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The magnetic long-range ordering states of van der Waals magnets at low temperatures have gained much
interest, yet their high-temperature paramagnetic states remain largely unexplored. In this paper, we apply
the disordered local moment picture for describing the paramagnetic states of two-dimensional magnetic
semiconductors. We calculate the electronic structure of paramagnetic phases of CrI3, CrSiTe3, and NiPS3

using the density functional theory with static Hubbard corrections. The semiconducting electronic structures are
successfully reproduced without any inclusion of dynamical correlation effects. The local electronic structure of
magnetic ions in the paramagnetic phase resembles those in the magnetically ordered phase. The band structures
of the paramagnetic phases are also analyzed. The itinerant ferromagnet Fe3GeTe2 is also briefly discussed where
the disordered local moment picture is not applicable due to the coexistence of itinerant and local magnetism.
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I. INTRODUCTION

Low-dimensional magnets with van der Waals (vdW)
bonding between layers have gained intensive attention re-
cently [1–3]. The persistence of long-range magnetic order in
the few layers even in the monolayers has been demonstrated
in several vdW magnets, including MPS3 (M: transition met-
als) [4–7], CrI3 [8], CrXTe3 (X = Si, Ge) [9], Fe3GeTe2

[10,11], etc. Detection of magnetically ordered states in
ultrathin films of vdW magnetic materials relies on the
spontaneously broken symmetries induced by magnetically
long-range ordering. The breaking of time-reversal symmetry
leads to magneto-optical Kerr effect in ferromagnetic vdW
thin films. Although the cancellation of magnetization in
antiferromagnetic vdW magnets prevents the magneto-optic
Kerr response, the breaking of rotational symmetry splits
the phonon modes those were degenerate in the paramag-
netic phase [12]. Angle-resolved photoemission spectrascopy
(ARPES) has been employed to unveil the band structure
of the paramagnetic phases of CrSiTe3 (Ref. [13]), CrGeTe3

(Ref. [14]), Fe3GeTe2 (Refs. [15,16]), and CrI3 and VI3

(Ref. [17]). A thorough insight of the paramagnetic state,
thus, helps us to deepen the understanding of magnetically
ordered state, especially the symmetry-breaking role played
by magnetic orders.

Theoretical treatment of paramagnetic states is nontrivial.
The paramagnetic states were simulated in some studies by
using nonmagnetic density functional theory (DFT) calcu-
lations, however, the predicted metallic states disagree with
experimental data [13,18]. The inclusion of dynamical cor-
relation effects by using the dynamical mean-field theory
eventually opens an energy gap, therefore, magnetic vdW
semiconductors were classified as Mott insulators [13,19].
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On the other hand, the ferromagnetic state was predicted
to be semiconducting using ordinary DFT calculations even
without inclusion of correlation effects. The local mag-
netic moment is the key concept to resolve the issue. The
intra-atomic exchange coupling leads to formation of local
magnetic moment on each transition-metal ion. The presence
of local magnetic moments in paramagnetic phases is evi-
denced by the Curie-Weiss law of the magnetic susceptibility.
When the paramagnetic phases are treated as nonmagnetic,
the constraint of spin degeneracy forces the d orbitals of
transition-metal ions to be partially occupied and results in
a metallic ground state [13,18]. Therefore, local spin density
will be explicitly taken into account for a correct description
of the paramagnetic phase.

The studies of the paramagnetic phases of magnetic mate-
rials have been focused on 3d-transition metals, their alloys,
and compounds [20]. Strong magnets possess local moments
on magnetic ions, and their paramagnetic phases are charac-
terized by randomly oriented local moments due to thermal
fluctuations. In the disordered local moment (DLM) pic-
ture [21–26], it is further assumed that the timescale for
local-moment flipping is much longer than that for elec-
tron hopping. The electronic structure of one of the random
magnetic configurations can be computed within the Born-
Oppenheimer approximation with the spin treated as the slow
degree of freedom. Macroscopic properties of paramagnetic
phase can be obtained by an ensemble average over disordered
local-moment configurations using the coherent potential ap-
proximation (CPA) [26] or the special quasirandom structures
(SQS) [27,28].

In this paper, we investigate the paramagnetic phases well
above the Neel/Curie temperatures of protypical magnetic
vdW semiconductors CrI3, CrSiTe3, and NiPS3. We combine
the DLM-SQS method and the DFT to calculate their elec-
tronic structures. The transition between magnetically ordered
phase and the paramagnetic phase is out of the scope of this
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paper. The semiconducting energy gaps in the paramagnetic
(PM) phases are reproduced without the inclusion of any
dynamical correlation effect. The local density of states pro-
jected on each transition-metal ion in the PM phase remains
the same as in the magnetically ordered phase. We also briefly
discuss the case of itinerant ferromagnet Fe3GeTe2 and iden-
tify the existence of itinerant and localized magnetism.

The rest of the paper is organized as follows. The simu-
lation methods were detailed in Sec. II. Calculation results
of electronic structure of CrI3 and CrSiTe3 are presented in
Sec. III A. The electronic structure and optical conductivity
of NiPS3 are discussed in Sec. III B. In Sec. III C, we briefly
discuss the mixed itinerant and local magnetism in metallic
Fe3GeTe2. Conclusions of this paper are given in Sec. IV.

II. COMPUTATIONAL METHODS

The disordered local magnetic moments in the param-
agnetic phases are simulated using the special quasirandom
structures method [27]. For CrI3 and CrSiTe3, we build 4 × 4
and 3 × 3 × 1 supercells for the monolayer and bulk, respec-
tively. Supercells of 3 × 2 and 3 × 2 × 2 are used for the
monolayer and bulk of NiPS3. The SQS was generated using
the MCSQS program [29] in the ALLOY THEORETIC AUTOMATED

TOOLKITpackage [30,31] with the cutoff distance of clusters
set to 8 Å.

First-principles calculations were carried out using spin-
polarized DFT in the projector augmented-wave framework as
implemented in the VASP code [32–36]. We use the Perdew-
Burke-Ernzerhof [37] parametrization of the generalized
gradient approximation (GGA) for the exchange-correlation
functional. The semiempirical D2 van der Waals correction of
Grimme [38] was added for the bulk systems. The first Bril-
louin zone was sampled by uniform Monkhorst-Pack meshes
of 5 × 5 and 5 × 5 × 3 for monolayers and bulks, respec-
tively. The energy cutoff of the plane waves is set to 400 eV.
We took the experimental values for the lattice constants of
all the materials. The atomic positions in the primitive cells
were fully optimized with the magnetic structures set to their
ground states, until the residual forces on all atoms are less
than 0.01 eV/Å. The supercells were constructed by repeating
primitive cells but without further structural relaxations.

The band structures of the paramagnetic phases were
unfolded to the first Brillouin zone of the corresponding prim-
itive cell using the effective band-structure approach [39,40]
as implemented in the BANDUP code [41,42]. The frequency-
dependent dielectric function was calculated within the
independent-particle approximation. The spin-orbit coupling
effect is ignored in our DFT calculations. The magnetocrys-
talline anisotropy resulting from the spin-orbit coupling is
crucial for the magnetic ground states and the magnetic phase
transitions. The spin-orbit coupling effect is less important
than the magnetic exchange effect for comparing electronic
structures of magnetically ordered and disordered phases.

III. RESULTS

We first analyze the energy splitting of d orbitals of Cr3+
and Ni2+ ions in CrI3, CrSiTe3, and NiPS3 compounds. These
d orbitals split by the octahedral crystal field to t2g and eg,

FIG. 1. The energy levels of the d shell of (a) Cr3+ (d3) and
(b) Ni2+ (d8) ions. The t2g and eg orbitals of the same spin channel are
splitted by crystal field effect (�c f ∼ 1.5 eV). The spin-up and spin-
down channels are splitted due to intra-atomic exchange interactions
(�ex ∼ 3 eV).

and the crystal-field splitting energy is �c f ∼ 1.5 eV. The
intra-atomic exchange interaction induces spin splitting of
�ex ∼ 3 eV. In real materials, the values of �c f and �ex

are corrected by orbital hybridization with ligands and the
intra-atomic Coulomb repulsive interaction. The energy levels
of Cr3+ (d3) and Ni2+ (d8) ions within the mean-field picture
are schematically shown in Fig. 1. The lowest-lying t2g or-
bitals in the spin-up channel are fully occupied in the Cr3+
ion. Electrons occupy upon the spin-down t2g orbitals in the
Ni2+ ion. As a result, the occupation numbers on d orbitals are
integers. Neglecting the hybridization with ligands, the energy
gaps of Cr3+- and Ni2+-containing compounds are estimated
to be the crystal-field splitting energy �c f ∼ 1.5 eV. Indeed,
the experimental band gaps of CrI3, CrSiTe3, and NiPS3 are
on the order of 1 eV. Note that the energies and occupations
of d-shell energy levels are determined by the transition-metal
ions themselves and are, thus, independent on the global
magnetic moment configuration. Therefore, one expects that
the local electronic structure of the transition-metal ion in
paramagnetic states remains the same as in the magnetically
ordered state. The paramagnetic state is expected to possess a
similar energy gap with magnetically ordered states.

A. CrI3 and CrSiTe3

In this section, we discuss CrI3 and CrSiTe3 due to the
close similarity. Both CrI3 and CrSiTe3 exhibit ferromagnetic
ordering at low temperatures with the Curie temperatures of
61 and 33 K, respectively. Both compounds are semiconduc-
tors exhibiting electronic energy gaps below and above their
Curie temperatures. The energy gap of CrI3 is 1.1–1.2 eV
according to photoluminescence [43,44] and photocurrent
[44] experiments and is independent of the temperature [43].
CrSiTe3 is an indirect band-gap semiconductor with an exper-
imental indirect band gap of 0.4 eV and a direct band gap of
1.2 eV [45]. Our DFT-GGA calculation of the ferromagnetic
(FM) states predict energy gaps of 0.8 eV for CrI3 and and
0.4 eV for CrSiTe3.

The DOS of bulk and monolayer CrI3 in the FM and PM
phases are shown in Fig. 2. Results for CrSiTe3 are shown in

214417-2



PARAMAGNETIC PHASES OF TWO-DIMENSIONAL … PHYSICAL REVIEW B 102, 214417 (2020)

FIG. 2. Calculated density of states (DOS) of (a) and (b) CrI3

bulk and (c) and (d) monolayer in the (a) and (c) FM and (b) and
(d) PM states.

Fig. 3. The projected DOS on Cr-d orbitals (hereafter denoted
as PDOS-Cr) are also plotted. For the FM states as shown in
Figs. 2(a) and 2(c) and Figs. 3(a) and 3(c), the PDOS-Cr in
the spin-up channel is characterized by a broad peak between
−4 and 0 eV corresponding to the occupied t2g orbitals, and a
sharp peak at 1 eV corresponding to the eg orbitals. The PDOS
on t2g orbitals are strongly broadened due to the hybridization
with ligands. In the spin-down channel, the peak in the total
DOS around 3 eV is dominated by the unoccupied t2g orbitals.
The calculated DOS agrees qualitatively with the energy-level
diagram in Fig. 1. Comparing with the monolayer, the spin-up
DOS peak at 1 eV of bulk are slightly wider due to interlayer
hybridizations.

The calculated DOS of the paramagnetic state are shown
in Figs. 2(b) and 2(d) for CrI3 and Figs. 3(b) and 3(d) for
CrSiTe3. The PM states of CrI3 and CrSiTe3 possess semicon-
ducting electronic structures. As for the value of the energy
gap, if one estimates the energy gap as the width of the zero-
DOS region, the PM phases have ∼0.1-eV larger energy gaps
than the corresponding FM phases. If one instead measures
the energy gap using the peaks in the DOS, the PM and
FM phases show the same energy gaps, in accordance with
experimental data [43]. The projected DOS on one of the Cr

FIG. 3. Calculated DOS of (a) and (b) CrSiTe3 bulk and (c) and
(d) monolayer in the (a) and (c) FM and (b) and (d) PM states.

ions with up local moment (hereafter denoted as PDOS-Cr1)
is properly scaled and plotted in Figs. 2(b) and 2(d) and
Figs. 3(b) and 3(d) as red lines. The shape of the PDOS-Cr1 in
the PM phase is similar to the projected DOS on Cr in the FM
phase, indicating that Cr ions in the PM states remain strongly
spin polarized. The average value of the local magnetic mo-
ments in the PM phase is lower by 0.05μB per Cr ion than
the FM phase. The calculated local magnetic moments and
projected DOS prove that the local electronic structure of each
Cr ion is independent of the global magnetic configuration.
Our calculation results validate the disordered local moment
picture for describing the paramagnetic phase of CrI3 and
CrSiTe3. Both the calculated local magnetic moments and the
band gaps agree well with experimental data. Note that our
calculations were performed using the ordinary GGA without
including static or dynamic correlation effects.

Next, we discuss the band structures of CrI3 and CrSiTe3

monolayers in the PM phase. As seen from the DOS, the inter-
layer interaction plays a minor role on the electronic structure.
Because sizable supercells were employed in the simulations
of the paramagnetic phases, the calculated band structures are
severely folded. We, therefore, unfolded the band structures to
the first Brillouin zone of the primitive cells using the effective
band-structure approach [39,40]. The unfolded band structure

214417-3



CHEN, LONG, AND WANG PHYSICAL REVIEW B 102, 214417 (2020)

FIG. 4. Band structures of the CrI3 monolayer in para-, ferro-,
and antiferromagnetic phases. Spectral weights of the spin-up and
spin-down channels of the paramagnetic phase are shown as black
dots in (a) and (b), respectively; the sizes of the black dots represent
spectral weights. The band structure of the ferromagnetic phase is
shown as lines in (a): red lines for the spin-up channel, and blue
lines for the spin-down channel. The band structure of the antiferro-
magnetic phase is shown as lines in (b): The two spin channels are
degenerate.

is characterized by spectral weights at the given energy and
k point. The unfolded band structure of the PM phases are
shown in Fig. 4 for the CrI3 monolayer and in Fig. 5 for the
CrSiTe3 monolayer. The spectral weights are represented by
the sizes of the black dots in these figures.

Figure 4 shows the band structure of the CrI3 monolayer in
the PM, FM, and the AFM phases. The PM band structure in

FIG. 5. Band structures of the CrSiTe3 monolayer in para-, ferro-
, and antiferromagnetic phases. The notations are the same as in
Fig. 4.

the spin-up channel is shown as the black dots in Fig. 4(a); the
spin-down channel is shown in Fig. 4(b). There is a negligible
difference between the spin-up and the spin-down channels.

The band structure of the FM phase is also plotted in
Fig. 4(a): Red lines represent the spin-up channel, and blue
lines represent the spin-down channel. If one looks at the PM
bands with significant spectral weights, one can find coun-
terparts in the FM band structure exhibiting a similar energy
dispersion relation. Yet the strong spin splitting of the FM
bands prevents one from setting up a one-to-one correspon-
dence with the PM bands.

Figure 4(b) shows the band structure of the AFM phase.
One immediately notes a much better agreement between the
PM bands and the AFM bands especially below −1 eV. There
are yet minor disagreements between the PM and the AFM
bands, for instance, the conduction bands and the valence
bands near the band gap. Despite these minor disagreements,
the ordered AFM phase is a fairly good representation of the
disordered PM phase in the perspective of the band structure.

The case of the monolayer CrSiTe3 is shown in Fig. 5, in-
cluding the band structures of the PM, FM, and AFM phases.
The calculated PM band structure agrees well with ARPES
data reported in Ref. [13]: There are two clear bands within
1 eV below the energy gap. Comparing the PM band structure
with those of the FM and AFM phases, one can draw the
same conclusion as for the CrI3 case: The agreement of the
PM bands with the AFM bands is much better than with
the FM bands. The AFM bands coincide with the PM bands
near the valence-band edge and for the low-lying bands below
−3 eV. Within the energy range between −0.5 and −2.5 eV,
the PM bands smear out, that is, the spectral weights within
this energy range are significantly reduced with respect to the
bands below −3 eV. The intermixing of two spin channels in
the disordered PM phase will be the reason for the spectral
weight smearing.

B. NiPS3

The NiPS3 compound possesses an AFM order below
154 K. In the AFM state, the local magnetic moments of
Ni cations align parallel along one in-plane zigzag direc-
tion, whereas the neighboring zigzag chains are coupled
antiferromagnetically. X-ray absorption and photoemission
data suggested NiPS3 as a self-doped insulator with negative
charge transfer. The valence-band edge is dominated by S
ligand anions whereas the conduction-band edge is dominated
by Ni [46]. Our GGA calculation of the AFM state predicts a
semiconducting ground state with an energy gap of 0.6 eV,
which is smaller than the experimental energy gap of 1.8 eV
[46]. According to the energy-level diagram shown in Fig. 1,
we attribute this energy gap as dominated by the crystal-field
splitting (�c f ) of the spin-down channel. A more severe issue
of the GGA calculation is that, the valence-band edge is pre-
dicted to be dominated by Ni, contradicting with the negative
charge transfer nature of NiPS3. We, therefore, included a
static Hubbard correction of Ueff = 4 eV in order to repro-
duce the band gap and the negative charge-transfer nature.
Comparing with the DOS calculated by GGA (not shown
here), addition of Hubbard Ueff = 4 eV pushes the occupied
Ni-d orbitals down in energy by ∼2 eV, which weakens the
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FIG. 6. (a) and (b) Calculated DOS of NiPS3 bulk and (c) and
(d) monolayer in the (a) and (c) AFM and (b) and (d) PM states.

contribution of Ni to the valence-band edge. Figure 6(a) shows
the calculated DOS of bulk NiPS3 in the AFM state using
the GGA + U method. The valence-band edge is contributed
mainly by S, although the Ni-S hybridization brings a small Ni
weight. The monolayer NiPS3 possesses a very similar DOS,
see Fig. 6(c), except that the peaks in DOS are narrower due
to absence of interlayer couplings.

The DOS of the PM states are shown in Figs. 6(b) and
6(d) for bulk and monolayer NiPS3. For the AFM state, both
the valence- and conduction-band edges contribute narrow
peaks to the DOS. In the PM states, both of these DOS peaks
broaden significantly due to the disordered magnetic config-
uration. The DOS projected on one of Ni ions (PDOS-Ni1)
with the spin-up local magnetic moment is properly scaled
and shown as red lines in Fig. 6. One can attribute the peaks
in PDOS-Ni1 to atomic orbitals according to Fig. 1: the t2g

orbital at −5 eV and the eg orbital at −3.5 eV in the spin-up
channel, whereas the spin-down t2g orbital is at −3 eV and the
eg orbital is at 2 eV. Comparison of the PDOS-Ni1 (red lines)
in Figs. 6(a)–6(d) suggest that the local electronic structures
of the Ni ion are almost independent of the magnetic orders.
This fact validates the local moment picture for the magnetism
in NiPS3.

FIG. 7. Calculated optical conductivity of monolayer NiPS3 in
the AFM (the black solid line) and PM (the red dotted line) states.

The disordered local magnetic moments in the PM phase
modify the optical property. According to the cluster model
analysis in Ref. [46], the ∼2-eV electronic transition by pho-
ton absorption is allowed only when nearest-neighboring NiS6

clusters are antiferromagnetically coupled. We calculated the
dielectric function ε(ω) of AFM and PM NiPS3. The optical
conductivity is related to the dielectric function by σ1(ω) =
�ε(ω)ω/4π . The calculated σ1(ω) as shown in Fig. 7 is char-
acterized by a peak at 2 eV corresponding to the electronic
transition across the band gap. In the PM state, the height of
the 2-eV peak is substantially reduced compared to the AFM
state, in accord with the cluster model analysis of Ref. [46].

The band structures of the NiPS3 monolayer in the PM,
FM, and AFM phases are shown in Fig. 8. The magnetic

FIG. 8. Band structures of theNiPS3 monolayer in para-, ferro-,
and antiferromagnetic phases. Spectral weights of the spin-up and
spin-down channels of the paramagnetic phase are shown as black
dots in (a) and (b), respectively; the sizes of the black dots represent
spectral weights. The band structure of the antiferromagnetic phase
is shown as lines in (a): The two spin channels are degenerate. The
band structure of the ferromagnetic phase is shown as lines in (b):
red lines for the spin-up channel, and blue lines for the spin-down
channel.
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ground state of NiPS3 is AFM, so we first compare the PM
band structure with the AFM band structure. The conduction
bands and the valence bands near the band gap in the PM
phase coincide with those in the AFM phase. There is also
fairly good agreement for the bands below −1.5 eV. Notice-
able disagreement between the AFM bands and the PM bands
occurs between −0.5 and −1.5 eV: The PM bands in this
energy range can find no counterparts in the AFM bands; in
fact, there are no AFM bands within this energy range. One
can find signatures of this disagreement in the DOS. The DOS
of the AFM phase [Fig. 6(c)] shows a significant reduction
near −1 eV, whereas the DOS of the PM phase [Fig. 6(d)]
is much larger. Contrary to the above-discussed CrI3 and
CrSiTe3, the AFM phase is no longer a good representation
of the disordered PM phase for the case of NiPS3. We also
plot the band structure of the FM phase in Fig. 8(b). Although
the severe disagreement in the conduction band, the FM phase
possesses some bands within the [−0.5-,−1.5-eV] interval.
Therefore, it is the locally FM portion in the PM phase that
contributes to the electronic states within this energy range.

C. Fe3GeTe2

The above two sections are focused on semiconducting
vdW magnets. In this section we discuss the case of metallic
Fe3GeTe2. Although it is believed that the ferromagnetism of
Fe3GeTe2 is of the itinerant type [47], some authors instead
took the local moment picture [10,16]. A compelling consen-
sus regarding the nature of magnetism in Fe3GeTe2 is not yet
established. We first assume that the local moment picture
is valid for Fe3GeTe2 and calculate its electronic structure
in the PM state using the DFT-SQS method. There are two
nonequivalent Fe sites in the primitive cell, denoted as Fe1 and
Fe2 in Fig. 9. Our GGA calculation of the FM state predicts
that each Fe1 site possesses a magnetic moment of 2.5μB, but
the local moment on the Fe2 site is only 1.5μB.

We built a 4 × 4 supercell of monolayer Fe3GeTe2 for
DFT-SQS calculations of the PM state. The calculated local
moments on Fe1 sites in the PM state scatter between 2.0 and
2.4μB. The reduction of Fe1 local moments with respect to the
FM state (0.1–0.5μB or 4%–20%) is sizable yet not severe. As
a reference, calculations using the Korringa-Kohn-Rostoker
version of the coherent potential approximation (CPA) pre-
dicted that the local moment of bcc iron in the PM state is
reduced by 15% than the FM state [48].

The calculated local moments on Fe2 sites in the PM state
scatter widely between 0.0μB and 1.3μB. In fact, we find that
the magnitude of the local moment of a Fe2 site depends
on the magnetic configuration of neighboring Fe1 sites. The
collapse of local magnetic moments of Fe2 sites completely
invalidates the local moment picture for Fe3GeTe2. The mag-
netism of the Fe2 site is itinerant instead of localized. The
magnetism of Fe3GeTe2 will be described as local moments
on Fe1 sites embedded in the itinerant medium formed by
other sites.

Electrons around a site are spin polarized when the forma-
tion of a local magnetic moment is accompanied by significant
energy reduction. We calculate the total energy reduction due
to development of local magnetization as an estimation of the
“strongness” of local magnetic moments. As a reference, we

FIG. 9. Total energy of Fe3GeTe2 as a function of constrained
local magnetic moments. The local moment on the Fe2 site is con-
strained with local moments on the Fe1 sites in the (a) AFM and
(b) FM configurations. (c) The local moment on the Fe1 sites are
constrained. The FM and AFM configurations of the Fe1 sites are
depicted above (a).

calculated the bcc iron and found that total energy of the FM
state is about 500 meV per Fe lower than the nonmagnetic
state. The SQS model of the PM state is rather complicated,
and we, thus, considered the primitive cell of Fe3GeTe2 in two
different magnetic configurations where local moments on the
Fe1 sites are aligned parallel or antiparallel as shown in Fig. 9.
The constrained density functional theory (CDFT) is used for
control the directions and magnitudes of local moments.
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Figure 9(a) corresponds to the AFM case where the local
moments on the Fe1 sites aligned antiparallel to each other.
When the local moment on the Fe2 site increases to 0.5μB,
the total energy reaches its minimum. Although the Fe2 site
indeed develops a local moment, the accompanied total energy
reduction is extremely small (2 meV). Therefore, the local
moment on the Fe2 site in the AFM case is quite weak.
When the local moments on the Fe1 sites are parallel to each
other (the FM case), a local moment of 1.4μB develops on
the Fe2 site with a total energy reduction of 250 meV as
shown Fig. 9(b). In this case the formation of local moment
on the Fe2 site is much more energetically favorable than
the AFM case. The above two results indicate that the for-
mation of a local moment is not the original nature of the
Fe2 site. The local moment on the Fe2 site is not formed
by itself but rather induced by the neighboring Fe1 sites. We
performed similar CDFT calculations with the local moment
on the Fe1 sites constrained. The result is shown in Fig. 9(c).
The total energy is reduced by 400 meV per Fe1 site when a
2.5μB local moment is formed. The local moments on the Fe1
sites are as strong as in bcc iron from the energetic point of
view. Our CDFT calculations prove that Fe1 sites host strong
local magnetic moments, whereas electrons at Fe2 sites are
itinerant.

IV. CONCLUSIONS

In this paper we have studied the paramagnetism
in semiconducting and metallic van der Waals magnets.

We found that the disordered local moment theory works
well for semiconducting CrI3, CrSiTe3, and NiPS3. The dy-
namic correlation effects are not required for describing
their paramagnetic phases. This conclusion can be extended
to other semiconducting van der Waals magnets, including
CrBr3, CrCl3, CrGeTe3, MnPS3, FePS3, and others. On the
other hand, the local moment picture is not applicable for
metallic Fe3GeTe2 in which case the magnitude of the local
moment on Fe2 sites severely depends on the magnetic config-
uration of neighboring Fe1 sites. Fe3GeTe2 possesses a mixed
local-itinerant magnetism.

Our conclusions shed light on the understanding and sim-
ulating the magnetic dynamics in these materials. The local
moment picture holds for semiconducting vdW magnets.
Therefore, the extended Heisenberg model and the atomistic
Landau-Lifshitz-Gilbert equation are the optimal choice for
the simulation of magnetic dynamics [49]. Because of the
mixed local-itinerant magnetism of Fe3GeTe2, the Heisen-
berg model is not applicable, in principle. More sophisticated
approaches, such as the many-body perturbation theory in
Ref. [50] and references therein, are required for an accurate
description of spin excitation in Fe3GeTe2.
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