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Sound scattering by a bubble metasurface
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We present an analytical framework to investigate the acoustic performance of an array of closely spaced
spherical cavities embedded in a thin soft medium submerged in water. Each layer of cavities is approximated as
a homogenized layer with effective properties. Strong monopole resonance of the cavities and multiple scattering
of waves between cavities in proximity are taken into account. Analytical results for the metasurface with and
without a rigid backing are compared with numerical simulations as well as with experimental results from the
literature.
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I. INTRODUCTION

A metasurface is a planar device with the ability to ma-
nipulate waves of wavelength much longer than its thickness,
arising from the interaction between an incident wave and its
rationally designed architecture [1–4]. A metasurface com-
prising a soft medium embedded with cavities is a favorable
candidate to control water-borne sound waves, attributed to
impedance matching of the soft medium with water and
strong monopole resonance of the cavities. Multiple scattering
of waves between cavities in proximity further strengthens
the resonance, leading to enhanced wave manipulation that
blocks transmission [5–7] or perfectly absorbs [8,9] sound
waves. Similar metasurface designs have been used for sub-
wavelength focusing [10,11], wave guiding [12], localization
[13,14], and the generation of band gaps [15,16], negative
dynamic density, and elastic modulus [17,18]. Existing ana-
lytical models of cavities in a soft medium are valid for low
and moderate filling fraction values [5,8,19,20]. These models
predict that optimal sound absorption by a bubble metasur-
face can be achieved at moderate filling fraction values [8].
We herein show that a soft material with a layer of closely
spaced cavities can effectively block the sound transmission.
While anechoic coatings comprising moderately spaced cav-
ities in a soft medium are effective in absorbing water-borne
sound, decoupling coatings comprising proximal cavities in a
soft medium can be effective in reducing the transmission of
structure-borne sound [21].

Due to the complexity of wave phenomena in metasur-
faces arising from multiple scattering, local resonances, and
resonance coupling, their analytical modeling is often a chal-
lenging undertaking; for example, see [22–26]. The effective
medium approximation is a powerful method for simplified
modeling of complex media in the long-wavelength limit,
whereby an inhomogeneous medium is approximated as a
homogeneous medium with effective properties [27,28]. A
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key challenge for homogenization of a strongly scattering
composite such as closely spaced cavities in a soft medium
arises from coupling between the resonators as a result of mul-
tiple scattering of waves [24,29]. This challenge is addressed
here.

We present an effective medium approximation formula-
tion for a metasurface formed by a lattice of closely spaced
spherical cavities embedded in a thin soft medium, as shown
in Fig. 1(a). Each layer of cavities in the direction of sound
propagation is approximated as a homogenized layer of fluid
for which we derive an effective thickness in addition to effec-
tive fluid properties, as shown in Fig. 1(b). The homogenized
layer is considered as a structured element and integrated
into a more complex layer structure that is treated using the
conventional transfer matrix method. The proposed model
explicitly accounts for multiple scattering effects between
cavities. We validate our analytical results with numerical
simulations and with experimental data from the literature.

FIG. 1. Schematic diagram showing (a) a layer of spherical cav-
ities in a soft material and (b) the layer of cavities approximated as
a homogenized medium with effective properties. The soft medium
embedded with cavities is submerged in water and subject to acoustic
plane-wave excitation in the x direction.
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II. EFFECTIVE MEDIUM APPROXIMATION

The soft elastic medium has density ρ, shear modulus
μ = μ′ + iμ′′, and longitudinal modulus κ = κ ′ + iκ ′′, where
μ � κ . In an unbounded medium, the monopole resonance
frequency of a single evacuated spherical inclusion of radius
a is given by [30]

ω0 = 2
cs

a
, (1)

where cs = √
μ′/ρ is the shear wave speed. The wavelength

corresponding to the monopole resonance is much larger than
the inclusion size as a direct consequence of the softness
of the medium, since ω0a/cl = 2cs/cl � 1 and cl = √

κ/ρ

is the longitudinal wave speed. Therefore, a lattice of cavities
in a soft medium can be well described within the effective
medium approximation framework.

Consider an array of spherical cavities with lattice spacing
dx in the direction of sound propagation and lattice spac-
ing dy = dz in the lateral directions. The density ρe and
longitudinal modulus κe of the effective medium due to
homogenization of a layer of cavities in the direction of sound
propagation are given by the following conservation equations
[31]:

〈ρ〉 = ρe(le/dx ) + ρ[1 − (le/dx )], (2)

1

〈κ〉 = (le/dx )

κe
+ 1 − (le/dx )

κ
, (3)

where le is the effective thickness of the homogenized layer,
and 〈ρ〉 and 〈κ〉 are, respectively, the density and longitudinal
modulus averaged over the unit cell comprising a single cavity
at the center of a cuboidal soft medium of volume dxd2

y .
The thickness of the layer due to homogenization of cavi-

ties is related to the so-called blockage length, which has been
characterized using potential flow perturbation by a grating
of obstacles [32]. The low and high filling fraction limits of
the blockage length for rigid spheres in potential flow have
previously been derived as [33]

le,low = 2πa

(
a

dy

)2

, (4)

le,high = π
√

2

2

a√
(1/ζ ) − 1

, (5)

where ζ = √
πa/dy. These expressions are also valid for a

lattice of bubbles at small amplitude oscillations [34]. An
interpolation function for the blockage length is obtained as
a weighted sum of the blockage length at low and high filling
fraction using

le = (1 − ζ β )le,low + ζ β le,high. (6)

We have used the power exponent of β = 12 in the interpola-
tion function to reduce the contribution of the blockage length
at high filling fraction.

The averaged density is given by [35]

〈ρ〉 = ρ(1 − α), (7)

where α = 4πa3/3dxd2
y is the filling fraction of cavities in the

matrix. We derive the averaged longitudinal modulus using

the sound speed in a bubble mixture [19,36,37] as

〈κ〉 = κ (1 − α)

1 + 4πκ fs/ρω2dxd2
y

, (8)

where

fs = a

(ω0/ω)2 − I + iδ
(9)

is the scattering function of an array of spherical cavities and
δ = 4μ′′/ρω2a2 is the viscous damping of a spherical cavity
[20]. We have used the time convention eiωt , where i = √−1,
ω is the excitation frequency, and t is time. Parameter I
accounts for multiple scattering effects between the spheri-
cal cavities, whereby I = 1 corresponds to single scattering
approximation [20]. There are a number of expressions for
parameter I available in the literature [19,20,38], which are
valid for low and moderate filling fraction values. In this study,
we use

I = exp (−2πa/dy), (10)

which can be derived from the following scaling arguments.
Since the resonance frequency scales with the inverse of the
square root of the added mass [39] and the resonance of an
array of cavities occurs at ω0/

√
I [19,20], parameter I can

also be expressed as

I = M

m0
, (11)

where m0 is the added mass of a pulsating cavity in an
unbounded medium and M is the added mass of the same
cavity in an array. The added mass of a cavity in the lattice
is equivalent to the added mass of a monopolar resonator in a
square duct of cross section d2

y . The ratio of the added mass
of a monopolar resonator in a square duct to that of the same
resonator in an unbounded domain is given by [40]

M

m0
= 4a

dy

∞∑
n=0, m=1

exp[−2π (a/dy)
√

n2 + m2]√
n2 + m2

, (12)

where integer indices n, m define the position of all monopole
resonators in the lattice. It should be noted that in the long-
wavelength limit, the compressibility disappears from the
expression of the added mass of a monopole resonator in a
duct. In this limit, the added mass reduces to a function of
geometrical parameters only [40]. Evaluating the lattice sum
in Eq. (12) by converting it to an integral as described in
Ref. [41], we arrive at Eq. (10).

Substituting Eqs. (7) and (8) into Eqs. (2) and (3), we
obtain the following expressions for the effective density and
longitudinal modulus of the homogenized layer:

ρe = ρ(1 − αdx/le), (13)

κe = κ (1 − α)
αdx
le

(
1 + 3κ

ρω2a3 fs
) + (1 − α)

. (14)

The effective wave number and impedance of the homoge-
nized layer are obtained as ke = ω

√
ρe/κe and Ze = √

ρeκe.
Similarly, the wave number and impedance of the elastic
medium are calculated using k = ω

√
ρ/κ and Z = √

ρκ . The
transfer matrix for each layer is then determined using the
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pertinent thickness, impedance, and wave number. The global
transfer matrix is obtained by multiplying the transfer ma-
trices for the various layers in their order of appearance in
the direction of sound propagation [42]. The transmission,
reflection, and absorption coefficients are calculated using
the elements of the global transfer matrix and impedances
of the media on the incidence and transmission sides of the
metasurface [42].

III. NUMERICAL MODEL

For validation of the proposed framework, analytical re-
sults are compared with numerical simulations as well as
with experimental data from the literature. The numerical
simulations were performed using COMSOL MULTIPHYSICS

in which the elastic medium was modeled using the SOLID

MECHANICS module and water was modeled using the PRES-
SURE ACOUSTICS module. Interactions between the solid and
fluid domains were simulated by applying acoustic-structure
boundary conditions at the interface. A free boundary con-
dition was applied at the interface between the cavities and
the elastic medium. Periodicity of the cavities was simulated
using periodic boundary conditions. An incident acoustic
pressure of unity amplitude was applied using the background
pressure field. Anechoic termination of outgoing waves was
simulated using a perfectly matched layer. Reflected and
transmitted pressures were, respectively, measured at a plane
on the incidence and transmission sides of the metasurface.

IV. RESULTS AND DISCUSSION

The effect of multiple scattering of waves between spheri-
cal cavities on the monopole resonance frequency is initially
examined. Figure 2 presents parameter I as a function of
the ratio of cavity radius to lattice spacing, a/dy. The limits
a/dy = 0 and a/dy = 0.5, respectively, correspond to a single
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FIG. 2. Parameter I for a square lattice of spherical cavities
obtained using Eq. (10) (solid red line) and numerically using the
finite-element method (magenta circles). Our analytical and numeri-
cal results are compared with Kobelev [38] (dotted black line), Leroy
et al. [19] (dash-dotted blue line), and Skvortsov et al. [20] (dashed
green line).

TABLE I. Expressions for multiple scattering correction for an
array of spherical cavities in a soft medium.

Reference Expression

Kobelev [38] I = 1 − 2(a/dy )
Leroy et al. [19] I = 1 − 2

√
π (a/dy )

Skvortsov et al. [20] I = (1 − σ 2)/(1 + 1.75
√

σ − 2.02σ 2),
where σ = π 3a2/4d2

y

cavity in an unbounded medium and cavities with lattice spac-
ing equal to the diameter. In the limit a/dy = 0, I = 1, which
corresponds to monopole resonance of a single cavity. As a/dy

increases, i.e., cavities come closer to each other, I reduces
and the resonance frequency increases as a consequence of
resonance coupling [19]. The models for parameter I in the
literature presented in Table I are valid for the filling fraction
of cavities in a soft medium up to a/dy = 0.28 [19] and
a/dy = 0.36 [20]. In contrast, the results for parameter I from
Eq. (10) are valid for the entire range of a/dy. Numerically, the
resonance frequency of an array of inclusions corresponding
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FIG. 3. Transmission coefficient of one layer (blue lines) and
four layers (black lines) of spherical cavities embedded in a soft
medium submerged in water, for low and moderate a/dy values of
0.13 (top) and 0.19 (bottom) obtained using our analytical model
(solid lines), numerical model (dashed lines), and experimental re-
sults from Leroy et al. [5] (circles).
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to ω0/
√

I was identified as the frequency of minimum sound
transmission. Parameter I was obtained by repeating this pro-
cedure for a range of a/dy values and using Eq. (1). Results
obtained using Eq. (10) are in excellent agreement with nu-
merical results for all a/dy values.

We now present the transmission coefficient (ratio of the
transmitted and incident pressures) of a soft medium embed-
ded with one or four layers of evacuated spherical cavities of
radius 38.5 μm and submerged in water. Within a layer, the
cavities are arranged in a square lattice with a spacing of 300
or 200 μm. These cases correspond to low and moderate a/dy

values of 0.13 and 0.19, respectively. The spacing between the
cavities in the direction of sound propagation is 360 μm. The
total thickness of the elastic medium in the direction of sound
propagation for the models comprising one and four layers
of cavities models is 720 μm and 1.8 mm, respectively. The
centers of the cavities are 360 μm away from the interface
between the host elastic medium and water on the incidence
and transmission sides. The density and shear modulus of
the host medium are 1000 kg/m3 and 1.6(1 + i) MPa. The
sound speed and attenuation in the host medium are 1020 m/s
and 4.6 × 10−8 f 1.45 m−1, where f is the forcing frequency
in Hz [5]. The first trough in the transmission coefficient
for a single layer as well as four layers of cavities is due
to monopole resonance of the cavities and its frequency can
be predicted using ω0/

√
I . The transmission coefficients for

the 200 μm lattice spacing model are smaller compared to
the 300 μm lattice spacing model, attributed to the stronger
reflection of sound waves by a higher volume fraction of
cavities in the elastic medium. Our analytical results are com-
pared with numerical simulations as well as experimental
results from Leroy et al. [5], showing excellent agreement in a
broad frequency range that encompasses monopole resonance.
Good agreement at higher frequencies is also achieved. To
demonstrate the validity of our analytical model for a large
a/dy value, Fig. 4 presents the transmission coefficient of a
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FIG. 4. Transmission coefficient of one layer (blue lines) and
four layers (black lines) of spherical cavities embedded in a soft
medium submerged in water, for a high a/dy value of 0.45 obtained
using our analytical model (solid lines) and numerical model (dashed
lines).

soft medium embedded with one or four layers of cavities
with a lattice spacing of 85.56 μm. All other geometric and
material parameters are the same as those used for Fig. 3. The
a/dy value for this case is 0.45, which is very close to the full
packing limit. Results obtained analytically and numerically
are in excellent agreement, even at very low transmission
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FIG. 5. Transmittance (top), reflectance (middle), and ab-
sorbance (bottom) of a layer of cavities embedded in a soft medium
submerged in water and attached to a steel backing, for moderate and
high a/dy values of 0.22 (black lines) and 0.45 (blue lines) obtained
using our analytical model (solid lines) and numerical model (dashed
line). Experimental results from Leroy et al. [8] for a/dy = 0.22 are
also shown (black circles).
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coefficient values. A comparison of Figs. 3 and 4 highlights
that reducing cavity spacing significantly blocks the transmis-
sion of sound.

Next, we consider a metasurface submerged in water with
a rigid backing on the transmission side. Figure 5 presents
the transmittance (ratio of transmitted and incident acoustic
energies), reflectance (ratio of reflected and incident acoustic
energies), and absorbance of a single of layer of cavities in
a soft medium with water on the incidence side and steel
on the transmission side. The cavities are of radius 11 μm
and arranged in a square lattice with a spacing of 50 or
24.44 μm. These cases correspond to moderate and high a/dy

values of 0.22 and 0.45, respectively. The thickness of the
elastic medium in the direction of sound propagation is 230
μm, with the cavities at a distance of 11 μm from the steel
backing. The density and shear modulus of the elastic medium
are 970 kg/m3 and (0.6 + 7×10−7 f ) + i(0.2 + 1.8×10−6 f )
MPa. The sound speed and attenuation in the host medium
are 1020 m/s and 4.6×10−8 f 1.45 m−1. The layer of cavities
generates reflected waves that have a phase difference of π

compared to those reflected from the steel backing [8]. De-

structive interference of these two reflected waves leads to
low sound reflection from steel covered with the metasurface.
Further, high sound absorption by the metasurface is attributed
to strong multiple scattering of waves between the cavities re-
sulting in conversion of longitudinal waves into shear waves,
which are subsequently dissipated in the elastic medium due
to high shear damping. Our analytical and numerical results
are in excellent agreement with the experimental results from
Leroy et al. [8].

V. SUMMARY

We have presented an analytical framework based on
an effective medium approximation to model sound scat-
tering by a metasurface comprising a lattice of spherical
inclusions in a soft medium. Our approach simplifies the
analytical treatment of homogeneous media embedded with
monopole scatterers while preserving the self-consistency of
the original problem, and is valid for an extended range of
the filling fraction of cavities including the closely spaced
limit.
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