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Spin Nernst and anomalous Nernst effects and their signature outputs
in ferromagnet/nonmagnet heterostructures
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The spin Nernst effect (SNE) and anomalous Nernst effect (ANE) convert a heat current generated by a
temperature gradient to a spin current in nonmagnetic metals and ferromagnets, respectively. We present a
diffusive spin transport theory of the combination of these thermoelectric effects in ferromagnet (F)/nonmagnet
(N) heterostructures and their respective output signals. In a F/N bilayer, in the presence of an in-plane
temperature gradient, electrical voltages are induced by the SNE in N and the ANE in the F layers, via the inverse
spin Hall effect in the N. The analytical expression of the thermally driven spin Hall magnetoresistance (TSMR)
output is derived, which captures both the local SNE contribution in the N and the nonlocal mixing contribution
due to the ANE in the adjacent F. Interestingly, the SNE and ANE give additive contributions to the transverse
TSMR voltages but subtract from each other for the longitudinal component. This anisotropic response suggests
a possible means to extract the individual SNE and ANE contributions, as well as spin-dependent polarization
parameters. In a F1/N/F2 trilayer, both SNE and ANE contribute to spin torques on the free F2 layer. We
analyze the ferromagnetic resonance (FMR) of the free layer and show that both thermoelectric effects contribute
additively to the FMR magnitude and linewidth for the considered magnetization configuration. Finally, we show
that TSMR can provide a more sensitive experimental detection of SNE and ANE down to a threshold thermal
gradient of the order of 10−6 K/nm.
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I. INTRODUCTION

The spin Hall effect (SHE)—the generation of transverse
spin current in response to a longitudinal electrical injection in
nonmagnetic heavy metals (N) with strong spin-orbit coupling
(SOC)—has attracted extensive research interest [1–4]. In fer-
romagnetic metals (F) with SOC, spin currents are induced
perpendicular to both the electrical injection and the magne-
tization directions due to the related anomalous Hall effect
(AHE) [5–7]. In this paper, we focus on the thermoelectric
counterparts of the SHE and AHE, i.e., the thermally induced
spin currents generated by the spin Nernst effect (SNE) and
anomalous Nernst effect (ANE).

The conversion of heat currents into spin currents in N with
SOC such as Pt and W via SNE has been investigated theoret-
ically and experimentally recently [8–11]. The SNE describes
a transverse pure spin current driven by a longitudinal temper-
ature gradient (i.e., heat current), which shares a geometrical
analogy with the SHE. Similarly, applying a thermal gradient
in F generates an electric field mutually perpendicular to both
the heat flow and the magnetization, giving rise to the so-
called ANE [12–14]. The measured output which is usually
used to characterize the SNE and ANE is the thermally in-
duced electric voltage induced via the inverse spin Hall effect
(ISHE) [i.e., thermally driven spin Hall magnetoresistance
(TSMR) effect] in F/N heterostructures [8,10,13,15].
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In this work, we consider the SNE and ANE on equal foot-
ing in F/N heterostructures. Under an in-plane temperature
gradient, spin currents are thermally excited in F due to the
ANE and in N due to the SNE simultaneously, which can
be converted into electric voltages in N via the ISHE (i.e.,
TSMR voltages) or spin torques on the adjacent F layers.
The motivation of this work is to capture and characterize the
interplay of SNE and ANE in F/N heterostructures via a single
measurement setup, and study how these translate into their
different signature outputs, from which the underlying physics
could be addressed. We present a drift-diffusion transport
model to describe the SNE and ANE-induced spin currents,
and evaluate analytically as well as numerically the resulting
electric TSMR voltage and ferromagnetic resonance (FMR)
spectrum as two signature outputs. In a F/N bilayer, the spin
currents manifest themselves as TSMR voltages in the N layer.
In addition to the expected local SNE contribution in the N,
our analytical results show that ANE in the adjacent F layer
also has a nonlocal or mixing contribution to the TSMR out-
put, which represents the interplay of these two thermal effects
and gives rise to the magnetization dependence of the signal
measured in the N. Interestingly, the SNE and ANE contribu-
tions to the TSMR output are found to contribute additively
(in opposition to one another) for the transverse (longitudinal)
component of the TSMR voltage. This anisotropic response
allows a possible means to differentiate the individual contri-
butions of SNE and ANE, and spin polarization parameters
to be extracted. Additionally we consider a F1/N/F2 trilayer
and derive the FMR output spectrum of the F2 layer due to
the combined effect of SNE in the N and ANE in the F1.
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FIG. 1. Schematic diagram of the F/N structure in this work. The
direction of m in the F layer can point in any arbitrary direction. The
in-plane temperature gradient ∇T along the x direction is applied to
the whole stack, which generates spin currents in F with ANE and
N with SNE simultaneously. Here, we focus on the perpendicular-to-
plane transport along the z direction.

Unlike the anisotropic response of the TSMR output, the SNE
and ANE contribute additively to the magnitude and linewidth
of the FMR. By comparing these two thermoelectric outputs
in the F/N and F1/N/F2 heterostructures, it is found that the
TSMR voltage signal in F/N bilayers can potentially provide
a more sensitive detection of the interplay of SNE and ANE.

This paper is organized as follows. In Sec. II A, we present
the basic expressions of spin current densities generated in
the N due to SNE and in the F due to ANE, separately. They
serve as the framework for further derivations of the TSMR
and FMR output signals based on the F/N heterostructures in
Secs. II B and II C, respectively, which form the main results
of the paper. A conclusion is presented in Sec. III.

II. THEORY AND ANALYSIS

A. Spin currents in the F and the N layers

A drift-diffusion treatment is utilized to describe spin
transports in the F/N structure as schematically shown in
Fig. 1, where the applied in-plane temperature gradient is
along the x direction (i.e., ∇T = x̂∂xT ), and we focus on the
perpendicular-to-plane transport along the z direction.

The SNE describes a generation of transverse pure spin
current from ∂xT in N with strong SOC. Similar to the geo-
metrical symmetry of SHE [16], the pure spin current density
along the z direction in the N is described by

jsz,N = −σN

e
∂zμs,N + jSNEŷ, (1)

which consists of the diffusive and SNE drift contributions,
respectively. In the above equation, the vector direction refers
to the spin orientation, while the current flow is along the
z direction. The first term is the usual diffusive contribution
given by the spatial derivative of the spin accumulation μs,
which satisfies the general drift-diffusion equation ∂2μs

∂z2 = μs
λ2

with λ the corresponding spin diffusion length [17]. σN is
the conductivity of N and e = |e| is the electron charge. The
second term is the drift contribution jSNE = σNNSNE∂xT due
to the spin Nernst current generated directly by the SNE,
where NSNE is the spin Nernst coefficient denoting the heat-
spin conversion efficiency. Note that spin quantities in N (i.e.,
μs,N and jsz,N) have three polarization components since the

spin polarization direction within the N is arbitrary and would
have to be determined by applying the boundary conditions
[16]. However, jSNE is purely composed of the y component
(i.e., ŷ) due to the SNE symmetry [8].

We now consider the spin current in the F layer. A strong
SOC in the F can generate a spin current under a tempera-
ture gradient, i.e., the ANE which can be considered as the
thermoelectric counterpart of AHE. An electric field mutually
perpendicular to both the heat flow and the magnetization is
generated, i.e., the spins are polarized along the local mag-
netization direction (i.e., m), and flowing in the m × ∇T
direction. Note that the spin current is generated with the
electric current as a result of the spin-dependent transport
properties in F, i.e., the electric current is spin polarized. The
electric and spin current densities in F with ANE are described
by [18]

jc,F = σF

e
∇μc,F + βF

σF

e
∇μs,F + σFNANE(m × ∇T ) (2)

and

js,F = −σF

e
∇μs,F − βF

σF

e
∇μc,F − σF pNANE(m × ∇T ),

(3)

where the first two terms denote diffusion and the third term
is the ANE drift contribution. σF is the conductivity of F
whose spin polarization is described by βF = σF,↑−σF,↓

σF
with

σF = σF,↑ + σF,↓ [17]. Here ↑(↓) denotes the longitudinal
polarization direction parallel (antiparallel) to m in the F. In
Eqs. (2) and (3), the direction of the vectors refers to the di-
rection of the current flow. Compared with spin accumulation
μs = μ↑−μ↓

2 , charge accumulation is defined as μc = μ↑+μ↓
2 .

As for the ANE contribution along m × ∇T , NANE is the
corresponding anomalous Nernst coefficient with a polariza-
tion p = NANE,↑ −NANE,↓

NANE,↑ +NANE,↓
[18]. Note the (average) anomalous

Nernst coefficient is given by NANE = σF,↑ NANE,↑ +σF,↓ NANE,↓
σF

[18]. Combining Eqs. (2) and (3) with the open circuit bound-
ary conditions along the z direction, the spin current density
flows along the z direction (i.e., the z component of js,F) is
given by

jsz,F = −(
1 − β2

F

)σF

e
∂zμs,F + jANE, (4)

which possesses a similar form to that of the spin current
density in N with SNE given by Eq. (1). However, unlike
in N where the spin current and accumulation possess arbi-
trary polarization direction, the spin polarization of the spin
components in F are considered to be aligned along the local
magnetization direction (e.g., jsz,F = jsz,Fm) [6,19]. jANE is
the spin anomalous Nernst current density generated directly
by the ANE and can be expressed as

jANE = my(p − βF)σFNANE∂xT, (5)

where my is the y component of m, indicating that ANE
contributes to the spin transport flows along the z direction
only when m has a nonzero y component.
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B. TSMR voltage in F/N bilayer

In a bilayer consisting of an insulating F and a metallic N
with SOC, the simultaneous action of SHE and ISHE induces
the spin Hall magnetoresistance (SMR) [16,20]. Similarly, in
the metallic F/N bilayer, the combined effect of SNE and ANE
results in a thermal voltage via the ISHE, along and transverse
to the applied temperature gradient. This thermally driven spin
Hall magnetoresistance (TSMR) is derived and analyzed in
this section.

Here we introduce the interfacial spin current density nota-
tion Q at the F/N interface, which is defined as being injected
from F to N. With the spin current densities given by Eqs. (1)
and (4), we apply the following boundary conditions for the
F/N bilayer (Fig. 1): (i) at both terminals in the z direc-
tion, the spin current densities vanish, i.e., jsz,F(0) = 0 and
jsz,N(L2) = 0; (ii) at the F/N interface, we have jsz,N(L1) = Q
and jsz,F(L1) = m · Q. With the above boundary conditions,

by solving the general drift-diffusion equation (i.e., ∂2μs
∂z2 =

μs
λ2 ) the spin accumulations in F/N can be expressed in terms
of Q as

μs,F = − e

gF
csch

(
tF
λF

){
jANE

[
cosh

(
tF − z

λF

)
− cosh

(
z

λF

)]

+ cosh

(
z

λF

)
m · Q

}
(6)

and

μs,N = e

gN
csch

(
tN
λN

){
jSNE

[
cosh

(
tN − z

λN

)

− cosh

(
tF + tN − z

λN

)]
ŷ + cosh

(
tF + tN − z

λN

)
Q

}
,

(7)

where gF = (1−β2
F )σF

λF
and gN = σN

λN
are introduced. tF(N) rep-

resents the thickness of the F(N) layer. On the other hand,
the interfacial spin current density Q is also governed by the
various interfacial conductances at the F/N interface (z = L1)
[7,21–24]:

eQ = G0[μs,F(L1) − m · μs,N(L1)]m + 2Grm

× [m × μs,N(L1)] + 2Gi[m × μs,N(L1)], (8)

where G0 = 4G↑G↓
G↑+G↓

. G↑ and G↓ are the interfacial conduc-
tances of up spin and down spin. Gr and Gi represent the real
and imaginary part of the mixing conductance, respectively.
Here we apply Gi = 0 since it is approximately an order of
magnitude smaller than Gr for simplicity [25]. Note that in
order to obtain Eq. (8), the charge accumulation has been
eliminated after considering the open-circuit boundary condi-
tion at the interface [6,7]. By substituting Eqs. (6) and (7) into
Eq. (8), the full solution for the interfacial spin current density
Q can be obtained, which yields a rather lengthy expression.
Hence, for brevity, we express the solution of Q in terms of
the effective conductances (i.e., g∗

0, g∗
1, and g∗

2), i.e.,

eQ = g∗
0

(
μ0

ANE + myμ
0
SNE

)
m

+μ0
SNE[g∗

1m × (m × ŷ) + g∗
2m × ŷ], (9)

where μ0
ANE = e

gF
tanh( tF

2λF
) jANE and μ0

SNE =
e

gN
tanh( tN

2λN
) jSNE. μ0

ANE(SNE) is the ANE(SNE)-generated
spin accumulation at the F/N interface in the absence of
spin transfer, i.e., when there is zero interfacial mixing
conductance [16]. The explicit expressions of these effective
conductances are given by

1

g∗
0

= 1

gFtanh(tF/λF)
+ 1

G0
+ 1

gNtanh(tN/λN)
(10)

and

1

g∗
1

= 1

gNtanh(tN/λN)
+ 1

2Gr
, (11)

while the third g∗
2 is proportional to Gi, and hence zero due

to our assumption that Gi = 0. Equation (9) indicates that
both ANE in F and SNE in N contribute to the longitudinal
component (i.e., polarized along m) of the interfacial spin
current density at the F/N interface (i.e., Q) through g∗

0, while
only SNE in N contributes to the transverse (i.e., polarized
perpendicular to m) components, which are governed by g∗

1
and g∗

2. This is understandable since only the longitudinal
spin component along the local magnetization direction m in
F is considered, i.e., ANE in F only affects the longitudinal
spin current density at the F/N interface. Consequently, the
final expressions of the spin accumulations in F and N can be
obtained by substituting Eq. (9) into Eqs. (6) and (7).

Having solved for the spin accumulation, we now evaluate
the ISHE voltage as the output of the SNE and ANE in the F/N
bilayer. In the N with SOC, the ISHE converts the diffusion
spin current flowing along the z direction [i.e., jsz,N given by
Eq. (1)] to an electric current in the x-y plane. The ISHE-
generated longitudinal (along the thermal gradient direction,
i.e., x̂) and transverse (along ŷ) electric currents are described
by

jcx,N = −θSHE
σN

e
∂zμ

y
s,N + jSE (12)

and

jcy,N = θSHE
σN

e
∂zμ

x
s,N, (13)

where jSE = −σNSN∂xT is the normal Seebeck effect in N
under the in-plane temperature gradient ∂xT with SN the cor-
responding Seebeck coefficient. θSHE is the spin Hall angle
describing the spin-charge conversion via the ISHE. Here
μ

x(y)
s,N represents the x(y) polarization component of μs,N. Note

that jcz,N = 0 since the open circuit configuration is applied.
Based on the generated electric currents, the longitudinal and
transverse voltages can be calculated by averaging the electric
currents over the film thickness as V L

thermal/l = 1
tN

∫ L2

L1

jcx,N

σN
dz

and V T
thermal/w = 1

tN

∫ L2

L1

jcy,N

σN
dz respectively, where l and w

denote the sample length and width, respectively. Substitut-
ing the full expression for the spin accumulation which we
have solved for earlier, the detected thermal voltages can be
expressed as

V L
thermal

l
= −[

SN + �SL
SNE,1 + (

�SL
ANE + �SL

SNE,2

)
m2

y

+�SL
SNE,3

(
1 − m2

y

)]
∂xT (14)
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and

V T
thermal

w
= [(

�ST
ANE + �ST

SNE,1

)
mxmy + �ST

SNE,2mz
]
∂xT .

(15)

Here several effective Seebeck coefficients are introduced
with

�SL
SNE,1 = 2λN

tN
tanh

(
tN

2λN

)
(θSHENSNE), (16)

�SL
ANE = βF−p

1−β2
F

λF

tN

g∗
0

gN
tanh

(
tF

2λF

)
tanh

(
tN

2λN

)
(θSHENANE),

(17)

�SL
SNE,2 = −λN

tN

g∗
0

gN
tanh2

(
tN

2λN

)
(θSHENSNE), (18)

�SL
SNE,3 = λN

tN

g∗
1

gN
tanh2

(
tN

2λN

)
(θSHENSNE), (19)

�ST
ANE = �SL

ANE, (20)

�ST
SNE,1 =− 1

1−β2
F

λF

tN

gF(g∗
0+g∗

1)

g2
N

tanh2

(
tN

2λN

)
(θSHENSNE),

(21)

and

�ST
SNE,2 = λN

tN

g∗
2

gN
tanh2

(
tN

2λN

)
(θSHENSNE), (22)

which can be referred to as the thermal analogs of spin
Hall magnetoresistance, i.e., TSMR. In Eqs. (14)–(22), the
superscripts L and T denote the longitudinal (i.e., along the
current direction or x direction) and transverse (along the y
direction) contributions to the TSMR voltages, respectively.
The physics in operation is as follows: The spin currents are
generated in the F due to ANE and N due to SNE. These
respectively undergo partial transmission and reflection at the
F/N interface. In the N, the reflected SNE-induced spin current
is transferred to the charge current by the ISHE, which in
turn generates the TSMR voltage. In the derived expression
of V L

thermal [i.e., Eq. (14)], there are three effective Seebeck
coefficients originating from SNE (i.e., �SL

SNE,1–3 with respect
to θSHENSNE), which correspond to three different dependen-
cies on the magnetization m. Similarly, for the transverse
voltage V T

thermal in Eq. (15), there are two SNE-induced ef-
fective Seebeck coefficients (i.e., �ST

SNE,1–2 with respect to
θSHENSNE) corresponding to two different m dependencies.
Since the TSMR voltages V L

thermal and V T
thermal arise in the N

layer due to the ISHE, where the SNE is also occurring, the
terms corresponding to �SL

SNE,1–3 and �ST
SNE,1–2 represent the

local effects. Meanwhile, the ANE-induced spin current in the
F which is transmitted into the N undergoes conversion to
a charge current via the ISHE, yielding another contribution
to the TSMR voltage. This physical process is captured by
the derived effective Seebeck coefficients [i.e., �SL

ANE and
�ST

ANE ] with respect to θSHENANE, and represents the mixing
(nonlocal) contribution to the TSMR voltage induced by the
ANE in the adjacent F. In Eqs. (14) and (15), �SL

ANE and
�ST

ANE depend on m2
y and mxmy, respectively. These mixing

contributions allow the TSMR output signal to be modulated
by varying the magnetization direction of the F layer, and
thereby manifesting the interplay of SNE and ANE.

The TSMR measurement is widely used to investigate ther-
mally induced spin transport experimentally [8,10,13,15]. For
numerical calculations, we assume a NiFe(F)/Pt(N) bilayer
structure. It has been experimentally investigated that Pt pos-
sesses SNE with spin Nernst coefficient NSNE = 4.73 μV/K
[11]. As for ANE, we utilize a comparable anomalous Nernst
coefficient of NANE = 4 μV/K, which is on the same order of
magnitude as experimental measured values [26]. Therefore,
we are considering SNE and ANE with comparable Nernst
coefficients. The other material parameters are (i) in the F
[27,28]: ρF = 241 	 nm, λF = 5.5 nm, βF = 0.7, and p = 3;
(ii) in the N [8,29]: ρN = 397 	 nm, λN = 1.5 nm, and
θSHE = 0.11. The thicknesses are assumed to be tF = 10 nm
and tN = 4 nm. For the longitudinal interfacial conductances,
we use the representative values assumed previously [23,24]
since there are no available experimental measurements, i.e.,
G↑ = 0.42 × 1015 	−1 m−2 and G↓ = 0.36 × 1015 	−1 m−2.
On the other hand, we utilize the interfacial mixing con-
ductance Gr = 0.5 × 1015 	−1 m−2, which is a representative
experimental value for the general F/Pt interfaces [30,31].
Based on an SNE experiment reported in Ref. [8], we utilize a
longitudinal temperature difference �T = 18 K over a sample
size of l = 3 mm, which corresponds to a thermal gradient
of ∂xT = 6 × 10−6 K/nm. Based on these parameters, we
compute the angular and layer thickness dependence of the
longitudinal and transverse TSMR voltages.

Typically in experiments, the angular dependence of the
SMR voltage is measured [20,32,33], in which an external
saturation magnetic field is applied to align m along various
directions. Consider that the magnetization m of F is rotated
in three different rotation planes [i.e., x-y plane with m =
(cosα, sinα, 0), y-z plane with m = (0, cosβ, sinβ ), and z-x
plane with m = (cosγ , 0, sinγ ) ]; we plot the angular depen-
dence of TSMR voltages in Fig. 2 for three cases: (i) only
SNE contributes, i.e., NANE = 0 in the F, (ii) only ANE con-
tributes, i.e., NSNE = 0 in the N, and (iii) both SNE and ANE
contribute. It can be seen that V L

thermal gives a sin2α (or cos2β)
dependence in Fig. 2(a) [or Fig. 2(b)] and V T

thermal exhibits a
cosαsinα dependence in Fig. 2(d), which correspond to the
m2

y terms in Eq. (14) and the mxmy term in Eq. (15), respec-
tively. These angular dependencies of TSMR are in agreement
with experimentally measured angular dependence of SMR
[20,32,33], in which the output voltage is induced by the SHE.
Similarly, V L

thermal remains constant when m rotates in the z-x
plane, as shown in Fig. 2(c), since V L has dependence only on
m2

y as given by Eq. (14). Note that V T
thermal becomes zero when

m rotates in the y-z (z-x) planes due to its mxmy dependence
[Eq. (15)] with g∗

2 = 0. Interestingly, SNE and ANE give
voltage contributions of opposite signs for V L

thermal, i.e., V L
thermal

decreases when both SNE and ANE exist. However, V T
thermal

is enhanced when both SNE and ANE contribute, and this
difference in trend can provide useful information of the spin-
dependent polarization parameters in the F (i.e., βF and p) via
comparison of Eqs. (20) with (21). Note both the sign and
magnitude of the TSMR voltage are dependent on the two key
polarization parameters (p and βF), e.g., �SL

ANE is determined
by the factor βF−p

1−β2
F

[see Eq. (17)]. This anisotropic response
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FIG. 2. Angular dependence of TSMR voltages. The longitu-
dinal TSMR voltage V L

thermal is depicted for three magnetization
rotation geometries: (a) m is rotated in the x-y plane with m = (cosα,

sinα, 0), (b) m is rotated in the y-z plane with m = (0, cosβ, sinβ ),
and (c) m is rotated in the z-x plane with m = (cosγ , 0, sinγ ). The
transverse TSMR voltage V T

thermal is plotted when m is rotated in the
x-y plane with m = (cosα, sinα, 0) in (d). The blue, red, and black
lines represent voltage contributions from only SNE, only ANE,
and both of them, respectively. Here we use l = w = 3 mm and
�T = 18 K. Note that the constant Seebeck voltage contribution
[i.e., the first term in Eq. (14)] is subtracted for V L

thermal.

also allows a possible means to differentiate the individual
contributions of SNE and ANE. The contribution difference
between SNE and ANE can also be seen in the TSMR volt-
age plotting of layer thickness dependence (i.e., Fig. 3). In
addition, a V T

thermal maximum can be obtained by tuning tN
where both SNE and ANE contribute additively, as shown
in Fig. 3(c). This maximum is achieved at tN approaches the

FIG. 3. Layer thickness dependence of TSMR voltages when
m = ( 1√

2
, 1√

2
, 0). V L

thermal is depicted as a function of tN in (a) and

tF in (b), and V T
thermal is depicted as a function of tN in (c) and tF in

(d). tF = 10 nm is fixed in (a) and (c), and tN = 4 nm in (b) and
(d). The blue, red, and black lines represent voltage contributions
from only SNE, only ANE, and both of them, respectively. Here we
use l = w = 3 mm and �T = 18 K. Note that the constant Seebeck
voltage contribution [i.e., the first term in Eq. (14)] is subtracted for
V L

thermal.

FIG. 4. (a) Schematic diagram of the F1/N/F2 structure. The in-
plane temperature gradient ∇T along the x direction is applied to the
whole stack, which generates spin currents in F1 with ANE and N
with SNE, resulting in spin torques exerted on the free F2. (b) The
XY Z coordinate system used in the FMR analysis, where the static
external magnetic field Hex is applied along the Y direction. Here we
consider both m1 and m2 are in-plane magnetized.

spin diffusion length λN = 1.5 nm, which follows the usual
trend in spin drift-diffusive transport [3,34,35]. However, as
tF increases, the TSMR voltage increases in a monotonous
fashion and then saturates, which is understandable as a larger
ANE contribution from F would result with larger tF but this
begins to saturate as tF exceeds λF.

For the above numerical calculations, the applied thermal
gradient of ∂xT = 6 × 10−6 K/nm [8] gives the TSMR output
in the order of several microvolts, which is a readily measur-
able voltage. From Eqs. (14) and (15), it can be seen that the
longitudinal (transverse) TSMR voltage is proportional to the
sample length (width). Based on the material parameters used
here, the TSMR voltage measurement has the advantage to
clearly detect the SNE and ANE with minor thermal injection
as low as ∂xT ∼ 10−6 K/nm by enhancing the sample length
to the order of 1 mm. On the other hand, when the sample
lateral width is on the order of several microns, a larger
thermal gradient of ∂xT ∼ 10−3 K/nm is required to generate
measurable TSMR voltages in the microvolt range. This value
is still achievable and much smaller than the largest thermal
gradient of 0.1 K/nm in proposed experimental setups [36].

As for the interfacial conductance dependence of the
TSMR voltages, by considering the boundary conditions at
the F/N interface [i.e., Eq. (8)], it is straightforward to see that
the interfacial spin current densities increases with interfacial
conductance values. However, numerically it was found that
the TSMR voltage has only a weak dependence on the inter-
facial conductance (not shown here). This dependence can be
neglected since the interfacial conductance for different F/N
interfaces generally fall within the same order of magnitude
of ∼1015 	−1 m−2 [30,31,37,38].

C. FMR analysis of spin torques in F1/N/F2 trilayer

In this section, we consider an alternative method of
quantifying the ANE and SNE involving a F1/N/F2 trilayer
structure (Fig. 4). As in the bilayer structure, the ANE-
induced spin current in the F1 and SNE-induced spin current
in the N undergoes partial reflection and transmission at both
the F1/N and N/F2 interfaces. The spin current transmitted
into the free F2 layer exerts spin torques on the local magneti-
zation. m1(2) denotes the unit magnetization vector in F1(F2).
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Similar to the previous section, we introduce the interfacial
spin current density, i.e., Q1(2) at the F1(F2)/N interface,
which is defined as being injected from F1(F2) to N. The
resulting spin torque acting on the free F2 is given by

T = −m2 × (Q2×m2) = m2 × (m2×Q2). (23)

The minus sign in Eq. (23) denotes the fact that Q2 is being
injected from F2 to N, i.e., along the −z direction. Both
Q1 and Q2 are related to their different corresponding spin
accumulations and magnetizations at the F1/N (z = L1) and
F2/N (z = L2) interfaces, respectively, in the same form as
described by Eq. (8), and the same interfacial conductances at
the two interfaces are assumed for simplicity. Following the
similar procedure as presented in the previous section for the
derivation of Eq. (9), the expressions of Q1(2) can be solved
with the resulting torques defined by Eq. (23). The detailed
derivation steps can be found in the Appendix.

When only ANE in the F1 contributes (i.e., NSNE = 0), the
spin torque is derived as

T ANE = AANEmy1m2 × (m1×m2), (24)

where (AANEmy1) is proportional to μ0
ANE with μ0

ANE =
e

gF1
tanh( tF1

2λF1
) jANE. AANE gives the compact form of the spin

torque magnitude due to ANE, which is a function of material
parameters, e.g., NANE, G↑, G↓, Gr , etc. Note that my1 appears
in Eq. (24) since it is included in the expression of jANE

[Eq. (5)], indicating that a nonzero my1 in F1 is required to
exert a spin torque on F2 within the mechanism of ANE. On
the other hand, when only SNE in the N contributes (i.e.,
NANE = 0), the spin torque has the form of

T SNE = BSNE,1m2 × (ŷ×m2)+BSNE,2my1m2 × (m1×m2)

+ BSNE,3my2(m1 · m2)m2 × (m1×m2), (25)

where BSNE,1−3 is proportional to μ0
SNE with μ0

SNE =
e

gN1
tanh( tN1

2λN1
) jSNE. BSNE,1–3 give the compact form of the spin

torque magnitude with respect to three different angular de-
pendencies due to SNE. The first term of Eq. (25) with respect
to BSNE,1 has the same form as the conventional (dampinglike)
spin Hall torque [∼m2 × (ŷ×m2)]. Meanwhile, the magneti-
zation of F1 (i.e., m1) also affects the SNE-generated torque
exerting on F2, as represented by the remaining two terms in
Eq. (25). When both ANE and SNE exist, the total spin torque
is given simply by the sum of both contributions, i.e.,

T = T ANE + T SNE. (26)

Next, we theoretically investigate how the above spin
torques from the SNE and ANE influence the FMR in the
free F2 layer and thus provide a means of characterizing
the two thermoelectric effects. Here we consider a classical
microwave-driven FMR to which the spin torque enters as
a quantity that influences the precessional motion which in
turn can be detected by a change in the FMR linewidth.
The Laudau-Lifshitz Gilbert (LLG) equation of the free F2
magnetization m2 can be expressed as

dm2

dt
= −γμ0m2 × Heff + αm2 × dm2

dt
+ h̄

2e

γ

MstF2
T ,

(27)

where Heff = Hex + HD + Huni + h with the static external
magnetic field Hex, demagnetization field HD, uniaxial in-
plane magnetocrystalline anisotropy Huni, and a small uniform
excitation field h pointing perpendicular to Hex. γ , μ0, α,
Ms, and tF2 are the gyromagnetic ratio, vacuum permeability,
Gilbert damping constant of the isolated layer, saturation mag-
netization, and thickness of the F2 layer, respectively. Here
the spin torque T is multiplied with the prefactor h̄

2e
γ

MstF2
.

Therefore, the torque acts over the entire thickness of the free
F2 layer (tF2) and represents a bulk effect arising from the in-
terfacial spin current density. As shown in Fig. 4(b), the static
external magnetic field Hex is applied at a polar angle ϕH in
the x-y plane. We consider the magnetization dynamics in the
transformed XY Z-coordinate system [Fig. 4(b)], in which the
magnetization is stabilized along the Y axis with a sufficiently
large external magnetic field, i.e., Hex = HexŶ . As h � Hex,
we expect the excitation field to sustain a small-angle preces-
sion about the Y axis. Consequently, the unit magnetization
m2 can be decomposed into static and dynamic components
as m2 = m2X X̂ + Ŷ + m2Z Ẑ, where m2X and m2Z are the os-
cillating high frequency components in the XY Z coordinate.
Equivalently, the total magnetization M2 = Msm2 is given by
M2 = M2X X̂ + MsŶ + M2Z Ẑ with M2X (Z ) = Msm2X (Z ). With
the excitation field being h = heiωt X̂ , the resulting small-
angle precession around the equilibrium direction about Ŷ is
described by m2X (t ) = δm2X eiωt and m2Z (t ) = δm2Z eiωt . In
this section, we consider that both m1 and m2 of the two
F layers are oriented in-plane with polar angles ϕ1 and ϕ2,
respectively, as illustrated in Fig. 4(b). Linearization of the
LLG equation [i.e., Eq. (28)] with respect to m2 leads to the
equation

ωM

(
h
0

)
=

(
iωα + ωH iω + ωN

−iω − ωN iωα + ωH + ωD

)(
M2X

M2Z

)
. (28)

ωM , ωH, and ωD are convenient abbreviations with ωM =
γμ0Ms, ωH = γμ0(Hex + Huni ), and ωD = γμ0Meff , respec-
tively, where Huni = HuniŶ and HD = −Meff m2Z Ẑ are consid-
ered. Note that ωN represents the frequency originating from
SNE and ANE with

ωN = h̄

2e

γ

MstF2
(AANE + BSNE,1 + BSNE,2 + BSNE,3) sin ϕH,

(29)

where ϕ1 = ϕ2 = ϕH is used for simplicity. Note
that AANE and BSNE,1−3 are proportional to jANE =
my(p − βF)σFNANE∂xT and jSNE = σNNSNE∂xT , respectively.
Except for the ∂xT dependence, other parameters in the
expression of ωN are material dependent and can be treated
as constants. Compared with the conventional frequency
terms induced by the external magnetic field, anisotropy field,
and demagnetization field (i.e., ωH and ωD), we focus on
the modulation of the FMR by the SNE and ANE which is
represented by ωN . Rearranging Eq. (28), the susceptibility
tensor ¯̄χ can be obtained as(

M2X

M2Z

)
= M2 = ¯̄χh =

(
χXX χXZ

χZX χZZ

)(
h
0

)
. (30)
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Therefore, the real and imaginary parts of the susceptibility tensor component χXX = χ ′
XX − iχ ′′

XX are given by

χ ′
XX = ωM

[
(ωH + ωD)

(
ω2

res − ω2
) + 2αωNω2

]
(
ω2

res − ω2
)2 + ω2[α(2ωH + ωD) + 2ωN ]2

, (31)

χ ′′
XX = ωMω{α[ω2 − ω2

N + (2ωH + ωD)2] + 2ωN (ωH + ωD)}(
ω2

res − ω2
)2 + ω2[α(2ωH + ωD) + 2ωN ]2

, (32)

where the resonance frequency ωres is introduced as

ω2
res = ωH(ωH + ωD) + ω2

N . (33)

It is supposed that α � 1, 1 + α2 ≈ 1 is utilized in deriving
Eqs. (31) and (32). The real part χ ′

XX represents the compo-
nent of m2X that is in phase with the excitation field h, and the
imaginary part χ ′′

XX denotes its component which is delayed
from h with a phase angle of π/2. When there is neither
SNE nor ANE contributions (i.e., ωN = 0), χ ′

XX becomes
zero at the resonance condition (i.e., ω = ωres). The frequency
linewidth is also obtained from Eqs. (31) and (32) as

�ω = 1
2 [α(2ωH + ωD) + 2ωN ]. (34)

Consequently, the field-swept linewidth �H can be calculated
as

�H = 1

μ0γ

(
dωres

dωH

)−1

�ω = ωres

μ0γ

(
α + 2ωN

ωD + 2ωH

)
.

(35)

Based on above derivation, it can be seen that the FMR res-
onance amplitude and linewidth are modulated by SNE and
ANE (i.e., ωN ).

For the numerical calculation, we consider a
NiFe(F1)/Pt(N)/CoFeB(F2) structure with the same
material parameters as introduced previously. The
additional parameters for the free F2 made of CoFeB are
[6,7,39] tF2 = 1.7 nm, ρF2 = 300 	 nm, λF2 = 4.5 nm,
βF2 = 0.56, μ0Ms = 1 T ≈ μ0Meff , and α = 0.01. Huni is
treated as negligible compared with the applied Hex [39]. The
frequency of the microwave field ω is 9.53 GHz [40]. Here
we perform the FMR measurement by fixing ω and sweeping
Hex, i.e., χ ′

XX and χ ′′
XX are plotted as a function of the static

external field Hex in Figs. 5(a) and 5(b), respectively, where
an antisymmetric and a symmetric spectrum are observed.
With the effects of both SNE and ANE, the magnitude of the
susceptibility is enhanced additively. Note that the magnitude
will be decreased when ∇T is applied in the opposite
direction. In Figs. 5(a) and 5(b), a large temperature gradient
of ∂xT = 1 K/nm is utilized. Next, we plot χ ′′

XX and �H as a
function of ∂xT at the resonance condition in Figs. 5(c) and
5(d), respectively, in which the additive effects of SNE and
ANE can also be observed and the effects of them become
significant only at large temperature gradient exceeding
∂xT ∼ 0.1 K/nm. It is only at such large thermal gradients
that ωN gives an observable effect on the resonance amplitude
[via Eqs. (31) and (32)] and linewidth [via Eq. (35)], e.g.,
with the field linewidth �H change of the order of 10 Oe by
SNE and ANE. Further, a larger ∂xT on the scale of 1 K/nm is
required to achieve a comparable ωN with ωH, i.e., ωN ∼ 0.1
GHz with ωH ∼ 0.5 GHz at resonance. Note that the FMR

spectrum is independent of the length and width of the sample
for a fixed ∇T , unlike the TSMR voltage measurement as
described in the previous section, and is therefore limited by
the small value of NANE(SNE) of at most several μV/K. As a
result, most available experimental works investigating the
thermal Hall effects are based on the TSMR (i.e., voltage)
measurement [8,10,13,15]. Nevertheless, our derivation
yields the analytical expression of the FMR outputs under the
SNE and ANE, and predicts that it can provide an alternative
albeit a less sensitive route to the detection of SNE and ANE.
On the other hand, although conventional Joule heater might
have limitations for generating a large temperature gradient
for observable Nernst effects based on the FMR output, it can
still be realized experimentally via other means, e.g., by laser
heating [41].

As indicated before, here we consider a classical
microwave-driven FMR with a microwave excitation field h.
On the other hand, FMR excited by an rf current has also
been extensively investigated recently [4,42,43]. This current-
driven FMR is not adopted in this work since the excitation
rf current itself may induce additional spin torques originat-
ing from SHE and AHE at the same time. However, in the
specific configuration where the magnetizations in F1 and
F2 are parallel, the rf spin-transfer torques due to the oscil-
lating current would not affect the FMR spectrum [44,45].

FIG. 5. FMR analysis of the spin torques. (a) χ ′
X X (i.e., the real

part of the susceptibility χX X ) as a function of the applied external
field Hex. (b) χ ′′

X X (i.e., the imaginary part of the susceptibility χX X )
as a function of Hex. (c) χ ′′

X X as a function of the applied in-plane
temperature gradient ∂xT at the resonance condition. (d) The field-
swept linewidth �H as a function of ∂xT at the resonance condition.
The blue, red, black, and green lines represent contributions from
only SNE, only ANE, both and neither of them, respectively. In (a)
and (b), ∂xT = 1 K/nm is utilized.
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Therefore, the expressions of the resonance frequency and
linewidth derived above [i.e., Eq. (33)–(35)] are also valid for
the rf current-driven FMR since we have adopted ϕ1 = ϕ2 =
ϕH (parallel magnetization configuration) in our derivation,
for simplicity. Under this condition, the excitation field h used
in this work can be replaced by the rf current-induced Oersted
field instead. Therefore, the rf current-driven FMR would also
require a large thermal gradient to generate sufficient spin
torque for an observable signal, similar to that of the classical
microwave-driven FMR discussed in this work.

III. CONCLUSION

In this work, we present a phenomenological spin trans-
port theory based on drift-diffusion equations to treat SNE
and ANE simultaneously in F/N heterostructures, and analyze
their signature outputs. In a F/N bilayer with an in-plane
temperature gradient, the analytical expressions of the TSMR
voltage originating from SNE in N and ANE in F are derived,
in which SNE and ANE give additive (opposing) contributions
for the transverse (longitudinal) voltages when considering
the Nernst coefficients of SNE and ANE are of the same sign.
The anisotropic contributions of SNE and ANE to the TSMR
voltage provide a possible means of separating out the indi-
vidual contributions of SNE and ANE, as well as information
on the spin-dependent polarization parameters in F. On the
other hand, based on a F1/N/F2 trilayer, we investigate the
spin torques acting on the additional F2 resulting from SNE
in N and ANE in F1 by analyzing the FMR outputs. The
FMR spectrum and linewidth are calculated analytically and
numerically. For the magnetization configuration considered,
the SNE and ANE contribute additively to the resonance

magnitude and linewidth. Although the available NANE(SNE)

is limited to the order of several μV/K, a comparison of the
two signature outputs shows that unlike the FMR outputs, the
TSMR voltage arising from SNE and ANE can be enhanced
by using the sample with larger dimensions, and therefore pro-
vides a more sensitive measurement of the thermally induced
spin transport effects.
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APPENDIX: DERIVATION OF THE SPIN TORQUE

Following a similar procedure as presented in Sec. II B for
a F/N bilayer, we now consider the F1/N/F2 trilayer (Fig. 4).
Similarly, Q1(2) is introduced as the interfacial spin current
density at the F1(F2)/N interface, which is defined as being
injected from F1(F2) to N.

In the N layer, we apply two boundary conditions on the
N side of the interfaces, i.e., jsz,N(L1) = Q1 and jsz,N(L2) =
−Q2; the expression of the spin accumulation in the N can
be solved from the aforementioned drift-diffusion equation in
terms of Q1 and Q2 as

μs,N = e

gN

[
cosh

( tF1+tN−z
λN

)
sinh

( tN
λN

) Q1 + cosh
( tF1−z

λN

)
sinh

( tN
λN

) Q2 + jSNEsech

(
tN

2λN

)
sinh

(
2tF1 + tN − 2z

2λN

)
ŷ

]
. (A1)

Accordingly, the spin accumulations at the boundaries (on the N side) are explicitly given by

μs,N(L1) = e

gN

[
coth

(
tN
λN

)
Q1 + csch

(
tN
λN

)
Q2 − jSNEtanh

(
tN

2λN

)
ŷ
]

(A2)

and

μs,N(L2) = e

gN

[
csch

(
tN
λN

)
Q1 + coth

(
tN
λN

)
Q2 + jSNE tanh

(
tN

2λN

)
ŷ
]
. (A3)

In the F1 with ANE, we apply jsz,F1(0) = 0 and jsz,F1(L1) = m1 · Q1, with which the spin accumulation can be solved from
the drift-diffusion equation in terms of Q1 as

μs,F1 = − e

gF1

1

sinh
( tF1

λF1

)[
2 jANE sinh

(
tF1

2λF1

)
sinh

(
tF1 − 2z

2λF1

)
+ cosh

(
z

λF1

)
m1 · Q1

]
. (A4)

Accordingly, the spin accumulation at z = L1 (on the F1 side) is given by

μs,F1(L1) = − e

gF1

[
− jANE tanh

(
tF1

2λF1

)
+ coth

(
tF1

λF1

)
m1 · Q1

]
. (A5)

Similarly, in the F2 without ANE (i.e., NANE = 0), by applying jsz,F2(L2) = −m2 · Q2 and jsz,F2(L3) = 0, the spin accumula-
tion can be obtained as

μs,F2 = − e

gF2

1

sinh
( tF2

λF2

) cosh
( tF1 + tN + tF2 − z

λF2

)
m2 · Q2. (A6)
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The spin accumulation at z = L2 (on the F2 side) is given by

μs,F2(L2) = − e

gF2
coth

( tF2

λF2

)
m2 · Q2. (A7)

With the same form as Eq. (8), we have the boundary condition at the F1/N interface (i.e., z = L1) as

eQ1 = G0[μs,F1(L1) − m1 · μs,N(L1)]m1 + 2Grm1 × [m1 × μs,N(L1)] + 2Gi[m1 × μs,N(L1)], (A8)

Applying Gi = 0 and multiplying 1/e, Eq. (A8) becomes

Q1 = G0

[
μs,F1(L1)

e
− m1 · μs,N(L1)

e

]
m1 + 2Grm1 ×

[
m1 × μs,N(L1)

e

]
. (A9)

For notational simplification, we rewrite Eqs. (A5) and (A2), respectively, as

μs,F1(L1)

e
= μ0

ANE

e
− 1

GF1
(m1 · Q1), (A10)

and

μs,N(L1)

e
= 1

G11
Q1 + 1

G12
Q2 − μ0

SNE

e
ŷ, (A11)

where the effective conductances are given by GF1 = gF1 tanh( tF1
λF1

), G11 = gN tanh( tN
λN

), and G12 = gN sinh( tN
λN

). Substituting
Eqs. (A10) and (A11) into Eq. (A9), we get

Q1 = D1m1 + D2(m1 · Q1)m1 + D3(m1 · Q2)m1 + D4m1 × (m1 × Q2) + D5m1 × (m1 × Q1) + D6m1 × (m1 × ŷ), (A12)

where D1 = ( μ0
ANE
e + μ0

SNE
e my1)G0, D2 = −( 1

GF1
+ 1

G11
)G0, D3 = − G0

G12
, D4 = 2Gr

G12
, D5 = 2Gr

G11
, and D6 = − 2μ0

SNE
e Gr . Based on

Eq. (A12), we obtain three more equations with respect to m1, i.e.,

m1 · Q1 = D1 + D2(m1 · Q1) + D3(m1 · Q2), (A13)

m1 × Q1 = −D4(m1 × Q2) − D5(m1 × Q1) − D6(m1 × ŷ), (A14)

and

m1 × (m1 × Q1) = −D4m1 × (m1 × Q2) − D5m1 × (m1 × Q1) − D6m1 × (m1 × ŷ). (A15)

Applying the same algebraic procedures with respect to m2 to Eq. (A12), giving

m2 · Q1 = D1(m1 · m2) + D2(m1 · Q1)(m1 · m2) + D3(m1 · Q2)(m1 · m2) + D4[(m1 · Q2)(m1 · m2)

− (m2 · Q2)] + D5[(m1 · Q1)(m1 · m2) − (m2 · Q1)] + D6[my1 · (m1 · m2) − my2], (A16)

m2 × Q1 = D1(m2 × m1) + D2(m1 · Q1)(m2 × m1) + D3(m1 · Q2)(m2 × m1) + D4[(m1 · Q2)(m2 · m1)

− (m2 × Q2)]+D5[(m1 · Q1)(m2 × m1) − (m2 × Q1)] + D6[my1(m2 × m1) − m2 × ŷ], (A17)

m2 × (m2 × Q1) = D1m2 × (m2 × m1) + D2(m1 · Q1)m2 × (m2 × m1) + D3(m1 · Q2)m2

× (m2 · m1) + D4[(m1 · Q2)m2 × (m2 × m1) − m2 × (m2 × Q2)] + D5[(m1 · Q1)m2 × (m2 × m1) − m2

× (m2 × Q1)]+ D6[my1m2 × (m2 × m1) − m2 × (m2 × ŷ)]. (A18)

Therefore, we get six equations from Eq. (A9), i.e., Eqs. (A13)–(A18).
At the F2/N interface (i.e., z = L2), similar to Eq. (A9), we have

Q2 = G0

[
μs,F2(L2)

e
− m2 · μs,N(L2)

e

]
m2 + 2Grm2 ×

[
m2 × μs,N(L2)

e

]
. (A19)

Equations (A6) and (A3) are rewritten, respectively, as

μs,F2(L2)

e
= − 1

GF2
(m2 · Q2), (A20)

and

μs,N(L2)

e
= 1

G12
Q1 + 1

G11
Q2 + μ0

SNE

e
ŷ, (A21)
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where GF2 = gF2 tanh( tF2
λF2

). Substituting Eqs. (A20) and (A21) into Eq. (A19) with the same algebraic transformations, another
six equations of m1 · Q2, m1 × Q2, m1 × (m1 × Q2), m2 · Q2, m2 × Q2, and m2 × (m2 × Q2) can be obtained accordingly.

Then, we have 12 linear equations with 12 unknowns in terms of Q1 and Q2. The 12 unknowns are m1 · Q1, m1 · Q2, m2 · Q1,
m2 · Q2, m1 × Q1, m1 × Q2, m2 × Q1, m2 × Q2, m1 × (m1 × Q1), m1 × (m1 × Q2), m2 × (m2 × Q1), and m2 × (m2 × Q2),
in which m2 × (m2 × Q2) gives the spin torque defined by Eq. (23). Subsequently, the expression of the spin torque solution is
solved with the unknown m2 × (m2 × Q2). By setting NSNE = 0, we would be able to obtain the expression for the coefficient
AANE in Eq. (24) which represents the ANE contribution to the spin torque. Similarly, by setting NANE = 0, we would obtain the
expressions for the three coefficients BSNE,1–3 in Eq. (25), which represent the SNE contribution to the spin torque.
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