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Magneto-optical control of optical absorption spectra is theoretically investigated in two-dimensional (2D)
dilute magnetic semiconductors such as monolayer transition metal dichalcogenides (TMDs) doped with mag-
netic ions. The underlying mechanism relies on efficient spin transfer between spin-polarized photoexcited
carriers and localized magnetic ions via exchange scattering, and subsequent shifts in the electronic band
structure induced by the resulting time-reversal symmetry breaking. A self-consistent model based on a rate
equation is developed to analyze dynamical polarization of itinerant carrier spins and localized magnetic
moments under circularly polarized optical excitation and the corresponding band modifications. The results
illustrate that nonlinear effects such as optical bistability and self-opacity can indeed be achieved efficiently
for a range of excitation power and frequency. In particular, the addition of magnetic dopants is shown to
reduce the optical power required for the necessary band shifts by four orders of magnitude compared to
that via the optical Stark effect in a nonmagnetic counterpart. Further investigation in a multidimensional
parameter space elucidates the conditions for practical realization of the desired nonlinear effects in 2D TMD
monolayers.
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I. INTRODUCTION

Semiconducting monolayer (ML) transition metal
dichalcogenides (TMDs) have recently received much
attention for their potential use in a wide array of applications
including electronic [1,2], photonic [3,4], and piezoelectric
devices [5]. Further, ML TMDs have reinvigorated the
field of valleytronics where the material’s valley degree of
freedom is employed to encode information [6,7]. Using the
valley degree of freedom as a primary information carrier
has the advantage of speed over charge-based devices. At
the same time, it does not rely on the difficult-to-manage
external fields required by many spin-based devices. These
advantages offer unique opportunities to ML TMD-based
valleytronics in both the classical [8] and quantum mechanical
domains [9–15].

As it is well known, the motivation stems in large part from
the ease with which lasting spin- and valley-polarized carrier
populations can be generated selectively via optical excitation
of a given helicity. The strong spin-orbital interaction charac-
teristic to ML TMD crystals in combination with the broken
inversion symmetry forces the bands in opposing K valleys of
the hexagonal reciprocal lattice to spin split in contrast to one
another. As optical transitions in K and K ′ (i.e., −K) valleys
correspond to opposite angular momenta, light of opposite he-
licity selectively populates these bands [16]. Thus, the ability
to manipulate their band structure via an external field is a
topic of active interest. In particular, efforts to control optical
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absorption through Zeeman or Stark splitting of conduction
and valence bands have been made for various ML TMDs.
However, both theoretical and experimental investigations
have revealed that extremely strong external fields are neces-
sary to produce observable nonlinear effects [17–19]. This has
motivated the efforts on approaches alternative to relying on
external fields.

It has been shown that a pseudomagnetic field can be
generated in a pristine ML TMD via the optical Stark ef-
fect induced by circularly polarized light [20,21]. However,
observable modulation of the optical absorption requires
extremely high-power laser pulses of the order 1 × 108

W/cm2 (applied for very short periods of time ∼100 fs to
protect samples from melting and destruction). The use of a
magnetic exchange field was also examined theoretically in
TMD MLs by exploiting the proximate interaction with an
adjacent magnet [22]. A similar analysis on the optical Hall
conductivity illustrated that a magnetic exchange field can
dramatically enhance the magneto-optical response of TMDs
without the use of large external magnetic fields [23]. The
pronounced effect of this exchange mechanism was experi-
mentally demonstrated in the spin-related valley splitting with
the values two orders of magnitude larger than those achieved
with an external field [24].

In this paper, we illustrate theoretically that ML TMDs
doped with magnetic impurities can present an efficient route
to significant nonlinear effects. The concept is grounded
on the properties of the ML TMD band structure which
facilitate polarization of localized spin moments (LSMs)
of the magnetic dopants through exchange scattering with
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FIG. 1. Schematic illustrations of relevant processes annotated with symbols used. Subscripts of band labels denote only the direction of a
carrier’s spin (+, −) as the orbital contribution to the angular momentum is irrelevant to the carrier-ion exchange interaction. (a) Generation
occurs across the optical band gap Eopt at a rate �∗ from the uppermost valence subband h− to the n+ spin subband. Recombination occurs
at a rate of τ−1

r . (b) Carrier-ion exchange occurs between carriers in either subband and LSM of opposite spin at a rate proportional to
universal parameter U [see Eqs. (9) and (11)]. As generation occurs only into the n+ subband due to the selection rules, one expects a net
LSM polarization (q+ − q−), where q+ and q− are the populations of spin-up LSM and spin-down LSM, respectively. (c) Spin relaxation (i.e.,
spin-flip) due to the interaction with the lattice (i.e., phonons) occurs at a rate of τ−1

eL for n+ electrons, τ−1
eL e−δ for n− electrons, and τ−1

mL for
LSM. (d) Nonequilibrium band structures with narrowed E (K ′ )

opt and widened E (K )
opt due to net LSM polarization x [= (q+ − q−)/q, where q is the

total LSM population]. Jc (>0) and Jv (<0) are electron- and hole-exchange energies, respectively, �
(c)
SO is the equilibrium spin-orbit splitting

of the conduction subbands, and E 0
opt is the equilibrium optical band gap.

spin-polarized photocarriers [Figs. 1(a), 1(b), and 1(c)]. The
time-reversal symmetry breaking induced by LSM polariza-
tion results in an exchange field which shifts the edges of
the conduction and valence bands, drastically altering the
fundamental absorption of the material [Fig. 1(d)]. Moreover,
the carrier generation rate depends on optical absorption,
which in itself depends on photoexcitation of the carriers
(and subsequent shifts in the bands), presenting a non-
linearity favorable for realizing bistability of the optical
absorption.

In what follows, the model describing the steady-state
band carrier and LSM polarization in a dilute magnetic
semiconducting ML TMD under circularly polarized optical
excitation is developed. The numerical analysis of this model
illustrates the parameter space in which the desired self-
opacity and bistability effects can be realized and optically
controlled.

II. THEORETICAL MODEL

A. Single-valley approximation

The ultimate goal of the following calculations is to find
the conditions for dynamic spin polarization of dopant mag-
netic ions subjected to exchange scattering with photoexcited
carriers as well as spin relaxation. The photocarriers transfer
their nonequilibrium spin states through several channels such
as nonradiative spin flip-flop scattering on the magnetic ions,
spin relaxation via phonons, and (radiative and nonradiative)
processes shortening their lifetimes. Further, intervalley tran-
sitions establish a distribution of conduction electrons and
valence holes over K and K ′ valleys which could be an ad-
ditional non-negligible factor affecting the LSM polarization.

In modeling the processes outlined above, a simple band
structure consisting of two lowest conduction spin subbands
and one highest valence spin subband in each valley is
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sufficient to capture the salient features of the physical phe-
nomenon under investigation. The spin splitting of the valence
band is large enough that intravalley hole spin relaxation
(thus, the second highest spin subband) can be ignored even at
room temperature. Figure 1 illustrates the energy band struc-
ture subjected to the effective field of spin-polarized magnetic
ions. The combination of the exchange field and the spin-
orbital field induces band shifts in the opposite directions for
the different valleys.

The overall state of the system is set by photoelectron
and photohole populations nγ ,σ , hγ (γ = K, K ′; σ denot-
ing spin subbands), and LSM distribution qm over 2S + 1
spin states, where S is the total electronic spin of the mag-
netic dopants with a fixed concentration q (= ∑S

m=−S qm).
Nonequilibrium states are controlled by the transition rates
of electrons {γ , σ } ←→ {γ ′, σ ′}, holes {γ } ←→ {γ ′}, and
LSM states {m} ←→ {m′}. States further depend on electron-
hole recombination and generation rates which themselves are
a function of LSM polarization. The corresponding master
equation describing these nonequilibrium processes includes
too many unknown parameters, rendering a general form solu-
tion practically useless for further analysis. However, specific
properties of the system allow for some simplifications to be
made which enable analysis at a semiquantitative level.

The main idea is to develop a model which demon-
strates the above-described nonlinear effects in the idealized
case of a single valley (i.e., no intervalley scattering). The
price for such a simplification is uncertainty in the value of
relaxation parameters which are affected by intervalley transi-
tions. However, the intervalley events involve large exchanges
of carrier momenta (a significant fraction of the Brillouin
zone width), which make their contribution to spin dynam-
ics relatively small. Such qualitative speculations have robust
experimental verification showing long spin relaxation times
in nonmagnetic TMDs [25]. Further, the intervalley spin flip-
flop transitions of electrons and holes polarize LSMs in the
respectively opposite directions which may negate the net ef-
fect, at least in part. This single-valley approximation enables
us to describe the desired nonlinear response in terms of a
manageable number of parameters.

B. Exchange fields of localized spin moments

As indicated above, the carrier-ion exchange interaction
plays a crucial role in the magneto-optical properties dis-
cussed here. This interaction is described by the Kondo
Hamiltonian, which in quasimomentum representation for
conduction (b = c) and valence (b = v) bands in a given val-
ley (K or K ′) takes the form

H (b)
ex = − 1

N0

Nm∑
j=1

∑
σ,σ ′,k,k′

Jbei(k−k′ )·R j
〈
b, σ, k

∣∣S j · s
∣∣b′, σ ′, k′〉

× a†
b,σ,kab′,σ ′,k′ , (1)

where Nm and normalization factor N0 account for the total
number of LSM and TMD unit cells, respectively; Jb is the
energy constant for the exchange interaction of electrons or
holes with LSMs S j situated at lattice sites R j ; and |b, σ, k〉

identifies the charge-carrier eigenstate in energy band b with
wave vector k and spin state σ = ±1.

The electron/hole energy spectrum in the vicinity of a fixed
valley γ of a pristine TMD ML can be written as

ε
(b)
γ ,σ,k = E (b)

0 + h̄2(k − γ K)2

2m∗
b

+ 1

2
σγ�

(b)
SO, (2)

where index γ = ±1 adapts for valleys K and K ′, m∗
b is the

effective mass in the band b, and E (b)
0 + 1

2σγ�
(b)
SO describes

the minima of bands split in a spin-orbital field [26]. Be-
cause �

(c)
SO � �

(v)
SO, we focus on the optical transitions of

electrons from the upper valence spin subband to the conduc-
tion subband that accommodates electrons of the same spin
as illustrated in Fig. 1(a). With the time-reversal symmetry
imposing that the product σγ be invariant for equal energy
levels, the optical band gap at K and K ′ becomes E0

opt =
E (c)

0 − E (v)
0 + 1

2 (�(c)
SO − �

(v)
SO) for the appropriate circular po-

larization of incident light.
The carrier-ion exchange interaction modifies the band gap

via the diagonal part of the Hamiltonian [Eq. (1)]. In the mean-
field approximation, the electron Zeeman energy 1

2σGb in the
effective field

Gb = Nm

N0
Jb〈Sz〉 (3)

causes a shift of the band gap, where 〈Sz〉 is the averaged LSM
polarization. Thus, the final expression for the optical band
gap of a magnetically doped ML TMD becomes

Eopt = E0
opt + 1

2σ (Gc − Gv ), (4)

which shows the narrowing of Eopt in one valley and the
widening of it in the other given that the spin subbands of
the two valleys are reversals of each other.

The LSM polarization discussed here is mediated by pho-
tocarriers generated by absorption of monochromatic light
with frequency ω. The rate of electron-hole generation �∗
(thus, the absorption spectrum α) is modeled as a broadened
step function

�∗ = �∗
0α = �∗

0
αp

2

(
tanh

hν − Eopt

κ

+ 1

)
, (5)

where αp is the maximum absorption value and �∗
0 = P/Eopt

accounts for illumination power P. The smearing κ in the
band gap is caused by electron scattering with phonons, impu-
rities, and lattice defects. Equation (5) shows that variation of
Eopt around a laser energy within the range of κ would change
the density of photocarriers. The carriers with an updated
density would then polarize the LSMs, altering Eopt according
to Eqs. (4) and (3). This nonlinear effect can be evaluated and
analyzed in terms of a simplified master equation describing
carrier populations of spin subbands and LSM polarization.

C. Reduced master equation

Consider an electron population generated in the subband
σ = +1 of a given valley, which scatters away from this
subband through recombination with holes after time τr , and
through spin-flip transitions σ ↔ σ ′ having rates W e

+,− and
W e

−,+. These rates tend to establish equilibrium populations of
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spin subbands so that W e
−,+/W e

+,− = e−δ . Here,

δ = �
(c)
SO + Gc

kBT
(6)

as the subband σ = +1 is separated from the lower-lying
subband σ ′ = −1 in energy by �

(c)
SO + Gc and kBT is the

thermal energy. With these considerations, the electron popu-
lations n± of spin subbands σ = ±1 in the given valley can be
described as

dn+
dt

= −n+(W e
+,− + τ−1

r ) + n−W e
−,+ + �∗,

dn−
dt

= −n−(W e
−,+ + τ−1

r ) + n+W e
+,− . (7)

Here, W e
σ,σ ′ depends on spin-lattice relaxation and carrier-ion

exchange scattering, about which some additional simplifica-
tions can be made. For instance, the arbitrary spin S of the
magnetic ions can be set to S = 1

2 . Calculations considering
spins S > 1

2 could be done for particular magnetic ions with
known spin Hamiltonian parameters in a low-symmetry struc-
ture. However, this would be overly precise in the context
of the idealized and semiquantitative approach taken in this
work. By fixing S to a single value (i.e., 1

2 ), the nonequilibrium
spin polarization can be evaluated in terms of populations q+
and q− of LSM levels as 〈Sz〉 = q+−q−

2(q++q− ) . The expression for
the corresponding effective field is given above in Eq. (3) [i.e.,
the diagonal part of Eq. (1)].

The off-diagonal part of Kondo Hamiltonian [Eq. (1)] de-
scribes electron-exchange scattering with magnetic ions, the
probability of which can be found from the first Born approx-
imation for valley γ as [27]

W ex
σ,σ ′ = qσ ′

m∗
c (JcA)2

h̄3 min

{
exp

(
σ − σ ′

2

γ�
(c)
SO+Gc

kT

)
, 1

}
,

(8)

where A is the size (area) of the unit cell. In contrast, electron
spin-lattice relaxation provides a channel for spin depolar-
ization that countervails the influence of exchange scattering.
Since the spin-lattice relaxation rate is quite specific to each
particular magnetic TMD, it is treated here as an adjustable
phenomenological parameter τ−1

eL . As stated above, the elec-
tron kinetics involve both spin-flip transitions:

W e
+,− = q−U + τ−1

eL ,

W e
−,+ = q+Ue−δ + τ−1

eL e−δ, (9)

where U = m∗
c (JcA)2/h̄3. It is useful to note that carrier-ion

exchange depends on the LSM populations q± while spin-
lattice relaxation does not.

Likewise, the LSM populations qσ depend on the exchange
scattering with the electrons and the depolarizing interaction
with the lattice (i.e., phonons). The corresponding equations
are similar to Eq. (7) if one takes into account that recombina-
tion and photogeneration are irrelevant for magnetic ions,

dq+
dt

= q−W m
−,+ − q+W m

+,−,

dq−
dt

= q+W m
+,− − q−W m

−,+ . (10)

Here, W m
σ,σ ′ is the rate at which magnetic ions undergo spin

flips from the state with Sz = 1
2σ to that with Sz = 1

2σ ′. The
formal expressions for the rates of such transitions can also be
written just like those for the carrier spins [i.e., Eq. (9)],

W m
+,− = n−Ue−δ + τ−1

mL ,

W m
−,+ = n+U + τ−1

mL , (11)

where the spin-lattice relaxation rate τ−1
mL (for the magnetic

ions) is taken to be the same for the processes in both direc-
tions (+,− and −,+) as the splitting between the LSM levels
is assumed to be small compared to kBT .

Setting the time derivatives of Eqs. (7) and (10) to zero
transforms them into algebraic equations describing the sta-
tionary states. It is convenient to represent these equations
in terms of the normalized conduction electron polarization
y = n+−n−

n and LSM polarization x = q+−q−
q as

y = x − y0 + [
τ−1

r − y0τ
−1
eL (1 + e−δ )

]
/τ−1

eM

1 − xy0 + τ−1
eLr/τ

−1
eM

, (12)

x = nU (1 + e−δ )(y + y0)

nU (1 + e−δ )(1 + yy0) + 4τ−1
mL

. (13)

In these expressions, the optical power and recombination

time control the total electron population n = n+ + n− =
τr�

∗, y0 = tanh ( δ
2 ) corresponds to the equilibrium popula-

tions of spin-split subbands, τ−1
eM = 1

2 qU (1 + e−δ ) is a rate
of exchange scattering, and τ−1

eLr = τ−1
r + τ−1

eL (1 + e−δ ) de-
scribes the rate of spin depolarization via recombination and
spin-lattice relaxation.

Equation (13) clearly shows an absence of any LSM polar-
ization without optical pumping (i.e., n = 0); it also indicates
saturated LSM polarization x → 1 when exchange scattering
prevails over lattice relaxation at stronger optical pumping.
The actual situation is much more complicated if one takes
into account the nonlinear dependence of photogeneration
n = τr�

∗ [Eq. (5)] on the LSM polarization. The numerical
solutions of these equations are discussed in the next section.

III. RESULTS AND DISCUSSION

The parameter values listed in Table I are used unless stated
otherwise. Where available, values in the neighborhood of
those experimentally observed for WS2 are selected. Solutions
for LSM polarization from Eq. (13) and at varying optical
powers and frequencies yield steady-state absorption spectra
per Eq. (5) as shown in Fig. 2. As the power of the exci-
tation changes, the absorption characteristics at/around the
excitation frequency shift. Specifically, the spectrum appears
to lean over with power toward the low-frequency side be-
low E0

opt. In fact, the material becomes more opaque in this
spectral region due to the increased absorption (see the block
arrow in Fig. 2). The band-gap narrowing caused by the LSM
polarization is apparent from the results. At higher powers,
some frequencies yield multiple solutions, indicating optical
bistability. For instance, the 40-kW/cm2 curve (Fig. 2) expe-
riences sudden transitions to high- and low-absorption states
marked by two arrowed lines around h̄ω − E0

opt = 25 meV as
the excitation frequency sweeps. The width of the hysteretic
region is approximately 10 meV, in which the dotted curve
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TABLE I. Numerical values of the parameters used in the calculation. m0 denotes the electron rest mass.

E 0
opt �

(c)
SO αp τr τeL τmL Jc Jv m∗

c q

2.8 eV 41 meV 0.09 50 ps 100 ps 300 ps 0.5 eV −1 eV 0.5m0 6.25%

corresponds to unstable solutions. In the following discussion,
the model is analyzed to determine the parameter space where
one can expect to realistically observe the changes to material
transparency or opacity and the optical bistability predicted by
the model.

A. Self-opacity

At frequencies within the range of κ (band smearing) from
the optical band gap where the photogeneration rates can be
readily induced, relatively modest optical excitation power
can cause significant changes in the optical absorption. The
calculated change �α from initial- to steady-state absorption
is plotted in Fig. 3(a) across excitation frequency for varying
power. The strength of this effect is dependent on model
parameters. One of the most significant dependencies is the
slope of the material’s absorption spectrum about E0

opt, set by
κ. This is illustrated in Fig. 3(b) where it can be seen that large
changes in absorption are more easily produced on spectra
featuring abrupt transitions from low to high absorption. Fur-
ther, shorter recombination time, longer relaxation times, and
larger exchange constants result in more pronounced changes
in absorption with respect to the parameter values of Table I.
The fact that faster recombination could result in more pro-
nounced nonlinear effects is surprising given that one would
expect carrier recombination to act as a drain on the power
which primarily drives the realization of these effects. This
result is discussed in greater detail in the context of optical
bistability in Sec. III B.

It is interesting to note that spectral shifts of an exciton
absorption peak comparable to the changes shown in Fig. 3
were experimentally reported in pristine ML WS2 via the op-
tical Stark effect using a pulse of 0.24 GW/cm2 [20]. While a

FIG. 2. Steady-state absorption spectra at varying powers with
κ = 15 meV. The dotted curve represents unstable solutions, while
the solid arrows indicate the hysteresis loop for optical bistability.

direct comparison between these two cases is not possible due
to their differences (e.g., exciton vs band-edge transitions),
the four orders of magnitude reduction in power seen here
suggests that magnetic TMDs have an exceedingly efficient
nonlinear response. The physical mechanism responsible for
the optical Stark effect under very strong illumination is also
much different from and thus cannot be described by the
model discussed in this work.

B. Optical bistability

At higher-power excitations at the edge of the band gap,
optical bistability can be induced as illustrated in Fig. 2.
This effect has parameter dependencies similar to those of
the self-opacity discussed above. Particularly, the power and
frequency of an excitation able to cause optical bistability has
a strong dependence on the parameter κ, as shown in Fig. 4.
With a larger κ, the transition between low and high absorp-
tion values of the initial spectrum becomes more gradual.
Accordingly, higher powers are required for the bistability and
the contrast between stable states (i.e., the difference between
the high and low absorption αH and αL) degrades along with
a narrower spectral window. Moreover, the tip of the bistable
region moves further away from the band-gap edge, rendering
bistability even more difficult to realize. By contrast, larger
exchange energies improve bistability conditions as expected
(Fig. 5). Evidently, this shows the ability to polarize the LSMs
efficiently with the incident light, where the spin-polarized
photo-carriers provide the intermediary.

As discussed briefly above, the recombination time τr man-
ifests a nontrivial influence on the bistability. Unexpectedly,
longer electron lifetimes tend to diminish the bistability effect
as can be seen from Fig. 6(a). It appears that the net polar-
ization of the photoexcited carrier spins is enhanced with a
shorter τr [see Eq. (12)] since this process effectively com-
petes with and thus partly neutralizes the detrimental effect

FIG. 3. Change in the absorption induced by the nonlinear effect
as a function of incident photon energy with (a) varying power at
κ = 15 meV and (b) varying κ at a power of 10 kW/cm2.
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FIG. 4. Frequency-power regions of optical bistability for vary-
ing κ. The color map indicates contrast between the two stable states
(i.e., the difference between the high and low absorption αH and αL).

of spin-lattice relaxation τeL. Further, despite the reduction
in the total electron population n (= n+ + n−), the direct
impact of the recombination itself on the net polarization
n+ − n− becomes rather muted as τr affects both n+ and
n− equally. Hence, a shorter τr , particularly in reference to
τeL, may be more favorable. However, once τr becomes too
short to support a sufficient photocarrier density [i.e., τr �
1/(�∗UτmL )], the rate of LSM polarization in Eq. (11) is
dominated by the relaxation term τ−1

mL , rendering the high-
absorption state (thus, the optical bistability) unsustainable.
This can be seen from Fig. 7, where the upper branch of
the normalized LSM polarization x (i.e., the high-absorption
state) ceases to exist around τr = 0.1 ps (i.e., no bistability).

As for τeL and τmL, shorter relaxation times clearly sup-
press the possibility of two stable states at the same optical
conditions [Figs. 6(b) and 6(c)]. In particular, the impact of τeL

on the bistability appears to be felt most sensitively when the
characteristic time approaches that of recombination (e.g., 50
ps), but becomes far more gradual past this point, consistent

FIG. 5. Frequency-power regions of optical bistability for vary-
ing exchange energies at κ = 40 meV. Exchange energies used, from
top to bottom, in units of eV are Jc, Jv = 0.5, −1; 0.625, −1.25; 0.75,
−1.5; 0.875, −1.75; 1, −2. The color map indicates contrast between
the two stable states as in Fig. 4.

with observations of the rightmost boundary of the upper
branch in Fig. 7. Note that the value of τeL does not act as
a hard limit on the value of τr necessary for bistability to
occur. The seeming cutoff at τr = τeL in Fig. 7 is actually
coincidental to the specific choice of excitation frequency and
power. This is evident from the analysis shown in Figs. 6(a)
and 6(b) for a broader parameter space. It clearly illustrates
the existence of bistability window even when τr > τeL. Nev-
ertheless, τeL provides a good indicator for the value of τr

necessary for the robust appearance of bistability.

C. Effect of intervalley scattering on the single-valley model

Including the consideration of carriers in the second valley
whose band populations are controlled by the spin-conserving
intervalley transitions (Wiv) increases the number of terms in
Eq. (7), causing the model to become too complicated for
a general analysis. However, one can consider an effective
description in which the loss of carriers to the second valley
is incorporated into through a modified recombination rate
τ−1

r∗ in a single-valley treatment. Likewise, τ−1
mL∗ and τ−1

eL∗ can
be adopted to account for the modified spin-lattice relaxation
rates for magnetic ions (i.e., LSM polarization) and electrons.

The two-valley solution yields spin subband populations
n1,+, n1,−, n2,+, n2,− which can be used to calculate the effec-
tive rates. For instance, the decreased electron population n1

(= n1,+ + n1,−) in the valley of interest can be accounted for
by proportionately increasing the effective recombination rate
in the one-valley model. While the rate of electron-hole gen-
eration rate �∗ remains unchanged as given in Eq. (5), some
of the excited electrons are now transferred to the second val-
ley, reducing n1 (< n). Considering the relation τ−1

r = �∗/n
defined earlier, the modified recombination rate can be written
as τ−1

r∗ = �∗/n1 leading to

τ−1
r∗

τ−1
r

= n

n1
. (14)

Further, the effective single-valley spin-lattice relaxation rate
for the magnetic ions can be found by solving Eqs. (11) and
(10) with n1,+ and n1,− instead,

τ−1
mL∗ = Ue−δ1

q−n1,+ − q+n1,−
q+ − q−

. (15)

Actually, it can be verified that this quantity describes a τ−1
mL

altered by the net exchange scattering with the second-valley
carriers. By extending Eqs. (11) and (10) to include the con-
tribution of these additional processes, one can arrive at the
solution

τ−1
mL∗ = Ue−δ1

q−n1,+ − q+n1,−
q+ − q−

= τ−1
mL + Ue−δ2

q+n2,− − q−n2,+
q+ − q−

(16)

or

τ−1
mL∗

τ−1
mL

= e−δ1 (q−n1,+ − q+n1,−)

e−δ1 (q−n1,+ − q+n1,−) + e−δ2 (q−n2,+ − q+n2,−)
.

(17)
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FIG. 6. Frequency-power regions of optical bistability for varying recombination and relaxation times at κ = 40 meV. The color map
indicates contrast between the two stable states as in Fig. 4. In (a)–(c), τr , τeL , and τmL vary in steps of 50, 20, and 100 ps, respectively.

Finally, having calculated
τ−1

r∗
τ−1

r
and

τ−1
mL∗
τ−1

mL
, the last parameter

τ−1
eL∗

τ−1
eL

can be found by matching the effective single-valley calcula-
tion with the corresponding two-valley result. These effective
rates are generally functions of power, frequency, and other
physical variables.

In a fitting done for the parameter set of Table I, the effec-
tive rates are found to have dependence on log10 Wiv with the
form of either hyperbolic tangent (τ−1

r∗ ) or sigmoid (τ−1
eL∗ , τ−1

mL∗ )
functions. As valley decoherence time has been measured to
be in the hundreds of fs [9], these effective relaxation rates
would be near their asymptotic values under most normal con-
ditions. As such, they likely do not need to be cast as functions
of Wiv . Accordingly, it is expected that the one-valley model
can effectively emulate the dynamics in ML TMDs with K
and K ′ valleys.

IV. SUMMARY

A model for self-consistent LSM polarization and asso-
ciated nonlinear effects is developed in dilute magnetic ML
TMDs under circularly polarized optical excitation. Numer-
ical evaluation of the model suggests that magneto-optically
induced changes to absorption of a magnetically doped TMD
ML are possible at powers orders of magnitude lower than
those required for comparable changes in pristine ML TMDs.
The results also predict that significant changes to absorption

are possible over a wide range of realistic material parameters.
The strength of the predicted absorption modulation effect be-
comes more pronounced with smaller band smearing, shorter
recombination time (but not too short), larger exchange ener-
gies, and longer relaxation times.

Compared to the self-opacity/transparency phenomenon,
the optical bistability predicted at higher powers is more sen-
sitive to parameter values. Further, the band of frequencies
at which it can be realistically induced is more restricted. In
particular, optical bistability is predicted to occur mostly at
photon energies far from the absorption edge where only a
very small density of photocarriers can be excited without the
band modification induced by LSM polarization. The condi-
tions for bistability occurring at these frequencies, the level of
optical power required, and the contrast between stable states
improve with the same parameter trends that increase the
strength of the absorption modulation effect. Consideration
of higher-order terms such as Berry’s curvature in these 2D
chiral systems is outside the scope of the current investigation.
Overall, ML TMDs doped with magnetic ions offer unique
opportunities to realize the nonlinear optical effects at record-
low optical power.
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FIG. 7. LSM polarization vs recombination time with varying τeL at κ = 40 meV, h̄ω − E 0
opt = −65 meV, and optical power P =

110 kW/cm2. The presence of two stable solutions (solid lines) at a given τr indicates the window of optical bistability. The deviation in
x outside this region in the lower branch corresponds to self-opacity.

214426-7



REGAN, SEMENOV, AND KIM PHYSICAL REVIEW B 102, 214426 (2020)

[1] B. Rawat, M. M. Vinaya, and R. Paily, Transition metal
dichalcogenide-based field-effect transistors for analog/mixed-
signal applications, IEEE Trans. Electron Devices 66, 2424
(2019).

[2] T. Kim, D. Kang, Y. Lee, S. Hong, H. G. Shin, H. Bae, Y.
Yi, K. Kim, and S. Im, 2D TMD channel transisters with ZnO
nanowire gate for extended nonvolatile memory applications,
Adv. Funct. Mater. 30, 2004140 (2020).

[3] I. Datta, S. H. Chae, G. R. Bhatt, M. A. Tadayon, B. Li,
Y. Yu, C. Park, J. Park, L. Cao, D. N. Basov, J. Hone,
and M. Lipson, Low-loss composite photonic platform based
on 2D semiconductor monolayers, Nat. Photonics 14, 256
(2020).

[4] X. Zhang, X. Zhang, W. Huang, K. Wu, M. Zhao, A. T. C.
Johnson, S. Tongay, and E. Cubukcu, Ultrathin WS2-on-glass
photonic crystal for self-resonant exciton-polaritonics, Adv.
Opt. Mater. 8, 1901988 (2020).

[5] J. Kim, E. Lee, S. Bhoyate, and T. K. An, Stable and
high-performance piezoelectric sensor via CVD grown WS2,
Nanotechnol. 31, 445203 (2020).

[6] X. Cu, W. Yao, D. Xiao, and T. Heinz, Spin and pseudospins
in layered transition metal dichalcogenides, Nat. Phys. 10, 343
(2014).

[7] Y. Liu, Y. Gao, S. Zhang, J. He, J. Yu, and Z. Liu, Valleytronics
in transition metal dichalcogenides materials, Nano Res. 12,
2695 (2019).

[8] L. Li, L. Shao, X. Liu, A. Gao, H. Wang, B. Zheng, G. Hou, K.
Shehzad, L. Yu, F. Miao, Y. Shi, Y. Xu, and X. Wang, Room-
temperature valleytronic transistor, Nat. Nanotechnol. 15, 743
(2020).

[9] A. Kormányos, V. Zólyomi, N. D. Drummond, and G. Burkard,
Spin-Orbit Coupling, Quantum Dots, and Qubits in Monolayer
Transition Metal Dichalcogenides, Phys. Rev. X 4, 011034
(2014).

[10] Z. Ye, D. Sun, and T. F. Heinz, Optical manipulation of valley
pseudospin, Nat. Phys. 13, 26 (2017).

[11] J. Pawłowski, Spin-valley system in a gated MoS2-monolayer
quantum dot, New J. Phys. 21, 123029 (2019).
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