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Recently, uncovering the sources of the thermal Hall effect in insulators has become an important issue. In the
case of ferromagnetic insulators, it is well known that the Dzyaloshinskii-Moriya (DM) interaction can induce a
magnon thermal Hall effect. Specifically, the DM vector parallel to the magnetization direction induces complex
magnon hopping amplitudes, so that magnons act as if they feel Lorentz force. However, the DM vector which
is orthogonal to the magnetization direction has hitherto been neglected as a possible source of magnon thermal
Hall effect. This is because they play no role in the linear spin wave theory, an often invoked approximation when
computing the magnon thermal Hall effect. Here, we challenge this expectation by presenting a self-consistent
Schwinger boson mean-field study of two-dimensional magnets with ferromagnetic Heisenberg interaction and
in-plane DM interaction. We find that the relevant Schwinger boson mean-field Hamiltonian takes the form of
a two-dimensional electron gas with Rashba spin-orbit interaction, which is known to show an anomalous Hall
effect, spin Hall effect, and Rashba-Edelstein effect, whose thermal counterparts also appear in our system.
Importantly, the thermal Hall effect can be induced when out-of-plane magnetic field is applied and persists even
when the magnetic field is large, so that the spins are significantly polarized, and the linear spin wave theory
is expected to be a reasonable approximation. Since the linear spin wave theory predicts a vanishing thermal
Hall effect, our result implies that a linear spin wave is not a sufficient approximation and that magnon-magnon
interaction must be taken into account to predict the correct thermal Hall conductivity.

DOI: 10.1103/PhysRevB.102.214421

I. INTRODUCTION

The thermal Hall effect refers to the phenomenon in which
heat current flows transversely to the temperature gradient.
When the thermal Hall effect occurs in a ferromagnetic insu-
lator, experiments [1–3] suggest that the thermal Hall current
is often dominantly carried by magnons. In these experiments,
the anomalous transport behavior of magnons was attributed
to the presence of Dzyaloshinskii-Moriya (DM) interaction.
The role of the DM interaction in these experiments was
understood by noticing that the component of the DM vector
along the direction of the ferromagnetic order provides com-
plex hopping amplitudes for the magnons and thereby acts like
a magnetic flux to the magnons.

More generally, the origin of the intrinsic magnon thermal
Hall effect was shown to be the magnon Berry curvature
[4–6], thus providing a topological explanation of the role
played by the aforementioned DM interaction in the ther-
mal Hall effect [2,3,7]. The Berry curvature formulation of
the magnon thermal Hall effect was even extended to the
paramagnetic regime of the ferromagnets, which was studied
using the self-consistent Schwinger boson mean-field theory
(SBMFT) [8]. It was shown that the same DM interaction
responsible for the thermal Hall effect in the ferromagnetic
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regime also induces Berry curvature and the thermal Hall
effect of paramagnets described by Schwinger bosons in the
presence of external magnetic field.

Although the DM vector parallel to the ferromagnetic order
is known to produce a magnon thermal Hall effect, the DM
vector orthogonal to the ferromagnetic order is usually not
expected to cause a magnon thermal Hall effect [1,2]. For
example, the in-plane DM vectors shown in Fig. 1, which
naturally appear when a two-dimensional (2D) magnet is
placed on a substrate, is not expected to generate a magnon
thermal Hall effect when the ferromagnetic order is along
the z direction. This is because the DM interaction does not
enter the linear spin wave theory (LSWT), which is almost
always employed when computing the magnon thermal Hall
effect. However, because LSWT neglects magnon-magnon
interactions, conclusions based on it may not be true, and in
particular, we cannot exclude the possibility that in-plane DM
interaction can contribute to the thermal Hall effect when we
go beyond LSWT.

In this work, we investigate the role of the in-plane
DM vectors when spin fluctuation is strong by using the
self-consistent SBMFT on a minimal model, consisting of
spins on a square lattice with nearest-neighbor ferromag-
netic Heisenberg interaction and nearest-neighbor in-plane
DM interaction. We find that in the presence of in-plane DM
interaction, the Schwinger boson mean-field (SBMF) Hamil-
tonian near � (k = 0) coincides with the Hamiltonian of a
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FIG. 1. (a) Lattice structure and DM vectors. (b) Magnon disper-
sion calculated using the linear spin wave theory with h = −0.1|J|
and h = −0.2|J|, where we have assumed collinear out-of-plane
ferromagnetic order. (c) The zero-temperature phase diagram for our
model in Eq. (1), where the horizontal axis is the strength of the
magnetic field. The critical fields are |h|sp

c ≈ 0.0054|J| and |h|sk
c ≈

0.017|J| for our system. Our main focus is in the ferromagnetic
region.

two-dimensional electron gas with Rashba spin-orbit cou-
pling, so that we realize a platform to observe the physics of
the Rashba system.

An important feature of our Hamiltonian is the presence of
Dirac points at the time-reversal invariant momenta (TRIM),
whose gap can be opened by applying an external magnetic
field, resulting in Berry curvature and the intrinsic thermal
Hall effect. Because the thermal Hall effect does not vanish
even when there is a significant alignment of spins along
the direction of magnetic field, contrary to the LSWT, which
predicts a vanishing thermal Hall effect, our result indicates
that the LSWT, which should be a good approximation when
there is significant spin polarization, may not always provide
a reliable approximation when computing the thermal Hall
effect. We expect that the consideration of magnon-magnon
interaction can resolve the inconsistency. Furthermore, it is
well known that a two-dimensional electron gas with Rashba
spin-orbit coupling shows interesting behaviors such as the
Rashba-Edelstein effect [9,10] and the spin Hall effect [11].
Because our SBMF Hamiltonian also has this form, we find
thermal analogs of these effects in our model.

Because the requirement for the presence of in-plane DM
interaction breaks both inversion symmetry and mirror sym-
metry Mz : (x, y, z) → (x, y,−z), our theory is relevant to
two-dimensional ferromagnets lacking inversion and Mz sym-
metries. These symmetries may be broken because of the
intrinsic crystal structure of the magnet or may be due to
the symmetry lowering arising from the substrate effect or
external electric field. Also, the in-plane DM interaction is
known to stabilize the skyrmion lattice, so that our theory also
applies to candidate materials for skyrmion lattices.

II. LINEAR SPIN WAVE THEORY

Let us start by presenting our minimal model and analyzing
why LSWT does not predict any thermal Hall effect. The

Hamiltonian of our model is

H =
∑
〈i j〉

[JSi · S j + d i j · (Si × S j )] + h ·
∑

i

Si. (1)

Here, J < 0 is the ferromagnetic Heisenberg interaction, and
d i j are the nearest-neighbor DM vectors, whose directions are
indicated in Fig. 1. The magnetic field is applied along the out-
of-plane direction, so that h = (0, 0, h). When the magnetic
field is strong enough to polarize the spins in the +z direc-
tion (h < 0) so that we have a collinear ferromagnetic order,
we can approximate the Holstein-Primakoff transformation
[12] as Sx

i ≈
√

2S
2 (ai + a†

i ), Sy
i =

√
2S

2i (ai − a†
i ), Sz

i = S − a†
i ai.

Here, we have taken h̄ = 1, and it will be restored only when
necessary. In the momentum space, we have

HLSWT =
∑

k

[JS(2 cos kx + 2 cos ky − 4) − h]a†
kak. (2)

Notice that the DM interaction does not enter the Hamiltonian
at the quadratic level. This can easily be seen by examining the
DM interaction between the i and j sites in Fig. 1(a), which is
d i j · (Si × S j ) = d (Sy

i Sz
j − Sz

i Sy
j ), where we have used d i j =

d x̂. By introducing the Holstein-Primakoff transformation, we
see that there are no terms quadratic in the Holstein-Primakoff
operators, while the linear terms cancel when we sum over the
nearest neighbors.

Because there is only one magnon band, it is clear that
the magnon band will not develop any Berry curvature. This
means that the LSWT does not predict any thermal Hall effect
since the intrinsic thermal Hall conductivity is given by

κxy = −k2
BT

h̄V

∑
k,n

c2[g(Ek,n)]�k,n, (3)

where T is the temperature, V is the system volume, Ek,n is
the energy of the nth magnon band, �k,n is the Berry curva-
ture, g(x) is the Bose-Einstein distribution, and c2(x) = (1 +
x)(ln 1+x

x )2 − (ln x)2 − 2Li2(−x). Here, Li2(x) is the polylog-
arithm function Lin(x) for n = 2.

Before moving on to SBMFT, let us note that at zero
temperature, the Hamiltonian in Eq. (1) predicts various states
other than a collinear ferromagnet, as shown in Fig. 1(c).
Adapting the mean-field calculation in Ref. [13], spiral states
form when the magnetic field is small, until it reaches a critical
value |h|sp

c ≈ 0.27Sd2/|J|. For S = 1
2 and d = 0.2|J|, |h|sp

c ≈
0.0054|J|. We note, however, that the thermal Hall effect is
not predicted in spiral magnets [14]. For magnetic field larger
than |h|sp

c , a skyrmion lattice forms [15,16] until it reaches
another critical value for |h|sk

c , where |h|sk
c ≈ 0.84Sd2/|J| ≈

0.017|J|. For a magnetic field larger than |h|sk
c , we obtain a

ferromagnet. We note that if the skyrmion lattice state can be
stabilized at finite temperature, we can expect the thermal Hall
conductivity to be nonzero [14,17]. Our main interest is the
ferromagnetic regime with |h| � |h|sk

c , in which case LSWT
predicts κxy = 0.
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h=0 =-0.1|J|h

FIG. 2. Energy spectrum along the high-symmetry lines com-
puted using self-consistent SBMFT at T = 0.35|J| when (a) h = 0
and (b) h = −0.1|J|. The color represents the expectation value of Sz

for the eigenstates. The inset in (a) shows a close-up view of the Dirac
point at �. (c)–(e) The solutions to the self-consistent equations.

III. SELF-CONSISTENT SBMFT

Recall that the Schwinger boson representation of spin Si

is

Si = 1

2

∑
s,s′

b†
i,sσss′bi,s′ (s, s′ =↑, ↓), (4)

where σμ, μ = x, y, z are the Pauli matrices. In this repre-
sentation, the number of Schwinger bosons bi,s (s =↑,↓) is
constrained to ni = ∑

s b†
i,sbi,s = 2S for each i, so that Sz

i takes
values in the range −S,−S + 1, . . . , S.

To carry out the SBMFT, which is reviewed in Appendix A,
we define the bond operators Bi j = ∑

st σ 0
st bi,sb

†
j,t and C †

i j =∑
st b†

i,s(iσ)st b j,t , where σ 0 is the 2 × 2 identity matrix. We
also adopt the notation B = 〈Bi j〉 and C = 1

d 〈d i j · C i j〉. In the
self-consistent SBMFT, we write the Hamiltonian in terms of
the bond operators, carry out the Hartree-Fock decomposition,
and impose the constraint ni = 2S on average by introducing
the chemical potential μ.

Following this procedure, the SBMF Hamiltonian is found
to be

HSBMF =
∑

k

φ
†
kHkφk, (5)

where φk = (
bk,↑
bk,↓

) and Hk = H0
k σ 0 + heff

k · σ, where

H0
k = μ + ( JB

2 + Cd
4 )(cos kx + cos ky) and heff

k =
(− dB

4 sin ky,
dB
4 sin kx,

h
2 ). The parameters B, C, and μ in

the Hamiltonian are determined by the self-consistency
equations, see Appendix A.

We show the energy spectrum in Figs. 2(a) and 2(b) for
h = 0 and h = −0.1|J|, respectively, using the solutions to the
self-consistency equations shown in Figs. 2(c)–2(e). Notice
that there is no energy degeneracy at generic momentum k
even for h = 0 because of the spin-orbit coupling provided
by the in-plane DM interaction. However, there are Dirac

FIG. 3. (a) The thermal Hall conductivity and (b) the spin po-
larization along the z direction of our 2D model in Eq. (5) in the
presence of out-of-plane magnetic field at various temperatures.

points at the TRIM protected by the time-reversal symmetry
T, which satisfies T2 = −1. In the presence of magnetic field,
the broken time-reversal symmetry allows the Dirac gaps to
open, and the eigenstates develop nonzero expectation value
of Sz. Let us note that since heff

k can be viewed as an effective
Zeeman coupling, the spin expectation value of the energy

eigenstates is 1
2 ĥ

eff
k (− 1

2 ĥ
eff
k ) for the upper (lower) band, where

ĥ
eff
k = heff

k

|heff
k | .

IV. THERMAL HALL EFFECT

It is useful to compare our SBMF Hamiltonian to the
spin-polarized two-dimensional electron gas with Rashba
spin-orbit interaction, whose Hamiltonian is given by

HR = μ0 + k2

2m
+ λk · (σ × ẑ) − �0σ

z, (6)

where μ0 is the chemical potential, m is the effective mass,
λ is the spin-orbit interaction strength, and �0 is the ex-
change field. Our SBMF Hamiltonian has exactly this form
near �, with μ0 = μ + Cd

2 + JB, m = −4
Cd+2JB , λ = dB

4 , and

�0 = − h
2 . Notice that this Hamiltonian has a Dirac point at

k = 0 when �0 = 0. When �0 �= 0, the Dirac point is gapped,
and the eigenstates develop nonzero Berry curvature, which
results in the anomalous Hall effect in electron gas [18].
Similarly, our SBMF Hamiltonian develops nonzero Berry
curvature when magnetic field is applied, which results in a
nonzero thermal Hall effect.

In Fig. 3(a), we show the thermal Hall conductivity of our
SBMF model computed using Eq. (3). Notice that even when
there is significant spin polarization along the z axis due to
the magnetic field, κxy �=0. In contrast, the LSWT, which is
supposedly a good approximation when there is significant
spin polarization, predicts κxy = 0. We attribute this to the
fact that linear spin wave theory does not take into account
the magnon-magnon interaction. On the other hand, because
of the relations b↑ ↔ a and b↓ ↔ √

2S − a†a between the
Schwinger bosons and the Holstein-Primakoff bosons [19],
the magnon-magnon interaction effect is taken into account
at the mean-field level in the self-consistent SBMFT.

Let us note that the thermal Hall conductivity in Fig. 3
decreases when the magnitude of the magnetic field |h| is
large, especially at low temperatures. To understand this, we
focus on the region near �, where the SBMF Hamiltonian
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can be modeled by HR. The Berry curvature for HR is [20]
�k,± = ∓ λ2�0

2(λ2k2+�2
0 )3/2 , where + (−) denotes the upper (lower)

energy band. Because the Dirac mass gap is 2|�0| = |h|, the
Dirac mass gap increases as |h| increases, and as a result, the
Berry curvature becomes more spread out in k space. Using
this, we can understand the behavior of κxy as a function of the
magnetic field at low temperature as follows. As we turn on
the magnetic field, the Dirac gap increases, and this initially
results in an increased (decreased) contribution to the thermal
Hall conductivity from the lower (upper) band because the re-
gion with large Berry curvature decrease (increases) in energy,
which becomes more (less) occupied due to the Bose-Einstein
distribution. For larger |h|, it suffices to focus on the lower
band. As |h| increases, the Berry curvature spreads out in k
space. Because these states have higher energy and therefore
lower occupation, κxy decreases. The decrease in κxy for large
|h| is consistent with the expectation that if spin wave theory
with magnon-magnon interaction gives the thermal Hall ef-
fect, magnons will become difficult to excite thermally in the
presence of large magnetic field, so that the thermal Hall effect
of magnons should decrease at high magnetic field.

Next, let us discuss the behavior of κxy as a function of
temperature. For this purpose, let us note that the energy
spectrum of the lower-energy band of the Hamiltonian in
Eq. (6) is given as μ0 − |�0| + ( 1

2m − λ2

2|�0| )k
2 + λ4

8|�0|3 k4 near

k = 0. Therefore, when 1
2m − λ2

2|�0| > 0, the minimum occurs
at k = 0. In this case, we can show that (see Appendix B)
the leading temperature dependence is given by κxy ∝ T 2. On
the other hand, when 1

2m − λ2

2|�0| < 0, the energy minimum
occurs away from k = 0, and in this case, we can show that
κxy ∝ T 3/2.

Finally, let us note that κxy is an even function of d , which
characterizes the strength of the DM interaction. To see this,
note that two systems with d i j and −d i j are related by the Mz

operation. Since Mz changes neither the Berry curvature nor
the energy, κxy is the same for both systems.

V. SPIN RESPONSE

Besides the anomalous Hall effect, a two-dimensional elec-
tron gas with Rashba spin-orbit interaction shows many other
interesting behaviors in response to electric field, such as the
Rashba-Edelstein effect [9,10] and the spin Hall effect [11,21–
23]. These effects originate from the spin-momentum locking
of the eigenstates of the Hamiltonian in Eq. (6), which is
illustrated in Fig. 4(a). We can expect thermal analogs of these
effects in our model because the statistical force due to the
temperature gradient can cause the spin-momentum-locked
states to shift in momentum space, just as the electric field
does [5,6,24].

Let us first present the solutions to the self-consistent
SBMFT as a function of temperature at zero magnetic field in
Fig. 4(b). Note that there cease to be nontrivial solutions above
Tc ≈ 0.381J . This is an artifact of the mean-field approach,
and it indicates that the system behaves as a paramagnet
with local moments above Tc [25,26]. Also, the self-consistent
equations are difficult to solve accurately at low tempera-
tures because of the very small Schwinger boson energy gap.

FIG. 4. (a) Spin-momentum locking in Eq. (6) shown for states
at a fixed energy. The solid (dashed) circle indicates the states when
the temperature gradient is absent (present). (b) Temperature depen-
dence of solutions to the self-consistent SBMFT. (c) The spin Nernst
effect and (d) the thermal analog of the Rashba-Edelstein effect for
the solutions in (b) for the 2D model in Eq. (5) in the absence of
external magnetic field.

However, it is possible to predict the behavior of the spin
responses at low temperatures analytically (see Appendix B).

By the thermal analog of the Rashba-Edelstein effect,
we refer to the spin polarization induced by the tempera-
ture gradient. This can be estimated using the Boltzmann
transport theory with constant relaxation time. Since [27]
gneq(E ) = geq(E ) − τv · ∇Tν

E
kBT 2

eE/kBT

(eE/kBT −1)2 , the spin density
induced by the temperature gradient (∇yT )ŷ is given by
〈Sμ〉neq − 〈Sμ〉eq = −λμ

y ∇Ty, where

λμ
y = τ

kBT 2

1

V

∑
k,n

〈n, k|Sμ|n, k〉

× 〈n, k|vk,y|n, k〉 Ek,neEk,n/kBT

(eEk,n/kBT − 1)2
. (7)

Here, Ek,n and |n, k〉 are the energy and the eigenvector of the
nth energy band of Hk, respectively. τ is the phenomenologi-
cal lifetime of Schwinger bosons, and in a lattice, it can arise
from interactions between Schwinger bosons, which we have
ignored at the mean-field level, and from interactions between
a Schwinger boson and a phonon. Due to lattice symmetries,
only λx

y is nonzero, which is shown in Fig. 4(c) as a function
of temperature. Using the Mz operator as in the case of κxy,
we see that λx

y is an odd function of d . Thus, λx
y can be used to

determine the sign of d .
Next, let us examine the spin Nernst effect, which refers to

the Hall effect of spin in response to the temperature gradient.
Letting jSμ

x be the current of spin Sμ along the x direction, we
have jSμ

x = −αSμ

xy ∇yT , where the intrinsic contribution is [28]

αSμ

xy = 2kBh̄

V

∑
k,n

(
�Sμ

k,n

)
xyc1(Ek,n), (8)

(�Sμ

k,n)xy = ∑′
m

Im[〈n,k|Szvk,x+vk,xSz |m,k〉〈m,k|vk,y|n,k〉]
(Ek,n−Ek,m )2 , where the

prime indicates that the sum excludes m = n, vk,μ = 1
h̄

∂Hk
∂kμ

,
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and c1(x) = [1 + g(x)] ln[1 + g(x)] − g(x) ln g(x). Due to
lattice symmetries, αSμ

xy �= 0 only for μ = z, which we show
in Fig. 4(d). Using the Mz operator as before, we find that αSz

xy
is an even function of d .

VI. DISCUSSION

In this work, we have investigated thermal transport signa-
tures of in-plane DM interaction in a two-dimensional para-
magnet with ferromagnetic exchange interaction. Although
the common expectation is that in-plane DM interaction is
not important for the thermal Hall effect when spins are
aligned in the out-of-plane direction, we have shown that this
is not the case by using the self-consistent SBMFT. Since the
LSWT predicts no thermal Hall effect, our result implies that
magnon-magnon interaction must be considered to predict
even a qualitatively correct magnon thermal Hall effect. It
is also important to note that the magnitude of the thermal
Hall conductivity is in an experimentally measurable range.
To see this, let us stack our paramagnetic model in Eq. (1)
along the z axis with an interlayer distance of a few angstroms.
Then, the 3D thermal Hall conductivity can be expected to
be around 10−5 W/K m, which is comparable to the phonon
thermal Hall effect measured in paramagnets [29,30]. Finally,
we have also shown that the in-plane DM interaction can
induce a spin Nernst effect as well as a thermal version of
the Rashba-Edelstein effect.

Let us note that the DM interaction we have studied is the
type that can stabilize the Néel-type skyrmion. However, our
theory can trivially be extended to include the DM interaction,
which can stabilize the Bloch-type skyrmion and which is
often written in the form DS · (∇ × S), as the DM interactions
that stabilize the Neel and Bloch type skyrmion are related by
global rotation of the spins about the z axis. Thus, our theory is
applicable to two-dimensional ferromagnets which are Bloch-
and Néel-type skyrmion candidates.

More generally, we expect the in-plane DM interaction
will be important for thermal transport of spins whenever
the out-of-plane DM interaction is forbidden. This condition
on the out-of-plane DM interaction is important in order to
isolate the thermal Hall response originating from the in-plane
DM interaction since κxy originating from the out-of-plane
DM interaction with a similar strength can be expected to
be larger by an order of magnitude [8]. To clarify when the
in-plane DM interaction will be important, it is useful to note
that for low-energy spin excitations, which are the dominant
excitations at low temperatures, the DM interaction can gener-
ally be written as

∫
dr

∑
μ=x,y dμ · [S(r) × ∂μS(r)]. When the

crystal has a point group symmetry such as C6v , C4v , C3v , or
C2v , it can be shown that dμ must lie in the two-dimensional
plane. In such cases, we expect the thermal Hall effect to
appear even when collinear magnetic order sets in towards
the out-of-plane direction or in the paramagnetic regime with
out-of-plane magnetic field in a way similar to our model
in Eq. (1).

As examples, we propose CrI3 and Cr2Ge2Te6, which
are well known two-dimensional ferromagnets [31,32]. In
both cases, there is an inversion symmetry between the
nearest-neighbor Cr atoms, so that DM interaction is forbid-
den. However, when the magnets are placed on a substrate

or when out-of-plane electric field is applied [33], the
inversion symmetry is broken, and the in-plane DM interac-
tion can be induced, and we expect our theory to apply in
this setup.
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APPENDIX A: REVIEW OF SBMFT

Let us define the bond operators

Ai j =
∑

st

εst bi,sb j,t ,

Bi j =
∑

st

σ 0
st bi,sb

†
j,t ,

C †
i j =

∑
st

b†
i,s(iσ)st b j,t ,

D i j =
∑

st

bi,s(σ
yσ)st b j,t . (A1)

Here, we note that under the global SU(2) transformation
(bi,↑
bi,↓) → U (bi,↑

bi,↓), with U ∈ SU(2), Ai j and Bi j transform triv-

ially (spin singlet), while C †
i j and D i j transform vectorially

(spin triplet).
To write the Heisenberg and DM interactions in terms of

the bond operators, it is useful to note the identities

σss′ · σtt ′ = σ 0
ss′σ

0
tt ′ − 2εstεs′t ′

= −σ 0
ss′σ

0
tt ′ + 2σ 0

st ′σ
0
s′t , (A2)

σss′ × σtt ′ =
⎡
⎣

(σ xσ y)stεs′t ′ + εst (σ yσ x )s′t ′

(σ yσ y)stεs′t ′ + εst (σ yσ y)s′t ′

(σ zσ y)stεs′t ′ + εst (σ yσ z )s′t ′

⎤
⎦

=
⎡
⎣

iσ x
st ′σ

0
s′t − iσ 0

st ′σ
x
s′t

iσ y
st ′σ

0
s′t + iσ 0

st ′σ
y
s′t

iσ z
st ′σ

0
s′t − iσ 0

st ′σ
z
s′t

⎤
⎦, (A3)

where σ 0 is the 2 × 2 identity matrix and ε = iσ y.
Using Eq. (A2), we have

Si · S j = 1
2 [2S2 − A†

i jAi j]

= 1
2 [B†

i jBi j − 2S(S + 1)], (A4)

and using Eq. (A3), we have

Si × S j = 1
8 [A†

i jD i j + D†
i jAi j+ : B†

i jC i j : + : C †
i jBi j :],

(A5)
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where : · : indicates normal ordering. From the identities

: C †
i jBi j : = C †

i jBi j − 2iSi, (A6)

: B†
i jC i j : = B†

i jC i j + 2iSi, (A7)

it follows that

Si × S j = 1
8 [A†

i jD i j + D†
i jAi j + B†

i jC i j + C †
i jBi j]. (A8)

Note that Ai j and Bi j are called antiferromagnetic and
ferromagnetic bond operators, respectively, because for fer-
romagnetic Heisenberg interaction (J < 0), it is energetically
favorable to have a ferromagnetic bond over an antiferromag-
netic bond, while the opposite is true for antiferromagnetic
Heisenberg interaction (J > 0).

Before proceeding further, let us note that because Ai j

and Bi j are spin singlets, the Mermin-Wagner theorem is
not violated when we obtain a finite expectation value of
these operators in the SBMFT at nonzero temperature for the
Heisenberg model. On the other hand, C †

i j and D i j are spin
triplets and do not transform trivially under the SU(2) trans-
formation. However, they do not develop a finite expectation
value unless there is DM interaction, in which case there is
no SU(2) symmetry in the Hamiltonian. We note that in our
model, even the U(1) symmetry about the z axis is broken.

To carry out the mean-field theory, we use the identity

O1O2 = δO1δO2 + O1O2 + O2O1 − O1O2, (A9)

where δOi = Oi − 〈Oi〉 and Oi = 〈Oi〉. The Hartree-Fock de-
composition of JSi · S j is

JSi · S j = EJ0
i j + EJint

i j + EJfree
i j , (A10)

where EJ0
i j = JS

2 + J
4 [A∗

i jAi j − B∗
i jBi j] is the zero point en-

ergy and EJint
i j = J

4 [−δA†
i jδAi j + δB†

i jδBi j] is the energy from
fluctuation about the mean-field solution, which contains the
interaction terms between Schwinger bosons. For mean-field
theory, we focus on the part quadratic in the Schwinger
bosons, which is given by

EJfree
i j = J

4
[B∗

i jBi j + B†
i jBi j − A∗

i jAi j − A†
i jAi j]. (A11)

The DM interaction can be similarly decomposed, with

EDfree
i j =d i j

8
· [A∗

i jD i j + A†
i jDi j + D∗

i jAi j + D†
i jAi j

+ B∗
i jC i j + B†

i jCi j + C∗
i jBi j + C †

i jBi j]. (A12)

Now, let us consider the model in Eq. (1) in the main text
using Eqs. (A11) and (A12). Using the U(1) gauge symmetry
bi,s → eiφi bi,s of the Schwinger bosons, we can fix the gauge
so that B ≡ 〈Bi j〉 = |B|. Here, let us note that this gauge fixing
violates Elitzur’s theorem [34], which forbids spontaneous
breaking of local gauge symmetry. However, such a gauge-
fixing procedure has partially been justified at the level of
mean-field theory [35,36], as the expectation values of phys-
ical observables are gauge invariant. Therefore, we proceed
by choosing the simplest gauge, as is conventionally done in
SBMFT. We further assume that the solution to the SBMFT
does not break the translation symmetry, the fourfold rota-
tion symmetry, and the mirror symmetries about the planes
normal to the x and y axes. Note also that because J < 0,

antiferromagnetic bond operators are disfavored. We can thus
assume that there are no anomalous terms (i.e., terms that do
not conserve the number of the Schwinger boson number)
in the SBMF Hamiltonian. Note that this expectation is not
changed by the presence of a small DM interaction. To see
this, note that classically, the energy due to the anomalous
terms between a pair of spins is − J

4 |Ai j |2 + d
4 Re(A∗

i jDi j ).
Since Ai j = 0 and Di j = 0 for d = 0, Ai j = αd + O(d2), and
Di j = δd + O(d2) for some constants α and δ. This implies
that for small d , it is energetically unfavorable to have nonzero
Ai j or Di j . Therefore, we restrict ourselves to the ansatz with
no anomalous terms in this work. We further note that by
imposing the fourfold rotation symmetry and the translational
symmetry, we have C ≡ 1

d 〈d i j · C i j〉 = Re(C).
We can now obtain the SBMF Hamiltonian HSBMF

in the main text as follows. Fourier transforming the
nearest-neighbor ferromagnetic Heisenberg interaction that is
quadratic in the Schwinger bosons, we obtain

HJ = JB

2

∑
k

φ
†
kσ

0φk[cos kx + cos ky], (A13)

where φk = (bk,↑
bk,↓). Similarly, the nearest-neighbor DM inter-

action becomes

HD =dB

4

∑
k

φ
†
k (sin kxσ

y − sin kyσ
x )φk

+ Cd

4

∑
k

φ
†
kσ

0(cos kx + cos ky)φk. (A14)

The Zeeman interaction due to the out-of-plane magnetic field
is

Hh = h

2

∑
k

φ
†
kσ

zφk. (A15)

We must also include the chemical potential term
μ

∑
k(φ†

kσ
0φk − 2S) to enforce the constraint 〈ni〉 =∑

s〈b†
i,sbi,s〉 = 2S on average. Let

Hμ = μ
∑

k

b†
kσ

0bk (A16)

be the quadratic part of the chemical potential term. The
SBMF Hamiltonian is given by

HSBMF = HJ + HD + Hh + Hμ =
∑

k

φ
†
kHkφk, (A17)

which is Eq. (5) in the main text.
Finally, let us note that by denoting the energy and the

eigenvector of the nth energy band of Hk by Ek,n and |n, k〉,
respectively, the self-consistency equations are

2S = 1

N

∑
k,n

g(Ek,n), (A18)

B = 1

2N

∑
k,n

g(Ek,n)(cos kx + cos ky), (A19)

C = 1

2N

∑
k,n

g(Ek,n)〈n, k|[σ y sin kx − σ x sin ky]|n, k〉.

(A20)
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These equations can be solved by using the Levenberg-
Marquardt method of least squares [37] to minimize (〈ni〉 −
2S)2 + (〈Bi j〉 − B)2 + (〈Ci j · d i j〉/d − C)2.

APPENDIX B: LOW-TEMPERATURE BEHAVIOR OF
αSz

xy, λx
y , and κxy

Let us first find the low-temperature behavior of αSz

xy
and λx

y. The energy is Ek,± = a(cos kx + cos ky) + μ ±√
b2(sin2 kx + sin2 ky), where a = 2JB+Cd

4 and b = dB
4 . It is

useful to note that a, b, μ = const + O(T ). When d is small,
we can expand the Hamiltonian by assuming that kx and ky

are small to obtain the two-dimensional Rashba Hamiltonian
(see the main text). Then, the locus of k with minimum energy
forms a circle with k = mλ and E−,k=mλ = μ − mλ2

2 , and the
Schwinger boson energy gap is proportional to T 2 at low tem-
perature [19]. Note that this implies that the phase transition to
the ordered phase (condensation of Schwinger bosons) occurs
at zero temperature (because we have not included magnetic
anisotropy) with a finite ordering vector (k = mλ).

Straightforward calculation shows that for a two-
dimensional Rashba gas,

h̄(�Sz

k,±)xy = ∓ k2
x

4λk3
. (B1)

Thus, (�Sz

k,±)xy ∝ cos2 θ near k = mλ (cos θ = kx
k ).

Then, αSz

xy ∝ ∫
kdkc1(E−,k)=

√
T

2

∫
dx mλ+√

T x√
x

[αT + βx −

ln(eαT +βx − 1) + αT +βx
eαT +βx−1 ], where x = (k − mλ)2/T and

E− = αT 2 + β(k − mλ)2. Because the integral converges to
a constant as T → 0, αSz

xy ∝ √
T to the lowest order in T .

We can similarly analyze the temperature dependence
of λx

y. Using 〈−, k|Sx|−, k〉 = S
2 sin θ , 〈−, k|vy|−, k〉 =

sin θ (k−λm)
m , we find that the leading order in T is λx

y ∝
1√
T

∫
dx x2(αT 2+T βx2 )eαT +βx2

(eαT +βx2 −1)2
, where k = √

T x + λm. From this,

we find that the leading order T is given by λx
y ∝ √

T .
Next, let us discuss the low-temperature behavior of

κxy. We first consider the case when |�0| > λ2m, so
that the energy minimum occurs at k = 0. Then, the gap
closes as [19] αe−β/T for some positive constants α and
β, so that we can assume that the lower-energy band
is given by αe−β/T + γ k2, where γ > 0. Then, κxy/T ∼∫

kdkc2[ 1
e(αe−β/T +γ k2 )/T −1

] 1
(k2+�2

0/λ
2 )3/2 . Defining x2 = k2/T , we

have κxy/T ∼ T
∫ ∞

0 xdxc2[ 1
e((αe−β/T )/T +γ x2 )−1

] 1
(T x2+�2

0/λ
2 )3/2 . Us-

ing the definition of c2, it can be shown that the integral
converges to a constant at T = 0, and we can conclude that to
the lowest order in temperature, κxy ∝ T 2. Next, let us assume
that |�0| < λ2m, so that the energy minimum occurs not at
k = 0, but at k = k0, with k0 > 0. In this case, the energy
gap is proportional to T 2. We can then write the energy of
the lower band as αT 2 + β(k − k0)2, where α, β > 0. Then,
κxy/T ∼ √

T
∫ ∞

0 dxc2[ 1
eαT +βx2 −1

] 1
(k0+

√
T x)2+(�2

0/λ
2 )2 , where we

defined x2 = (k − k0)2/T . Since the integral converges to a
constant at T = 0, κxy ∝ T 3/2.
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