
PHYSICAL REVIEW B 102, 214401 (2020)

Nonlinear optics of optomagnetics: Quantum and classical treatments
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Optomagnetics emerges as a growing field of research cross-linking optics, magnetism, and material science.
Here we provide a microscopic quantum-mechanical and a macroscopic classical model to describe an opto-
magnetic medium, i.e., optical gyration coefficient from a nonlinear optics point of view. Our self-consistent
quantum-mechanical formulation considers all orders of perturbing field and results not only in finding general-
ized Pitaevskii’s relationship, where photoinduced magnetization can be expanded in terms of light power, but
also provides compact and analytical expressions for optical gyration vector coefficients. Classical treatment is
then developed based on the anharmonic Drude-Lorentz model showing that the photoinduced DC magnetization
is proportional to odd harmonics of the light power. The difference in quantum and classical results is revealed
and discussed. Having a pump-probe setup in mind, we describe how a probe light signal can propagate down
an optomagnetic medium, i.e., a medium that is magnetized by intense circularly polarized pump light, via
its permittivity tensor and find light propagation characteristics. Inverse Faraday and Cotton-Mouton effects are
discussed as a result of circular and linear birefringences and their Verdet constants have been analytically found.
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I. INTRODUCTION

Nonlinear optics continues to play a central role not only
in the advancement of optical sciences and photonic tech-
nologies but also to provide a powerful tool to probe the
structure and properties of materials. Initiated with the se-
ries of experiments, direct optical generation and control of
magnetization revives the less-explored field of optomagnet-
ics and recreates an exciting synergy between photonic and
magnetism communities [1–5]. The origin of optomagnetics
stems from a nonlinear interaction of not-linearly polarized
intensive light with the orbital and spin moments of electronic
structure where light angular momentum and gyration rules
the generation, control, processing, and detection of magneti-
zation in matter. The optomagnetic effect is mostly understood
and explored in light of the inverse Faraday effect (IFE), i.e.,
the generation of static magnetization by circularly polarized
light. IFE was first predicted by Pitaevskii in 1960 based
on a phenomenological ansatz on a ground of a generalized
Maxwell-Abraham stress tensor in a transparent dispersive
medium [6]. He predicted that the static magnetization is
related to the optical field intensity through an optical gyration
coefficient γ in the form of

MDC = γ E × E∗, (1)
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where E is the complex electric field intensity. The first ex-
perimental observation of the so-called Pitaevskii relationship
was carried out by van der Ziel, Pershan, and Malmstrom,
and the term inverse Faraday effect (IFE) was coined by
them in 1965 [7]. They provided the quantum-mechanical
model of IFE based on the effective Hamiltonian method at
the low-frequency limit and justified Pitaevskii’s relationship
[8]. After a renewed interest in ultrafast optical control of
magnetization [9], a new theoretical attempt has been initi-
ated for quantum modeling of optomagnetics. The effective
Hamiltonian method is further considered in the time domain
for the Gaussian-shaped laser pulse to study transient magne-
tization by Popova et al. [10]. Taguchi and Tatara introduced
the quantum-mechanical Green’s function formalism to in-
clude spin and spin-orbit contributions to the photoinduced
magnetization in THz frequencies. Their work explicitly re-
vealed the equal contribution of orbital and spin magnetization
in Pitaevskii’s relationship [11,12]. Based on the perturba-
tive solution of the Liouville–von Neumann equation for a
generalized nonlinear light-matter interaction, Battiato et al.
provided an exact solution of photoinduced static magneti-
zation up to the second order in the electric field intensity
[13,14]. Their density matrix formulation highlights the var-
ious physical effects arising from diagonal and off-diagonal
elements due to coherence between different levels and state
occupation while the dephasing is phenomenologically con-
sidered.

This paper articulates the theory of optomagnetism
by focusing on its fundamental physics, finding the
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generalized Pitaevskii’s relationship and the light propaga-
tion in optomagnetic media. Both quantum-mechanical and
classical treatments are presented in detail. We reveal the
difference between quantum and classical treatments, where
classical prediction gives an incomplete description from the
perspective of the generalized Pitaevskii relationship. We then
focus on how a weak electromagnetic field, i.e., probe signal,
is copropagating down a photomagnetic medium, i.e., the
medium that is magnetized by intensive circularly polarized
light. Our formulation provides the permittivity tensor for
the optomagnetic medium and attenuation and propagation
constants for the probe signal, leading to definition of the
Verdet constant of IFE and rotatory power of the inverse
Cotton-Mouton effect.

II. QUANTUM-MECHANICAL THEORY
OF OPTOMAGNETISM

The underlying physics of optomagnetism for an atomic
system can be captured by solving the Schrödinger equation
under the influence of a circularly polarized electromagnetic
field. The optical field Ep(t ) as a discrete sum of positive and
negative frequency components of the pump frequency, i.e.,
ωp, is considered in the form of

Ep(t ) = Ep(ωp)eiωpt + c.c. (2)

= 1
2 Eo(ωp)(x + iy)eiωpt + c.c., (3)

where x, y, z are the Cartesian unit vectors and Eo(ωp) is
the real amplitude of the electric field. The atomic spinor
wave function �(r, t ) is the solution to the following time-
dependent Schrödinger equation:

ih̄
∂

∂t
�(r, t ) = Ĥo�(r, t ) − μ̂Ep(t )�(r, t )

= Ĥo�(r, t ) − er̂Ep(t )�(r, t ), (4)

which is written in terms of the sum of the Hamiltonian Ĥo

for a free atomic system and the dipole interaction Hamil-
tonian, where e is the electron charge, and μ̂ and r̂ = xx̂ +
yŷ + zẑ are the dipole moment and position vector operators,
respectively. We seek the general solution to Eq. (4) using per-
turbation theory, namely, the Rayleigh-Schrödinger method,
where the atomic spinor wave function can be written in the
following expansion:

�(r, t ) =
∑
N=0

λN� (N )(r, t ), (5)

and λ is the perturbation parameter set in the Hamiltonian
in the form of Ĥo − λμ̂Ep(t ) [15]. Assuming that the atomic
system rests initially in its nondegenerate ground state, i.e.,
� (0)(r, t ), with the energy Eg = h̄ωg given by

� (0)(r, t ) = ug(r)eiωgt , (6)

the remaining terms in the perturbation expansion (5) obey the
following expression:

ih̄
∂

∂t
� (N )(r, t ) = Ĥo�

(N )(r, t ) − er̂Ep(t )� (N−1)(r, t ), (7)

where N is an integer number. Note that ug(r) represents
the stationary ground-state spinor of the atomic system in

the absence of any electromagnetic interaction. The solution
to Eq. (7) can be written as the summation of the atomics’
eigenfunction spinors, i.e., ul (r),

� (N )(r, t ) =
∑

l

a(N )
l (t )ul (r)eiωl t , (8)

with the time-dependent probability amplitude a(N )(t ) as

a(N )
m (t ) = 1

ih̄

∫ t

−∞

∑
l

a(N−1)
l (t ′)ul (r)Vml (t

′)e−iωml t dt ′, (9)

where the interaction Hamiltonian for the circularly polarized
light and two-dimensional cross section of the atomic system
is

Vml (t ) = − e

2
Eo(ωp)eiωpt 〈um(r)|x̂ + iŷ|ul (r)〉 + c.c.

= − e

2
Eo(ωp)rmle

iωpt + c.c. (10)

To obtain the DC magnetization based on the perturbed eigen-
function spinors, one can use the magnetization operator M̂ as

〈M̂〉DC =
∑

N

〈
� (N )

∣∣M̂∣∣� (N )
〉

=
∑
Nl

∣∣a(N )∗
l (t )a(N )

l (t )
∣∣
DC

∫
u∗

l (r)M̂ul (r)d3r, (11)

where |a(N )∗
l (t )a(N )

l (t )|DC is the DC term in the probability
density, i.e., a(N )∗

l (t )a(N )
l (t ), and

M̂ = Ne

2m
(L̂ + gsŜ) (12)

is considered as the summation of the angular momentum
L̂ and spin Ŝ operators [16]. In expression (12), N is the
electron’s number density that is exposed to the light, m is the
mass of the electron, and gs is the electron spin g factor. In or-
der to explicitly express the photoinduced DC magnetization
in terms of the optical field via the interaction Hamiltonian,
i.e., Eq. (10), Eq. (11) can be written as

〈M̂〉DC = m(0) + m(1)|Eo(ωp)|2 + m(2)|Eo(ωp)|2|Eo(ωq)|2
+ m(3)|Eo(ωp)|2|Eo(ωq)|2|Eo(ωr )|2 + · · · , (13)

where ωp, ωq, ωr , ... are the pump frequencies, and m(i)

are introduced as the ith-order optical gyration vectors. This
equation explicitly shows that the photoinduced DC mag-
netization can be expanded as a power series of pumping
intensity. The optical gyration vectors crucially depend on the
detail of the dipole moment vector, pump frequencies, and the
detail of eigenenergy spinors through Eq. (11). Considering
the circularly polarized light, i.e., Eq. (2), propagating in
the z direction and the transition dipole moment in the x-y
plane, i.e., Eq. (10), the expansion of the magnetization and
spin operators in the Cartesian coordinate system dictates the
direction of optical gyration vectors in ±z direction. m(0) is re-
lated to the collective orbital magnetic moment of the atomic
system in its ground state in the absence of any interaction as

m(0) = Ne

2m
〈ug|(L̂ + gsŜ)|ug〉

= Ne

2m

∫
u∗

g(r)(L̂ + gsŜ)ug(r)d3r. (14)
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The first-order optical gyration vector m(1) is the result of the
optical field interaction with pump frequency ωp that excites
the atomic system from its ground-state energy Eg = h̄ωg to
the mth eigenenergy state Em = h̄ωmg = h̄(ωm − ωg) with the
probability amplitude a(1)

m (t ) and can be written as

m(1) = Ne

2m

(
e

2h̄

)2 ∑
m

〈um|(L̂ + gsŜ)|um〉|rmg|2

[D−1(ωp − ωmg) + D−1(ωp + ωmg)], (15)

where D is defined as a quantum-mechanical dispersion rela-
tion for positive and negative pumping frequency ω as

D(ω ± ωi j ) � |(ω ± ωi j )(ω ± ω∗
i j )| = (ω ± ωi j )

2 + �2
i j,

(16)

and ωi j is crudely updated to incorporate the damping phe-
nomena for the transition probability between two energy
bands as ωi j = ωi − ω j − i�i j . �i j is related to the popula-
tion decay rate of the upper level i and does not represent
the dephasing process or the cascaded population among the
excited states. Note that m(1) consists of the second-harmonic
generation magnetization oscillating at 2ωp as well. The
second-order correction to the probability amplitude can yield
the second-order gyration vector m(2) under the influence of
the nondegenerate pumping frequency ωq as

m(2) = Ne

2m

( e

2h̄

)4 ∑
n

〈un|(L̂ + gsŜ)|un〉|rmgrnm|2

× [
D−1(ωp − ωmg)D−1(ωp + ωq − ωng)

+ D−1(ωp − ωmg)D−1(ωp − ωq − ωng)

+ D−1(ωp + ωmg)D−1(ωp + ωq + ωng)

+ D−1(ωp + ωmg)D−1(ωp − ωq + ωng)
]
. (17)

The third-order optical gyration vector is given in volts. This
procedure can be systematically applied to the N th-order
optical gyration vector. The higher-order terms in the pho-
toinduced DC magnetization, i.e., 〈M̂〉DC , are proportional to
( e|Eo|

2h̄ )2N . Although the optical gyration vectors depend on
the detail of materials’ atomic spectra and band structures,
they do not possess any symmetry restrictions. The photoin-
duced magnetization can thus be allowed in any materials,
regardless of their electrical, magnetic, and optical properties.
Knowing the fact that the intensity of circularly polarized
light, expressed by Eq. (2), is proportional to its helicity, i.e.,
z|Eo(ωp)|2 = 2iEp × E∗

p, Eq. (13) represents the quantum-
mechanical version of a generalized Pitaevskii relationship
and in the case of degenerate pumping field can be written
as

〈M̂〉DC =
∑
N=0

m(N )|(2iEp × E∗
p)|N

= m(0) + m(1)|2iEp × E∗
p| + m(2)|2iEp × E∗

p|2

+ m(3)|2iEp × E∗
p|3 + · · · . (18)

The generalized Pitaevskii relationship in this case consists
of the ground-state magnetization in the absence of any elec-
tromagnetic radiation, and the second term represents the
Pitaevskii relation, i.e., Eq. (1). This equation predicts that

the optomagnetic effect should be more pronounced in the
materials that do not possess ground-state magnetization.

Note that the photoinduced DC magnetization crucially
depends on the interaction of not-linearly-polarized light
through dipole interaction rml , i.e., Eq. (10) in the case of
circular polarization, with the expectation value of the mag-
netization operator acting on spinor eigenfunctions, 〈ul |(L̂ +
gsŜ)|ul〉. Obviously, a linearly polarized electric field does
not induce any magnetization, as evidenced by the inter-
action Hamiltonian, i.e., Eq. (10). The photoinduced static
magnetization presented in Eq. (18) can be also general-
ized to consider time-varying cases where the magnetization
is expressed in terms of pump frequencies ωp, ωq, . . . and
their harmonics. This can be done by finding the expectation
value of the magnetization operators between various spinor
eigenfunctions where their energy differences correspond to
the harmonics of light frequencies. Similar to application of
nonlinear optical susceptibility, the photomagnetic effect can
be employed not only for optical processes such as harmonic
generation, up/down conversion, switching, and mixing but
also for probing magnetic properties of materials.

III. CLASSICAL THEORY OF OPTOMAGNETISM

The first attempt to classically treat the IFE dates back
to 1975 when Zon and Kupershmidt used the Drude-Lorentz
model to justify the Pitaevskii relationship [17]. This method
is further considered for the free-electron gas by Hertel and
Fähnle [18,19] and reused to find the Verdet constant as-
sociated with IFE by Battiato et al. [14]. Hereby we use
the nonlinear Drude-Lorentz model based on anharmonic os-
cillator model to go beyond the Pitaevskii relationship and
make a comparison with our quantum-mechanical treatment
presented in Sec. II.

To model the photomagnetic effect, the Drude-Lorentz
model is adopted in a nonlinear regime under the influence
of high-intensity circularly polarized light. The local electric
field will cause the average position of an electron distri-
bution, i.e., r(t ), to be displaced from its equilibrium. For
high-intensity light, a large deviation from the average po-
sition is expected, and the electrons experience anharmonic
potential in the form of U (r) = 1

2 mω2
or2 + 1

3 mar3 + 1
4 mbr4,

where m is the mass of the electron, ωo is the resonant fre-
quency of the oscillator corresponding to the main observed
atomic spectral line, and a, b characterize the strength of the
anharmonicity [15,20]. For materials exhibiting centrosym-
metric and noncentrosymmetric inversion symmetry, a = 0
and b = 0, respectively [16]. The equation of motion of the
electron position can take the form

mr̈(t ) + m�ṙ(t ) + mω2
or(t ) + mar2(t ) + mbr3(t ) = F(t ),

(19)

where e is the electron charge, � is the friction term represent-
ing the energy loss associated with the material absorption
process, F(t ) = eE(t ) is acting force, and E(t ) is the vector
electric field associated with the light pump in the form of

E(t ) = Re{Eeiωpt } = Re{Eo(x + iy)eiωpt }, (20)

where Re{.} denotes the real part of a complex function. The
intensity of the circularly polarized light creates a helicity
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of the wave in the plane perpendicular to its direction of
propagation given by

z|Eo|2 = 1
2 iE × E∗, (21)

which is enforcing a gyrating motion on the electrons. This
light-induced localized current density in the region compared
to the wavelength of light leads to a magnetic moment density
or magnetization as [21]

M(t ) = Ne

2m
L(t ) = N

e

2
r(t ) × v(t ), (22)

where N is the number density of electrons exposed to light, L
is the angular momentum, and v(t ) = ṙ is the average electron
velocity. Note that the intrinsic angular momentum of elec-

trons that is proportional to their spin cannot be considered in
such a classical treatment.

To find the magnetization, one needs to solve the nonlinear
equation (19) under the influence of the electric field based
on the perturbation method analogous to that presented in
Sec. II. Using expression (20), the equation of motion (19)
has a solution in the form of

r(t ) = Re

{
n∑

n=1

reinωpt

}
= Re

{
n∑

n=1

ζ nr(n)
e En

o einωpt

}
, (23)

where ζ is the perturbation parameter, r(n)
e = xx(n)

e + yy(n)
e is

the nth-order solution in the frequency domain, and y(n)
e =

inx(n)
e due to circular polarization of the incident light. The

magnetization in Eq. (22) can be written in the frequency
domain

M = z
Neω

4
Re

{
n∑

n=1

x(n)
e En

o einωpt

[
n∑

n=1

nin+1x(n)
e En

o einωpt +
n∑

n=1

n(−1)n+1in+1x∗(n)

e E∗
o

ne−inωpt

]

−
n∑

n=1

nix(n)
e En

o einωpt

[
n∑

n=1

inx(n)
e En

o einωpt +
n∑

n=1

(−1)ninx∗(n)

e E∗n

o e−inωpt

]}
. (24)

Equation (24) evidently shows that the photomagnetic effect
is a purely nonlinear phenomenon with respect to the electric
field intensity, as the DC term is proportional to the light
intensity E2

o and its odd harmonics.
Using Eq. (21), the DC component of the magnetization

can be generally written as

MDC =
n∑

k=0

γ (2k+1)
( i

2
E × E∗

)∣∣∣ i

2
(E × E∗)

∣∣∣2k

= γ (1)
( i

2
E × E∗

)
+ γ (3)

( i

2
E × E∗

)∣∣∣( i

2
E × E∗

)∣∣∣2

+ · · · , (25)

where the coefficients γ (2k+1) take the form

γ (2k+1) = −ωp(2k + 1)Re
{
i2k

∣∣x(2k+1)
e

∣∣2}
(26)

and represent the optical gyration coefficients, similar to mag-
netogyration coefficients [22,23]. Equation (25) clearly shows
that the DC magnetization depends on the odd power of the
light intensity or helicity vector irrespective of any symme-
try in the structure of the material, a prediction that is an
incomplete based on quantum-mechanical treatment. It is in-
teresting to compare the optical gyration coefficients with the
linear and nonlinear susceptibilities, i.e. χ (n), based on the
power series expansion of the electrical field for polariza-
tion, i.e. P(t ) = εo(χ (1)E (t ) + χ (2)E2(t ) + χ (3)E3(t ) + · · · ).
We noted that the optical gyration coefficients can be ex-
pressed based on susceptibilities as follows:∣∣γ (2k+1)

∣∣ = (2k + 1)ωp

Ne

( εo

2k+1

)2∣∣χ (2k+1)
∣∣2

. (27)

A similar prediction as the third-order nonlinearity induced
by IFE has been made in the context of magnetoplasmonic

structures [24]. This classical prediction is also seen from
our quantum-mechanical treatment where the optical gyra-
tion coefficients are proportional to the square of electrical
dipole transition moment, i.e., Eq. (15). Equation (27) shows
that materials with large linear and nonlinear susceptibilities
should exhibit large optical gyration coefficients while they
scale linearly with pump optical frequency and inversely with
density number of electrons in the material. This fact is cor-
roborated with the quantum-mechanical treatment where the
optical gyration vectors depend on transition dipole moments
similar to nonlinear χ (2) and χ (3) materials. Our model then
predicts the optical gyration coefficients in two-dimensional
materials should be larger than their bulk counterparts.

To fully consider the effect of anharmonicity of the elec-
tron’s potential, i.e., nonlinear parameters a and b, the first
three orders of the solution (23) can be expressed as

y(1)
e = ix(1)

e = i
e

m

1

D(ωp)
, (28)

y(2)
e = −x(2)

e = a
( e

m

)2 1

D2(ωp)D(2ωp)
, (29)

and

y(3)
e = −ix(3)

e = −i
( e

m

)3
(

2a2

D(2ωp)
− b

)
1

D3(ωp)D(3ωp)
,

(30)

where

D(ωp) � ω2
o − ω2

p + iωp� (31)

is the dispersion function of a damped harmonic oscillator.
The first two orders of the optical gyration coefficients are
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then

γ (1) = −
( e

2m

)
εoω

2
pl

ωp

|D(ωp)|2 (32)

γ (3) =
( e

2m

)
εoω

2
pl

( e

m

)4 3ωp

|D3(ωp)|2|D(3ωp)|2

×
∣∣∣∣
(

2a2

D(2ωp)
− b

)∣∣∣∣
2

, (33)

where ωpl �
√

Ne2

mεo
is the plasma frequency of the material.

Equation (32) is independent of the nonlinear coefficients a
and b and is in agreement with the results in [14,18]. The clas-
sical model shows that each optical gyration coefficient is a
collective response of N orbiting electrons represented by the
plasma frequency ωpl and the gyromagnetic ratio of electron,
i.e., e

2m , which is dictated by the helicity of the pumping light
and is modified by the frequency response of a classical atom
as an anharmonic oscillator to the odd harmonics of pumping
light intensity. This is the consequence of angular momentum
conservation between light and N noninteracting electrons in
the presence of an anharmonic oscillator representing atomic
structure. Evidently, Eq. (25) is partially inconsistent with its
quantum-mechanical counterpart, i.e., Eq. (18). The photoin-
duced magnetization is proportional to all harmonics of light
intensity, in Eq. (18), but the even powers are absent in the
classical equation (25). This fact stems from the fundamen-
tal difference in how the state of the electron is considered
quantum mechanically by the wave functions and operators
acting on it through momentum and angular momentum, and
classically, by its position vector and its temporal derivative.

It is straightforward to justify that the magnetic field asso-
ciated with the circularly polarized light, i.e., B = zBo(−ix +
y)eiωpt , has no contribution to the DC magnetization in the
context of our quantum-mechanical and classical treatments.

IV. LIGHT PROPAGATION IN OPTOMAGNETIC MEDIA

We are considering the propagation of a weak linearly
polarized optical signal with a frequency of ωs in an optomag-
netic material where a DC magnetization is induced by the
copropagation of strong, circularly polarized pump light in z
direction. The photoinduced magnetic field by the pump light,
Bo = μoMDC , where MDC is governed by Eq. (25), breaks the
directional symmetry of the linear dielectric constant for the
optical signal similar to magneto-optic material, leading to
linear birefringence or the Cotton-Mouton effect and circular
birefringence or Faraday effect. The dependence of the imag-
inary part of the permittivity, i.e., ε′′

i j , on Bo leads to circular
birefringence or the Faraday effect, while dependence of the
real part of the permittivity, i.e., ε′

i j , on Bo leads to linear
birefringence or the Cotton-Mouton effect [25]. These effects
can be described by exploiting the Drude-Lorentz model for
weak optical signals where the Lorentz force acting on the
bound electrons is due to the electric field of a light signal and
DC magnetic field produced by circularly polarized light. The
solution of a linear version of Eq. (19), i.e., a = b = 0, where
F (t ) = e(xEx + yEy) + ev(t ) × zBo, leads to an anisotropic
relative dielectric constant that can be cast into the following

tensor form:

¯̄εr (ωs) =
⎛
⎝ε′

xx − iε′′
xx ε′

xy − iε′′
xy 0

ε′
yx − iε′′

yx ε′
yy − iε′′

yy 0
0 0 ε′

zz − iε′′
zz

⎞
⎠

=

⎛
⎜⎜⎜⎝

1 + ω2
pl

D2
F (ωs )

D(ωs) −iω2
plωc

ωs

D2
F (ωs )

0

iω2
plωc

ωs

D2
F (ωs )

1 + ω2
pl

D2
F (ωs )

D(ωs) 0

0 0 1 + ω2
pl

D(ωs )

⎞
⎟⎟⎟⎠,

(34)

where

D2
F (ωs) � ω2

o − (
1 + ω2

c

)
ω2

s + iωs� = D2(ωs) − ω2
cω

2
s

(35)

is the modified dispersion function due to the presence of
magnetic field, and ωc = eBo

m = μoe
m MDC is the cyclotron fre-

quency that is induced by the circularly polarized pump light.
Note that the z axis is not affected by the photoinduced mag-
netic field. By expanding the complex permittivity elements in
series with respect to the photoinduced magnetic field Bo, we
obtain the real and complex parts of the permittivity elements

ε′
r = ε′

xx = ε′
yy ≈ 1 + ω2

pl

|D(ωs)|2
(
ω2

o − ω2
s

)
(36)

ε′′
xx = ε′′

yy ≈ ω2
pl�

|D(ωs)|2 ωs (37)

ε′
xy = −ε′

yx ≈ −2ω2
pl�

ω2
s

(
ω2

o − ω2
s

)
|D(ωs)|4 ωc (38)

ε′′
xy = −ε′′

yx ≈ ω2
pl

(
ω2

o − ω2
s

)2 − ω2
s �

2

|D(ωs)|4 ωsωc (39)

ε′
zz = 1 + ω2

pl

|D(ωs)|2
(
ω2

o − ω2
s

)
(40)

ε′′
zz = ω2

pl�

|D(ωs)|2 ωs. (41)

It is worth noting that the Onsager symmetry of the per-
mittivity, i.e., ε′

i j (ωs, Bo) = ε′
ji(ωs,−Bo) and ε′′

i j (ω, Bo) =
−ε′

ji(ω,−Bo), holds, but Hermiticity of the dielectric con-
stant, i.e., εi j (ωs, Bo) = ε∗

ji(ωs, Bo), is valid where the damp-
ing factor � or absorption is absent. Any media described
by the anisotropic permittivity tensor, i.e., Eq. (34), has two
normal propagation modes with relative permittivities (ε′

xx ±
ε′′

xy) − i(ε′′
xx ∓ ε′

xy). The permittivity tensor is then diagonal-
ized in the coordinate systems with orthogonal unit vectors
e± = 1√

2
(x ± iy) and z represented by uniaxial optical sym-

metry. The complex propagation constants, α1,2 + iβ1,2, for
an optical signal are

α1,2 + iβ1,2 ≈ ko

2
√

ε′
r

(ε′′
xx ± ε′

xy)

(
1 ± ε′′

xy

2ε′
r

)

+ iko

√
ε′

r

(
1 ∓ ε′′

xy

2ε′
r

)
, (42)

where ko = 2π
λo

is the free-space wave number in terms of
wavelength λo. The ability of the optomagnetic medium to
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rotate the linear polarization of an optical signal that leads to
circular birefringence is commonly referred to as the inverse
Faraday effect and can be found by its rotatory power ρxy,
similar to the magneto-optic media, which is defined by the
rotation angle per unit length as

ρxy = β1 − β2

2
≈ − π

λo

ε′′
xy√
ε′

r

. (43)

The rotatory power is a linear function of the photoinduced
magnetic field Bo. The rotatory power of the optomagnetic
medium can be defined based on the intensity of the pump
light and in the first order can be expressed as a function of
light pump light intensity E2

o through the Verdet constant of
the inverse Faraday effect VIFE as

VIFE (ωp, ωs) � ρxy

E2
o

= − π

2λo

e2

m2

ω4
plωs

c2

ωp

|D(ωp)|2

×
(
ω2

o − ω2
s

)2 − �2ω2
s

|D(ωs)|4
1√

1 + ω2
pl (ω

2
o−ω2

s )

|D(ωs )|2

.

(44)

Note that the Verdet constant of the inverse Faraday effect is
defined as a real quantity that is related to the polarization
rotatory power as a function of both light pump and light
signal frequencies and is different than the Verdet constant of
the Faraday effect.

The change in the optical refractive index due to the pres-
ence of a static magnetic field was originally discovered by
Voigt in 1902 in gases [26] and by Cotton and Mouton in 1907
for liquids [27]. Investigation of Eqs. (34) and (36) reveals
that the real part of the diagonal permittivity elements is also
altered by the photoinduced magnetic field, leading to linear
birefringence in both x-z and y-z planes that can be called the
inverse Voigt or Cotton-Mouton effect. The difference in the
real part of the permittivity scales with M2

DC , as

ε′
xx − ε′

zz ≈ μ2
o

e2

m2

ω2
plω

2
s

(
ω2

o − ω2
s

)
|D(ωs)|4 |MDC |2

= e4

4m4

ω6
pl

c4

ω2
s

(
ω2

o − ω2
s

)
|D(ωs)|4

ω2
p

|D(ωp)|4 E4
o . (45)

The rotatory power of the linear birefringence can be then
calculated as

ρxz = −ρyz = ρxy

2
= − π

2λo

ε′′
xy√
ε′

r

. (46)

The inverse Cotton-Mouton effect is weaker than the inverse
Faraday effect, and its rotatory power is half of that produced
by the inverse Faraday effect.

Both the inverse Faraday and Cotton-Mouton effects can
be used in free space and integrated photonic systems for
all-optical signal processing and nonreciprocal polarization
devices without incorporating magnetic devices and charac-
terization setup.

V. CONCLUSIONS

Optomagnetics have developed into an expanding research
area with a potential of new discoveries in ultrafast mag-
netism and optics, novel applications in high-speed magnetic
recording, information processing, and spintronics, as well as
probing quantum and 2D materials.

We have provided a unified and generalized theoretical
framework for optomagnetics, both quantum and classical
treatments, through a prism of IFE effects. First, we start
quantum-mechanical treatment to not only obtain a clear
relationship between the photoinduced magnetization and
transition dipole moments but also a generalized Pitaevskii’s
relationship. Using a perturbative method to solve the
Schrödinger equation in the presence of a circularly polarized
wave, our method explicitly and compactly finds the optical
gyration vectors due to both orbital and spin magnetic mo-
ments. The effect of the damping phenomena is incorporated
into the theory by introducing the excited-state population
decay rate. Our formulation can be easily employed for
quantum confined structures, i.e., quantum wells, wires, and
dots.

Secondly, we employ the anharmonic Drude-Lorentz
model to find the generalized Pitaevskii’s relationship and its
associated optical gyration coefficients. Comparison between
quantum and classical treatments reveals the incompleteness
of the classical treatment while it can lay down the basics for
description of optomagnetic medium.

Lastly, the propagation of linearly polarized light signal
through an optomagnetic medium, which is described by its
first-order gyration coefficient, is analyzed through a typi-
cal pump-probe setup. Our formalism explicitly provides the
analytical expressions of Verdet’s constants for IFE and the
inverse Cotton-Mouton effect through the permittivity tensor
of the optomagnetic medium.
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APPENDIX

Here we report the first three order corrections to the probability amplitude, i.e., Eq. (9), under the influence of circularly
polarized light with pump frequencies ωp, ωq, ωr and the interaction Hamiltonian, i.e., Eq. (10). They read as

a(1)
m (t ) = e

2h̄
Eo(ωp)

[
rmgei(ωp−ωmg)t

ωp − ωmg
− r∗

mge−i(ωp+ωmg)t

ωp + ωmg

]
, (A1)
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a(2)
n (t ) =

( e

2h̄

)2
Eo(ωp)Eo(ωq)

∑
m

[
rmgrnmei(ωp+ωq−ωng)t

(ωp − ωmg)(ωp + ωq − ωng)
− rmgr∗

nmei(ωp−ωq−ωng)t

(ωp − ωmg)(ωp − ωq − ωng)

− r∗
mgrnme−i(ωp+ωq+ωng)t

(ωp + ωmg)(ωp + ωq + ωng)
+ r∗

mgr∗
nme−i(ωp−ωq+ωng)t

(ωp + ωmg)(ωp − ωq − ωng)

]
, (A2)

a(3)
ν (t ) =

( e

2h̄

)3
Eo(ωp)Eo(ωq)Eo(ωr )

∑
mn

[ −rmgrnmrνnei(ωp+ωq+ωr−ωνg)t

(ωp − ωmg)(ωp + ωq − ωng)((ωp + ωq + ωr − ωνg))

+ rmgr∗
nmrνnei(ωp−ωq+ωr−ωνg)t

(ωp − ωmg)(ωp − ωq − ωng)((ωp − ωq + ωr − ωνg))
+ r∗

mgrnmrνne−i(ωp+ωq−ωr+ωνg)t

(ωp + ωmg)(ωp + ωq + ωng)((ωp + ωq − ωr + ωνg))

− r∗
mgr∗

nmrνne−i(ωp−ωq−ωr+ωνg)t

(ωp + ωmg)(ωp − ωq + ωng)((ωp − ωq − ωr + ωνg))
− rmgrnmr∗

νnei(ωp+ωq−ωr−ωνg)t

(ωp − ωmg)(ωp + ωq − ωng)((ωp + ωq − ωr − ωνg))

+ rmgr∗
nmr∗

νnei(ωp−ωq−ωr−ωνg)t

(ωp − ωmg)(ωp − ωq − ωng)((ωp − ωq − ωr − ωνg))
+ r∗

mgrnmr∗
νne−i(ωp+ωq+ωr+ωνg)t

(ωp + ωmg)(ωp + ωq + ωng)((ωp + ωq + ωr + ωνg))

− r∗
mgr∗

nmr∗
νne−i(ωp−ωq+ωr+ωνg)t

(ωp + ωmg)(ωp − ωq + ωng)((ωp − ωq + ωr + ωνg))

]
. (A3)

The third-order optical gyration vector can be written as

m(3) = Ne

2m

( e

2h̄

)6 ∑
mnν

〈uν |(L̂ + gsŜ)|uν〉|rmgrnmrνn|2
[
D−1(ωp − ωmg)D−1(ωp + ωq − ωng)D−1(ωp + ωq + ωr − ωνg)

+ D−1(ωp − ωmg)D−1(ωp − ωq − ωng)D−1(ωp − ωq + ωr − ωνg)

+ D−1(ωp + ωmg)D−1(ωp + ωq + ωng)D−1(ωp + ωq − ωr + ωνg)

+ D−1(ωp + ωmg)D−1(ωp − ωq + ωng)D−1(ωp − ωq − ωr + ωνg)

+ D−1(ωp − ωmg)D−1(ωp + ωq − ωng)D−1(ωp + ωq − ωr − ωνg)

+ D−1(ωp − ωmg)D−1(ωp − ωq − ωng)D−1(ωp − ωq − ωr − ωνg)

+ D−1(ωp + ωmg)D−1(ωp + ωq + ωng)D−1(ωp + ωq + ωr + ωνg)

+ D−1(ωp + ωmg)D−1(ωp − ωq + ωng)D−1(ωp − ωq + ωr + ωνg)
]
. (A4)
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