the CFPs at the ith rare-earth-ion site. In

this work, assuming that all sites are equivalent, we neglect
contributions from A3

4(i) and A3
6(i). The tensor operator U m

l is
given by

U m
l (θ j, φ j ) =

√
4π

2l + 1
Yl,m(θ j, φ j ), (3)

where Yl,m is the spherical harmonics function. Matrix ele-
ments of

∑
j rl

jU
m
l (θ j, φ j ) are expressed using 3- j and 6- j

symbols as follows [12,13]:

〈J, Jz, L, S|
∑

j

rl
jU

m
l (θ j, φ j )|J ′, J ′

z, L, S〉

= (−1)(L+S−Jz+J+J ′ )
√

(2J + 1)(2J ′ + 1)

TABLE I. The reduced matrix elements [13] used in our calcula-
tions.

〈L||U2||L〉 〈L||U4||L〉 〈L||U6||L〉

Sm3+ 1
3 ( 2×11×13

15 )
1
2 2

3 ( 2×13
11 )

1
2 −10( 5×17

3×11×13 )
1
2

Sm2+a 2( 7
15 )

1
2 −( 14

11 )
1
2 10( 7

3×11×13 )
1
2

aFor Sm2+ we show the values of Eu3+.

×
(

J J ′ l

−Jz J ′
z m

){
L L l

J J ′ S

}
〈L||Ul ||L〉〈rl〉, (4)

where 〈L||Ul ||L〉 is the appropriate set of reduced matrix el-
ements given in Table I. We note that J multiplets are taken
into account up to the fifth excited state in this calculation.
We use L = 5 and S = 5

2 for Sm3+, and L = 3 and S = 3 for
Sm2+.

Once we have set the Hamiltonian for the ith Sm ion, we
can obtain the free energy for the 4 f partial system based on
the statistical mechanical procedure as

F (i) = −kBT ln Tr exp

[
−H(i)

kBT

]
. (5)

This single-ion Hamiltonian has a quite long history, and in
the early days of the study of rare-earth-based permanent
magnets, the model parameters such as |Hm(0)| and Am

l were
determined by multiparameter fitting calculations to the ex-
perimental magnetization curves of single crystals [13]. Now
we can determine these parameters based on the information
of the electronic states of the systems using first-principles
calculations. Recently, we have confirmed that this procedure
successfully describes the observed magnetization curves
and the temperature dependences of anisotropy constants of
R2Fe14B (R = Dy, Ho) [16] and SmFe12 [17].

We use the first-principles calculations method to deter-
mine the CFPs. Once the electronic state calculations are
completed, we can compute the CFPs Am

l 〈rl〉 in Eq. (2) based
on the well-known formula [18–20]

Am
l 〈rl〉 = alm

∫ RMT

0
drr2|R4f (r)|2V m

l (r), (6)

where V m
l (r) is the component of the partial wave expansion

of the total Coulomb potential of the rare-earth ions within
the atomic sphere of radius RMT. alm are numerical factors,

specifically, a20 = 1
4

√
5
π

, a40 = 3
16

√
1
π

, a60 = 1
32

√
13
π

, a66 =
231
64

√
26

231π
, and R4f(r) is the radial shape of the localized 4 f

charge density of the rare-earth ions. We can directly obtain
V m

l (r) from the density functional theory (DFT) potential
calculated by WIEN2K [21]. Moreover, to simulate the local-
ized 4 f electronic states in the system, we use the classical
open core method, in which we switch off the hybridization
between 4 f and valence 5d and 6p states and treat the 4 f
states in the spherical part of the potential as atomiclike core
states [18]. Thus the function R4f(r) in Eq. (6) can be obtained
by performing separate atomic calculations of the electronic
structure of an isolated rare-earth atom. The details of the
calculations are provided in previous studies [18–20].
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TABLE II. The anisotropy constants KFe [K] per single Fe
atom [1,22,23].

4.2 K 300 K

Sm2Fe17 −4.14 −0.45
Sm2Fe17N3 −2.60 −1.30

Using the polar coordinates (θ, φ), which are the zenith
and azimuth angles defined with the c axis as the z axis, the
total free energy of the system is given by

F (Hex, Hm(T ), T, θ, φ) =
NR∑
i=1

F (i) + NFeKFe(T ) sin2 θ

− MFe(T ) · Hex, (7)

where NR and NFe are the numbers of Sm ions and Fe ions,
respectively, Hm(T ) = |Hm(T )|, and KFe(T ) is the anisotropy
constant of Fe per atom given in Table II. The same notation
is used as in Eq. (1). The temperature dependence of MFe(T )
is described by the Kuz’min formula as follows [24]:

MFe(T ) = MFe(0)

[
1 − s

(
T

Tc

) 3
2

− (1 − s)

(
T

Tc

)p
] 1

3

, (8)

where MFe(0) is the total magnetic moment of the system
except the magnetic moment of the Sm ions. The calculated
results of MFe(0) are summarized in Table III. The tempera-
ture dependence of Hm(T ) is also described by the Kuz’min
formula [24]:

Hm(T ) = Hm(0)

[
1 − s

(
T

Tc

) 3
2

− (1 − s)

(
T

Tc

)p
] 1

3

. (9)

TABLE III. Spin magnetic moments in unit μB of each Fe ion,
total spin magnetic moment in the cell except the contribution from
the Sm, and total magnetic moment per unit cell calculated by our
effective single-ion model for each valency with comparison to pre-
vious works [3,6].

Valency 6c 9d 18 f 18h MFe(0) Total

Present work
Sm2Fe17 Sm3+ 2.67 2.21 2.49 2.39 39.72 40.19

Sm2+ 2.71 2.20 2.50 2.42 41.06 35.66
Present work
Sm2Fe17N3 Sm3+ 2.65 2.48 2.18 2.36 38.80 39.41

Sm2+ 2.69 2.49 2.10 2.40 38.96 33.61
Steinbeck et al. [3]a

Sm2Fe17 Sm3+ 2.41 1.57 2.22 2.02 – –
Sm2Fe17N3 Sm3+ 2.36 2.45 2.13 2.42 – –
Ogura et al. [6]b

Sm2Fe17 – 2.53 2.15 2.42 2.17 – –
Sm2Fe17N3 – 2.92 2.84 2.14 2.12 – –

aThe Sm ions are treated as trivalent in a similar method with the
open core method.
bThey did not use the open core method, and thus the valency of the
Sm ions is not shown. We extracted the values of magnetic moments
from Fig. 2 of Ogura et al. [6].

In this system we use s = 0.7 and p = 5/2 given by
Kuz’min [24]. The Curie temperatures Tc of Sm2Fe17 and
Sm2Fe17N3 are 380 K [1] and 752 K [25], respectively.
Calculating Eq. (7) for given (θ , φ), we obtain the angular
dependence of the total free energy. We note that the directions
of Hm (T ) and MFe (T ) are antiparallel. The equilibrium
directions of MFe(T ) and Hm(T ) are evaluated using the
minimum point of the total free energy of the system. We
numerically examine all the angles (θ, φ) that correlate with
the energy minimum point. These angles determine the di-
rection of the Fe sublattice magnetization in equilibrium. The
finite-temperature magnetic moment of the ith Sm ion MR

i(T )
is given by

MR
i(T ) = −

∑
s

〈i, s|L4f + 2S4f |i, s〉e−Es (i)/kBT /Z (i), (10)

Z (i) =
∑

s

e− Es (i)
kBT , (11)

where Es(i) and |i, s〉 are an eigenvalue and eigenvector, re-
spectively, of the following equation:

H(i)|i, s〉 = Es(i)|i, s〉. (12)

The total magnetic moment of the system M(T ) is represented
by

M(T ) =
∑

i

MR
i(T ) + MFe(T ). (13)

We plot the magnetization curves of both compounds at 4.2
and 300 K, because the anisotropy constants of Fe summa-
rized in Table II are measured at a specific temperature. In
order to calculate the magnetic anisotropy constants K1(T )
and K2(T ), we assume the following expansion:

F (Hex, Hm(T ), T, θ, φ) − NFeKFe(T ) sin2 θ

= K1(T ) sin2 θ + K2(T ) sin4 θ + · · · . (14)

We use Maclaurin’s expansion to obtain the anisotropy con-
stants as follows [26]:

K1(T ) = 1

2

∂2F (0, Hm(T ), T, θ, φ)
∂θ2

|θ=0, (15)

K2(T ) = 1

3
K1(T ) + 1

24

∂4F (0, Hm(T ), T, θ, φ)
∂θ4

|θ=0. (16)

We note that the magnetic anisotropy of Fe is not included
in K1(T ) and K2(T ) in this work, because we cannot treat
the temperature dependence of the magnetic anisotropy of Fe
theoretically.

We calculate |Hm(0)| in accordance with the method
of Brooks et al. [27]. We summarize the model parame-
ters, including CFPs, Hm(0), and λ, in Table IV. For the
computation of the necessary parameters for the single-ion
model, we use the WIEN2K code (version 16.1), adopting the
generalized-gradient-approximation form for the exchange-
correlation functional. Here the lattice constants of the unit
cell are set to the experimental values of a = b = 8.557 Å
and c = 12.448 Å for Sm2Fe17 [28], and a = b = 8.7206 Å
and c = 12.634 45 Å for Sm2Fe17N3 [22]. The space group
of both compounds is R3̄m (No. 166). The atomic sphere
radii are taken to be 3.0, 1.96, and 1.6 a.u. for Sm, Fe, and
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TABLE IV. The crystal field parameters Am
l 〈rl〉 [K] and the amplitude of the exchange mean-field |Hm(0)| [K] computed using first-

principles calculations and the spin-orbit coupling constants λ [K] calculated from the experimental results [29].

Valency A0
2〈r2〉 A0

4〈r4〉 A0
6〈r6〉 A6

6〈r6〉 |Hm(0)| λ

Sm2Fe17 Sm3+ –176.1 –18.27 –0.122 43.07 354.1 350
Sm2+ –8.07 –17.27 0.08 50.25 372.5 387

Sm2Fe17N3 Sm3+ –576.7 7.055 –1.213 29.85 176.3 350
Sm2+ –718.5 11.27 –1.142 28.54 150.5 387

N, respectively. Spin-orbit coupling is not considered in our
first-principles calculations. The number of basis functions of
Sm2Fe17 and Sm2Fe17N3 are taken to be 1609 and 2934, re-
spectively, and 4 × 4 × 4 k points are sampled in the Brillouin
zone. RKMAX is taken to be 7.0 in our calculations. Crystal
structure and nonequivalent atomic positions of Sm2Fe17N3

and Sm2Fe17 are shown in Fig. 1.

III. RESULTS AND DISCUSSION

A. Electronic structure

We explain the calculated electronic structure for Sm2Fe17

and Sm2Fe17N3. We show the spin magnetic moments of the
Fe ions on each site, the total spin magnetic moments in
the cell except the contribution from the Sm spin magnetic
moments, and the total magnetic moments in the unit cell at
0 K in Table III, for comparison with the results of previous
studies [3,6]. The total magnetic moments in the unit cell
are calculated by Eqs. (1) and (13), because the magnetic
moments of the Sm ions contain the contribution from the or-
bital magnetic moments of 4 f orbitals. The nearest-neighbor
sites for the Sm ions in Sm2Fe17 are 18 f sites. In contrast,
the nearest-neighbor sites for the Sm ions in Sm2Fe17N3 are
18h sites [3,22]. The difference of the valency does not affect
the spin magnetic moments of each site drastically. We find
that the nitrogenation causes the enhancement of the magnetic
moments at 9d sites and reduction of those at 18 f sites in
both valencies. Similar effects are discussed in Ogura et al.;
however, no enhancement of magnetic moments at 6c sites
was found in this work. We note that the magnetic moments
of each Fe site in trivalent Sm2Fe17 are quite different from
the results of Steinbeck et al ., especially on 9d sites, and
the magnetic moments of each Fe site in trivalent Sm2Fe17N3

are similar to their results except those of 6c sites [3]. For
the trivalent configuration, we can see that the total mag-
netic moments of Sm ions in Sm2Fe17 and Sm2Fe17N3 are

0.48μB and 0.41μB, respectively. In contrast, for the divalent
configuration, we can see the negative contribution; the total
magnetic moments of Sm ions are −2.70μB and −2.68μB

for Sm2Fe17 and Sm2Fe17N3, respectively. The comparison of
the calculated total magnetic moment at low temperature with
experimentally measured values are discussed in Secs. III B
and III C. Next we show the CFPs Am

l 〈rl〉 calculated by Eq. (6)
in Table IV. We can see that the CFPs Am

l 〈rl〉 of Sm2Fe17N3

do not change drastically, except A0
2〈r2〉, when we change the

valency of the Sm ions. We also note that the values of A0
2〈r2〉

for Sm2Fe17N3 are the largest regardless of the its valency.
This implies that Sm2Fe17N3 shows uniaxial anisotropy, re-
gardless of the valency of the Sm ions. However, we can see
that the CFP A0

2〈r2〉 of Sm2Fe17 is quite different in trivalent
and divalent results. A0

2〈r2〉 in the trivalent result is the largest
among the CFPs; however, A0

2〈r2〉 in the divalent result is
quite small compared with the others. This implies that the
difference of the valency of the Sm ions causes the change of
the anisotropy of the system.

B. Magnetization curves of Sm2Fe17N3

First we look at the magnetization curves of Sm2Fe17N3

calculated by the effective spin model. Figure 2(a) shows the
magnetization curves along the [001] and [100] directions at
T = 4.2 K, obtained by using the effective spin model with
the trivalent Sm3+ (red) and the divalent Sm2+ (black). The
experimental results for Sm2Fe17N3.1 reported by Koyama
et al. [25] are indicated by solid curves in Fig. 2(a). We can
clearly see that the [001] direction is the easy axis of this
system, regardless of the valency of the Sm ions. However,
as we noted in Sec. III A, the saturation magnetizations Ms

at low temperature for Sm3+ and Sm2+ are clearly different.
We also notice here that the results for the trivalent model in
Fig. 2(a) satisfactorily reproduce the experimentally observed
magnetization curves. Thus we can conclude that the Sm3+

(a) (b)

FIG. 1. Crystal structures of the hexagonal unit cell and nonequivalent atomic positions of (a) Sm2Fe17N3 [22] and (b) Sm2Fe17 [28].
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(a)

(b)

(c)

(d)

FIG. 2. The calculated magnetization curves of Sm2Fe17N3 at (a) 4.2 K and (b) 300 K and Sm2Fe17 at (c) 4.2 K and (d) 300 K. Sm2+ and
Sm3+ are indicated by black and red plots, respectively, where H [kOe] is the strength of the applied external magnetic field. In (a) and (b),
the circles and squares indicate the results along the principal axis of [001] and [100] direction, respectively, and in (c) and (d), the circles and
squares indicate the results along the principal axis of [001] and [120] direction, respectively. The experimental curves shown by red and blue
lines in (a) at 4.2 K are extracted from Koyama and Fujii [25], in which the curves for 300 K are not shown. The experimental curves in (c) and
(d) at 4.2 and 300 K are extracted from Diop et al . [1].

electronic configuration is realized in Sm2Fe17N3 compounds.
The magnetization curves of Sm2Fe17N3 at T = 300 K are
shown in Fig. 2(b), in the same manner as Fig. 2(a). The
saturation magnetization is reduced as changing the valency
from Sm3+ to Sm2+; however, the qualitative behavior of the
curves does not change from Fig. 2(a).

C. Magnetization curves of Sm2Fe17

Next we look at the magnetic properties of Sm2Fe17 de-
scribed by the effective spin model. Figure 2(c) shows the
calculated magnetization curves along the hard and easy di-
rections at T = 4.2 K. We can clearly see that the magnetic
anisotropy is qualitatively different between the systems with
the trivalent Sm3+ and the divalent Sm2+ ions. When we
assume the divalent Sm2+ configuration, the system shows
planar anisotropy. Thus the divalent results can reproduce the
behavior that is experimentally observed [1], as shown by a
blue line in Fig. 2(c) at 4.2 K. We also show the curves at
300 K in Fig. 2(d). The qualitative behavior is almost the same
as the results at 4.2 K. It is noted that we can see the spin
reorientation phenomenon. As stated in the Introduction, the
orientation of the magnetization of this compound was experi-
mentally found to deviate from the basal a-b plane by as much
as 10◦ at low temperatures [1]. Moreover, at room temperature
the spontaneous magnetization lies within the basal plane
itself. In our results, for the divalent configuration, when the
external magnetic field is not applied we cannot see the finite
magnetization along the [001] direction at 4.2K; however, we
can see the finite magnetization along the [001] direction at

300 K. The divalent configuration results can qualitatively
reproduce the magnetization curves for Sm2Fe17, but they
cannot explain direction of the spontaneous magnetization at
zero field. From our results the curves assuming the divalent
Sm2+ configuration can reproduce the experimental behav-
iors. However, as stated in the Introduction, XAS experiments
have shown that the Sm ions in Sm2Fe17Nx are trivalent Sm3+.
One possible reason for this discrepancy is the CFPs. The
open core method is used in our calculations. The Sm ions
are assumed to be in an atomiclike state in this method. The
hybridization of 4 f and other orbitals is not taken into account
in our CFPs. One possible method beyond the open core
method is the Wannierization proposed by Novák et al. [30].
In this method, 4 f electrons are treated as valence electrons
and projected using localized Wannier functions. Thus we can
incorporate the hybridization of 4 f and other orbitals in this
method. If the hybridization is taken into account, the CFPs
and the anisotropy might be changed.

D. Anisotropy constants K1(T ) and K2(T )

We show the temperature dependence of the magnetic
anisotropy constants K1(T ) and K2(T ) of Sm2Fe17N3 and
Sm2Fe17 in Figs. 3(a) and 3(b), respectively. The anisotropy
constants K1(T ) and K2(T ) of Sm2Fe17N3 shown in Fig. 3(a)
are always positive, regardless of the valency of the Sm ions.
The total anisotropy constants K1(T ), which include KFe, at
4.2 and 300 K for each valency are indicated by triangles.
The total anisotropy constants K1(T ) are positive at 4.2 and
300 K and close to the values measured by Wirth et al. [31] at
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FIG. 3. The calculated magnetic anisotropy constants K1 (solid
lines) and K2 (dashed lines) per two Sm ions in (a) Sm2Fe17N3 and
(b) Sm2Fe17 with Sm3+ (red lines) or Sm2+ (black lines) electronic
configuration. The total anisotropy constants K1 with Fe sublattice
contribution KFe are indicated by red (Sm3+) and black (Sm2+) trian-
gles. The open shapes indicate the experimentally measured values of
K1; the open circles correspond to the values of Brennan et al . [23],
the open squares correspond to the values of Isnard et al . [32], and
the open diamonds correspond to the values of Wirth et al . [31].

low temperature. This implies that Sm2Fe17N3 shows uniaxial
anisotropy at any temperature. The temperature dependence
of K1(T ) and K2(T ) of Sm2Fe17 is shown in Fig. 3(b).
We can see that the calculation results with trivalent Sm3+

show positive K1(T ) and K2(T ) at any temperature. Therefore
Sm2Fe17 with trivalent Sm3+ would show uniaxial anisotropy.
In contrast, we can see negative K1(T ) in the results with
divalent Sm2+ configuration. The total anisotropy constants
are also shown in the same manner as Sm2Fe17N3 in Fig. 3(a).
Our total anisotropy constant for Sm2+ is close to the ex-
perimental values shown by Brennan et al. [23] and Isnard
et al. [32] at low temperature. At 300 K, our result is in
good agreement with the value measured by Isnard et al. [32],

where K1 is −1.75 [MJ/m3] at 300 K. Our total anisotropy
constants K1 for Sm2+ are negative at 4.2 and 300 K. This
implies that Sm2Fe17 with divalent Sm2+ would show planar
anisotropy at low temperature. From the calculated anisotropy
constants, the experimentally measured magnetization curve
for Sm2Fe17N3 can be explained by both results; however,
the curve for Sm2Fe17 can be explained only by the divalent
results.

IV. SUMMARY

In this work we have calculated the magnetization curves
and the temperature dependence of the anisotropy constants
of Sm2Fe17 and Sm2Fe17N3 by using the effective spin
model based on first-principles calculations with the open
core method. We showed that for Sm2Fe17N3 the curves
generated by the Sm3+ model are in good agreement with
the experimentally measured curves. The total anisotropy
constants K1(T ) calculated for Sm2Fe17N3 assuming Sm3+

and Sm2+ qualitatively reproduce the experimentally mea-
sured behavior, with the results from Sm3+ close to the
experimental value. In contrast, the results for Sm2Fe17

assuming Sm2+ are consistent with the experimentally mea-
sured curves. In addition, the temperature dependence of
the total anisotropy constants for Sm2+ is consistent with
experimentally observed behavior. However, previously re-
ported XAS experiments [10] have found that the Sm ions
in Sm2Fe17Nx are trivalent configuration regardless of the
nitrogen content x.

It is noted that the effective spin model based on DFT
calculations with the open core method might not be able
to describe the magnetic properties of Sm2Fe17. One pos-
sible reason for this disagreement is that the hybridization
effects between the 4 f orbitals of the Sm ions and other
orbitals cannot be included in the CFPs by using the open
core method. In the open core method, 4 f orbitals are treated
as atomiclike core states and the valence effects of them
are completely neglected. Taking the valence effects into ac-
count might change the CFPs and the magnetic anisotropy of
the systems. For more precise investigation, further research
should apply a more realistic method such as the Wannier-
ization method [30,33] that can incorporate the hybridization
effects of 4 f electrons and other orbitals to evaluate the CFPs.
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