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We investigate the spin- 1
2 Heisenberg model on a rectangular lattice, using the Gutzwiller projected variational

wave function known as the staggered flux state. Using Monte Carlo techniques, the variational parameters and
instantaneous spin-spin correlation function for different coupling anisotropies γ = Jy/Jx are calculated. We
observe a gradual evolution of the ground state energy towards a value which is very close to the one-dimensional
(1D) estimate provided by the Bethe ansatz and a good agreement between the finite-size scaling of the energies.
The spin-spin correlation functions exhibit a power-law decay with varying exponents for different anisotropies.
Though the lack of Néel order makes the staggered flux state energetically unfavorable in the symmetric case
γ = 1, it appears to capture the essence of the system close to 1D. Hence we believe that the staggered flux
state provides an interesting starting point to explore the crossover from quantum disordered chains to the Néel
ordered two-dimensional square lattices.

DOI: 10.1103/PhysRevB.102.214413

I. INTRODUCTION

The Heisenberg interaction constitutes a major type of
magnetic interaction between the spins in many materials.
It emerges naturally in highly correlated materials with a
large Coulomb repulsion. In the field of quantum magnetism,
models in various dimensions, involving both ferromagnetic
and antiferromagnetic interactions, have been extensively
studied. Perhaps one of the most interesting models is the
two-dimensional quantum square lattice Heisenberg antiferro-
magnet which, despite its simplicity, lacks an exact analytical
solution. One of the key motivations behind studying this
model is because it describes the functional building blocks
of parent compounds of high-temperature superconductors
like cuprates [1,2], and magnetic fluctuations are speculated
to be a reason for the pairing mechanism of the Cooper
pairs [3]. At zero temperature, the ground state has anti-
ferromagnetic long-range order with algebraically decaying
transverse correlations. The low-energy excitation spectrum
consists of magnon excitations described by spin-wave theory
[4,5]. However, inelastic-neutron-scattering studies on these
structures have shown a striking anomaly at the (π, 0) k point
that could not be explained using conventional spin-wave
theory [6,7]. The main feature of this anomaly is the loss of
almost half of spectral weight in the magnon branch, which
emerges as a high-energy continuum.

This issue led to the work by Dalla Piazza et al. [8],
where it was shown that the staggered flux (SF) state [9], a
variant of resonating valence bond state, is capable of cap-
turing the essential features of the quantum anomaly. The
interesting aspect of this work is that the observed excitations
at the quantum anomaly are two-dimensional (2D) analogs
of particles carrying fractional (S = 1/2) quantum numbers
termed as “spinons.” Spinons are the fundamental excitations
found in the exact one-dimensional (1D) solution through
Bethe ansatz [10] which have experimentally been observed

[11–13]. In higher dimensions, they are proposed to be found
mostly in frustrated lattices capable of hosting a quantum
spin liquid [14], a disordered phase with high degeneracy
at T = 0. On the other hand, quasi-1D systems called spin
ladders have exhibited experimental features where the low-
energy bands are magnonlike and high-energy features are
spinonlike [15]. Theoretical work on weakly coupled chains,
along with frustrating next-nearest-neighbor couplings, were
found to be exhibiting a spinon continuum along with triplon
bound states [16]. Contrary to the spinon picture, an alternate
proposal by Powalski et al. [17,18], based on continuous simi-
larity transformation of the Hamiltonian in momentum space,
attributes the (π, 0) anomaly to higher order magnon-magnon
interaction denoted as magnon-Higgs-like scattering.

Motivated by the work by Dalla Piazza et al. [8], we extend
their methodology to the rectangular lattice, where by tuning
the ratio of spin couplings in the two lattice directions we can
interpolate between the square-lattice limit (where spinons are
only conjectured at one wave vector in the magnon band)
and one-dimensional chains (where spinons are elementary
excitations at all wave vectors). Research works relating to
such an interpolation between the 1D and 2D are not new.
A rich discussion on the nature of the ground state of the
2D Hubbard model took place in the early 1990s, with Lut-
tinger liquid and Fermi liquid being two distinct fixed points.
Anderson’s work [19,20] proposed Luttinger-liquid behavior
in two-dimensional systems in which the band spectrum is
bounded above. Other research works [21,22] showed that
Fermi-liquid behavior survives in 2D, at least in the low-
density regime. Finally, a dimensional crossover from Fermi
to Luttinger liquid was explored by Castellani et al. [23],
where they proposed a tomographic Luttinger discription of
this crossover. Though this discussion is related to the charge
sector of the Hubbard model, an interesting parallel could
be drawn towards the spin sector of the Heisenberg model
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(U → ∞), where a disordered quantum spin liquid in 1D and
an ordered Néel state in higher dimensions are two distinct
solutions.

In this work, preliminary studies of the projected staggered
flux wave functions on a rectangular lattice are reported. We
compute the variational energies and the spin correlations as
a function of the anisotropy parameter. We also comment on
the finite-size effects which are especially important in the
strongly anisotropic case. These results will be of future use
for the analysis of spin excitations in such states. Our work is
related to that of Miyazaki et al. [24], who studied a similar
variational ansatz in the Schwinger-boson construction. Due
to the difference in the particle statistics (fermion vs bosons),
we do not expect exact agreement between the wave functions
in their work and in ours. Furthermore, in view of applying our
wave function to the spinon deconfinement problem along the
lines of Dalla Piazza et al. [8], we do not include antiferro-
magnetic ordering in our ansatz.

II. METHOD

We consider the Heisenberg Hamiltonian on the rectangu-
lar lattice

H =
∑
〈i, j〉

Ji jSi · Sj, (1)

where Si, Sj are the spin- 1
2 operators on nearest-neighbor sites

〈i, j〉. The coupling Ji j is equal to Jx in the x direction and to Jy

in the y direction. Without loss of generality, we choose Jy �
Jx so that the anisotropy parameter γ = Jy/Jx lies between 0
and 1.

Following the usual variational procedure for Gutzwiller-
projected wave functions [25,26], we consider the ground
state |ψSF 〉 of the auxiliary (“mean-field”) Hamiltonian

HSF = −
∑

〈i, j〉,σ
χi jc

†
iσ c jσ , (2)

where c†
iσ and ciσ are spin- 1

2 fermion creation and annihila-
tion operators and the parameter χi j = Ji j〈c†

iσ c jσ 〉. We then
optimize these parameters χi j within a certain symmetry class
to minimize the variational energy

E = 〈GS|H|GS〉 (3)

of its projected ground state

|GS〉 = PD=0|ψSF 〉, (4)

where the operator PD=0 projects onto states with exactly one
fermion per site.

We restrict our study to the staggered flux ansatz for χi j

(see, e.g., Refs. [9,27]) with different amplitudes in the x and
y directions:

χi,i+x = χxei(−1)ix+iy ϕ/4, χi,i+y = χye−i(−1)ix+iy ϕ/4. (5)

Due to the projection, there is a redundancy in the phase of
the fermion on each site, and the projected state, Eq. (4), only
depends on the total flux ϕ through a lattice cell but not on
the distribution of the flux over phases of individual hopping
amplitudes χi j in Eq. (5). Also, the overall normalization of
χi j has no effect on the wave function. The variational wave

Jx

Jy

FIG. 1. An illustration of staggered flux state with anisotropic
couplings, represented as flux ϕ threading the lattice in a staggered
manner.

function thus depends on two parameters: the flux ϕ and the
hopping anisotropy

α = χy/χx. (6)

Note that there is a larger symmetry in the particle-hole
space that makes our projected staggered flux state identical
to a corresponding projected d-wave superconducting state.
It has, in fact, been shown that both are related via a SU (2)
transformation [28]. For the same reason, the projected stag-
gered flux state |GS〉 has a full translational symmetry, even
though the unprojected state |ψSF 〉 does not (Fig. 1).

The spectrum of the auxiliary Hamiltonian, Eq. (2), is gap-
less with nodes at the wave vector (±π/2,±π/2) and energy
given by

ε±
k = ± 1

2

∣∣χxeiϕ/4 cos kx + χy e−iϕ/4 cos ky

∣∣. (7)

The ground state wave function corresponds to filling the
lower band within the magnetic Brillouin zone (MBZ) with
up and down spins,

|ψSF 〉 =
∏

kεMBZ

d†
k↑−d†

k↓−|0〉, (8)

where the operators d (d†) are the annihilation (creation)
operators for the eigenstates of the Hamiltonian, Eq. (2).

The observables in the projected state, Eq. (4), are calcu-
lated as

〈GS|O|GS〉 = 〈ψSF |PD=0OPD=0|ψSF 〉
〈ψSF |PD=0|ψSF 〉 . (9)

Considering a Hilbert space made up of states |β〉 where
all the lattice sites are singly occupied, we may write the
Gutzwiller projector as PD=0 = ∑

β |β〉〈β| and express the
expectation value, Eq. (9), as a statistical average:

〈O〉 =
∑

β

|〈β|ψSF 〉|2∑
β ′ |〈β ′|ψSF 〉|2︸ ︷︷ ︸

ρ(β )

(∑
γ

〈β|O|γ 〉 〈γ |ψSF 〉
〈β|ψSF 〉

)
︸ ︷︷ ︸

f (β )

. (10)

The above equation has the form of a weighted average of
a function f (β ) with ρ(β ) being its normalized probability
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distribution. The space {|β〉} has a size of 2N where N is the
number of sites and hence we cannot calculate exactly the
expectation value using Eq. (10). Therefore we use a Monte
Carlo algorithm for this purpose [25]. We start the walk with
a state |β〉, initialized through randomly filling up and down
spins in the position space, and derive a new state |β ′〉 at
each step by flipping a pair of randomly chosen spins. At
each step, the new overlap amplitude |〈β ′|ψSF 〉|2 given by a
Slater determinant is calculated. The ratio between the new
and old overlap amplitudes is used as the acceptance ratio.
After every N steps, a measurement of the function f (β ), as
defined in Eq. (10), is performed by calculating the matrix
elements 〈β|O|γ 〉 and the overlap 〈γ |ψSF 〉. In principle, the
sum runs over all states |γ 〉 in the single-occupancy basis, but
since we are only interested in averaging local operators O
(such as energy or static spin structure factor), for a given |β〉
there are only a few relevant |γ 〉 states with nonzero 〈β|O|γ 〉.
For calculating the energy, the operator O is the physical
Hamiltonian, Eq. (1).

III. RESULTS

A. Variational energy

The first step of the calculation is optimizing the values
of variational parameters α and ϕ by finding the minimum
energy of the variational state. Figure 2 shows the energy
maps in (ϕ, α) parameter space at γ = {0.1, 0.2, 0.5, 1} for
system size L = 8. At large γ , the minima are well defined,
but closer to γ ∼ 0 the minima become shallow in ϕ. This
comes as no surprise, since when approaching the 1D case,
the notion of flux around a loop is ill-defined.

The ground state energies and the corresponding optimum
parameters, for system sizes L × L with L = {8, 12, 16, 24},
were extracted by fitting the low-energy part of the maps with
a quadratic function in ϕ and α. The optimum parameters and
energy at the system size L = 24 are shown in Fig. 3. The
ground state energy is compared with the variational work
by Miyazaki et al. [24] using Gutzwiller-projected Schwinger
boson states (SBGP), Quantum Monte Carlo [29,30] (QMC),
and spin-wave theory (SWT) [31] including the linear part
and next order corrections. Starting from the symmetric case
γ = 1, we observe that the staggered flux state has higher
energy compared to all three methods. The energy difference
decreases as the coupling ratio is decreased, and at γ � 0.1
we observe the SF state outperforming the SBGP result. With
decreasing γ , the flux parameter ϕ increases slightly and the
amplitude ratio α decreases. Interestingly, α decreases slower
than γ , such that α/γ increases with decreasing γ , as shown
in Fig. 3(d).

B. Finite-size analysis

Since our calculations are performed on finite lattices, a
finite-size analysis is needed to establish the convergence of
our parameters and validate our conclusions for infinite size
limit. It must be noted here that our ground state wave function
explicitly depends on the phase of the function inside the
modulus in Eq. (7), which is ill-defined at the nodal point. To
avoid this point, for system sizes L = 4n, Dalla Piazza et al.
[8,32] worked with antiperiodic boundary conditions in x and

FIG. 2. Ground state energy maps of systems with size L = 8 for
various coupling ratios. The white contours (dot) indicate the points
corresponding to same energy (minima).

y directions, termed here as abc-abc (used in Fig. 3). We take
this method one step further, by including another possibility,
periodic in x and antiperiodic in y (pbc-abc).

The advantage of using different boundary conditions is
that it provides us with an efficient method to identify features
explicitly related to finite system size as opposed to ones that
can be extended to L → ∞. The ground state energy calcula-
tions are also performed on system sizes of type L = 4n + 2
with boundary conditions pbc-pbc,abc-pbc. To save compu-
tational cost, optimization routines have not been performed
for L = 4n + 2 system sizes; instead, the average values of
L = 4n and L = 4n + 4 parameters were used as input to the
variational wave function.

Figure 4 shows the energies corresponding to the men-
tioned possibilities. To avoid confusion, from here on we refer
to the boundary condition only in the x direction, and it is
understood that corresponding boundary conditions in the y
direction are abc for L = 4n and pbc for L = 4n + 2. From
Fig. 4, we can see that the sensitivity to boundary conditions
decreases with increasing coupling. A comparison with the
energies from Bethe ansatz shows an important observation.
For systems L = 4n, we observe that our wave functions
with abc, are closer to the Bethe ansatz with pbc, and vice
versa. This situation is reversed for L = 4n + 2. The observed
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(a)

(b)

(c)

(d)

(e)

FIG. 3. Properties of the variational wave function as a function
of γ . (a) Energies and their (b) differences, compared to quantum
Monte Carlo methods (QMC), spin-wave theory (SWT), Gutzwiller-
projected Schwinger boson states (SBGP), and Bethe ansatz (at γ =
0). Optimized variational parameters ϕ (c) and α (d). (e) Exponents
of the algebraically decaying staggered correlation functions. The
system size is 24 × 24 for (a)–(d) and γ � 0.6 in (e). For γ < 0.6
in (e), system size 56 × 16 has been used. The lines are guides to the
eye.

equivalence between pbc (abc) for L = 4n + 2 and abc (pbc)
for L = 4n can be easily understood by inspecting the corre-
sponding k space where kx = π/2 is avoided (included). The
equivalence between abc for L = 4n and pbc for Bethe ansatz
is due to the fermionic nature of our wave function, which
upon the imposition of translational symmetry incur a sign
difference that depends on whether there is an even or odd
number of down spins (see Supplemental Material [33]).

FIG. 4. Finite-size scaling of ground state energies along with
the algebraic fitting for selected γ . The plot markers are assigned
with respect to boundary condition in the x direction representing abc
(pbc) with triangles (circles). The γ = 0 plots and fits correspond to
exact solution using Bethe ansatz.

C. Instantaneous spin correlation

Next, we calculate the instantaneous staggered spin-spin
correlation function Sαα (r) = 1/N

∑
i eiQr〈Sα

i+rSα
i 〉 with Q =

(π, π ). In the absence of symmetry breaking long-range or-
der, Sxx(r), Syy(r), and Szz(r) are equivalent. Numerically, we
observe that the xx component converges faster than the zz
component (see Supplemental Material [33]). Starting with
the x direction, as can be seen in Fig. 5(a), Sxx(x) decays as a
power law. At large γ , the correlation functions are insensitive
to the boundary conditions, while at small γ (e.g., γ = 0.1),
deviations appear noticeable at large r. This is solved by
increasing system size. As shown for Sxx(x) at γ = 0.1 in
Fig. 5(b), when increasing Lx with Ly = 16, the correlation
functions converge. Interestingly, as can be seen from the
slopes in Fig. 5(a), the exponent ax in Sxx(x) ∝ x−ax appears
to vary as a function of γ , as summarized in Fig. 3(e).

Various estimates exist for Sxx(x) in the pure 1D case
(γ = 0). The exact values for nearest neighbor [34] (0.147 71)
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FIG. 5. (a) Sxx (x) for γ = 0.1, 0.2, 0.5, 1 and the corresponding
fits to algebraic decay Sxx (x) ∝ x−ax at L = 24. (b) Sxx (x) at γ = 0.1
for different system sizes. (c) Sxx (x) for α = 0.05, α = 0.1, γ = 0.1
for system size 40 × 16 compared to the expression from Hallberg
et al. [37].The plot markers in (a) and (b) are assigned with respect
to the boundary condition in the x direction representing abc (pbc)
with triangles (circles).

and the next-nearest neighbor [35] (0.060 68) are known.
From field theory [36] the exact expression at r → ∞
is

√
ln r/[(2π )3/2r]. Results for finite system sizes have

been calculated through density matrix renormalization group
(DMRG) methods [37]. To compare with these results, we
calculate the correlation function at γ ∼ 0 for larger system
sizes Lx × Ly = 40 × 16. Optimizing the variational param-
eters for γ < 0.1 is challenging since the energy minima are
extremely flat in (α, ϕ) space. We assume that α/γ has a finite
value as we approach γ = 0, and carry out the calculations
for small α values. In Fig. 5(c), we present the results for α =
0.05, 0.1 and also for the optimized wave function at γ = 0.1.
The nearest- and next-nearest-neighbor values at α = 0.05 are

(a)

(b)

FIG. 6. (a) Sensitivity of correlations in the y direction to the
boundary conditions at γ = 0.1 for different system sizes. (b) Cor-
relations in the y direction for couplings γ = 0.1, 0.5, 1 and the
corresponding fits to algebraic decay Sxx (y) ∝ y−ay at L = 24. The
plot markers are assigned with respect to the boundary condition in
the x direction representing abc (pbc) with triangles (circles).

0.1475 and 0.056 62, close to the exact values. A comparison
with the DMRG result from the work of Hallberg et al. [37]
shows that our correlation functions at γ ∼ 0 progressively
get closer to the 1D estimate as we reduce the coupling ratio
γ .

Along the y direction, the correlation function becomes
very sensitive to boundary conditions for small γ . Inter-
estingly, the remedy is to increase system size along the
strong-coupling x direction as shown in Fig. 6(a). Similar
to the x direction, the correlation functions remain algebraic,
however with an exponent ay that increases with decreasing γ .
The extracted exponents are plotted in Fig. 3(e), and the values
are provided in the Supplemental Material [33]. For γ � 0.6,
where the differences between abc and pbc are negligible,
system size 24 × 24 is used to extract the exponents through
fitting by power law. For γ < 0.6, to achieve convergence
of correlation functions for different boundary conditions, a
system size of 56 × 16 has been used.

The fact that ay increases and ax decreases with decreasing
γ would imply that as coupling between chains weakens,
correlations decay faster across chains, but decay slower along
the chain than in the 2D square lattice case. We note that the
exponents extracted here are fits of up to 12 lattice spacing. It
is possible that the asymptotic exponents in the large distance
limit would behave differently, for instance converge to a
universal gamma independent value.
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IV. DISCUSSION

Our work focuses on extending the staggered flux vari-
ational wave-function approach to rectangular lattices, and
the ground state properties of this wave function have been
presented in this paper. In the main part of the paper, we have
compared our results with other methods, and in this section
we discuss the key conclusions on this comparison. Starting
with the ground state energy, for large γ , our estimates are
higher than the QMC [29], SBGP [24], and SWT results
[31]. This is not surprising, and has been already noted by
Dalla Piazza et al. [8,32]. A disordered staggered flux state
for the square lattice has higher energy (−0.638J) compared
to an ordered staggered flux state (−0.664J) and the current
best estimate by the Green’s function Monte Carlo method
(−0.669J) [38–40]. However, they also note that, although
the ordered staggered flux state performs better energetically,
it does not reproduce the quantum anomaly, exhibits a gapped
spectrum, and has exponentially decaying spin-spin correla-
tions contrary to the expected power-law decay.

On the other end of the coupling ratio is the quasi-1D case
γ → 0 where the staggered flux wave function energetically
performs better than the SBGP state but has slightly higher
energy than the QMC result. To estimate the energy in the pure
1D case, Miyazaki et al. [24] set Jy = 0 and treat γ as a vari-
ational parameter, and the optimum result yields E (γ = 0) =
−0.4337 at L = 20. Using a similar logic, at L = 20 we set
γ = 0 and calculate the energy of a state with very small α =
0.05. This yields a value of E (γ = 0) = −0.4442, which is
very close to the exact value from Bethe ansatz E (γ = 0, L =
20) = −0.4445. Extrapolating the [E (L = ∞] values from
Fig. 4 through a third-order polynomial fit (see Supplemental
Material [33]), we obtain the 1D estimate at infinite system
size E (L = ∞, γ = 0) = −0.4414, a value very close to the

Bethe ansatz estimate of −0.4431. Some research works using
mean-field theories, suggest that from the limit of coupling
spin chains, long-range order sets in already at infinitesimal
interchain coupling [41,42]. On the other hand, the ordered
moment calculations through spin-wave theory (with first cor-
rection) reaches zero for γ = 0.138, below which spin-wave
theory breaks down [31]. This suggests that a disordered phase
exists for a finite γ , a result discussed by Parola et al. [43].
Though a similar observation was made through a mean-field
treatment by Miyazaki et al. [24], where the ordered moment
goes to zero at a value γ = 0.1356, the analysis of the SBGP
state at γ = 0 seems to indicate that long-range order exists
all the way down to γ = 0. This suggests that the loss of order
at γ ∼ 0.138 is just an artifact of the mean-field methodolo-
gies. Interestingly, in our work at γ � 0.1, the ground state
energy of the staggered flux state is lower than the SBGP
result. This indicates that, although the staggered flux result at
γ = 0.1 falls short of outperforming the QMC result, within
the framework of variational wave functions, the staggered
flux fermionic wave function outperforms the bosonic SBGP
wave function.

In conclusion, while the staggered flux state is compro-
mised by lacking Néel order, it appears to capture the essence
of the system at low γ . We therefore believe the presented
staggered flux state provides an interesting starting point for
exploring the crossover from quantum disordered chains to the
Néel ordered 2D square lattices.
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