PHYSICAL REVIEW B 102, 214305 (2020)

Theory of out-of-equilibrium electron and phonon dynamics in metals
after femtosecond laser excitation

Ulrike Ritzmann®,'2-3 Peter M. Oppeneer 12 and Pablo Maldonado'
' Department of Physics and Astronomy, Uppsala University, Box 516, S-75120 Uppsala, Sweden
2Departmenl of Physics, Freie Universitdt Berlin, Arnimallee 14, D-14195 Berlin, Germany
3Dahlem Center of Complex Quantum Systems, Freie Universitdit Berlin, Arnimallee 14, D-14195 Berlin, Germany

® (Received 27 November 2019; revised 10 November 2020; accepted 4 December 2020; published 18 December 2020)

The dynamics of electrons and phonons in metals upon laser excitation are often described by the two-
temperature model, which assumes that both subsystems are individually in thermal equilibrium. However, recent
experiments show that this description is not sufficient to describe the out-of-equilibrium dynamics on ultrashort
timescales. Here, assuming a thermalized electronic system, we extend and apply a parameter-free microscopic
out-of-equilibrium model to describe the ultrafast laser-induced phonon and electron temperature dynamics of
various metallic systems such as gold, aluminum, iron, nickel, and cobalt. We report strong deviations from
the two-temperature model on the picosecond timescale for all the materials studied, even for those where the
assumption of separate thermal equilibrium seemed less restrictive, like in gold. Furthermore, we demonstrate
the importance of the mode dependence of the electron-phonon coupling for the relaxation process and reveal

the significance of this channel in the lattice equilibration.

DOI: 10.1103/PhysRevB.102.214305

I. INTRODUCTION

The development of new experimental techniques using ul-
trashort laser pulses has allowed in recent years to gain access
to novel phenomena taking place at subpicosecond timescales
when the system is still strongly out-of-equilibrium [1-4] with
heavily intertwined degrees of freedom. Thus, the complex
interplay of electronic, phononic, and spin degrees of freedom
after laser excitation has become the focus of contemporary
research which has led to the discovery of new phenomena
such as ultrafast demagnetization [5-7], change of magnetic
anisotropy [8], ultrafast generation of lattice strain waves
[9,10], coherent phonon generation [11,12], laser-induced
superconductivity at high temperatures [13], excitation of
ultrafast spin currents [14] and of high-frequency exchange
magnons [15], spintronic THz emitters [16], or femtosecond
activation of magnetoelectricity [17].

From a theoretical perspective, thermal models such as the
two- and three-temperature model are commonly used to de-
scribe the ultrafast interplay of electrons, phonons, and spins.
These models are based on the assumption that the laser ex-
cites a thermalized electron distribution and that electrons and
phonons are each individually in thermal equilibrium during
the relaxation, and were originally derived by Kaganov et al.
[18] and later extended by Anisimov et al. [19] for the case
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of phonon and electron subsystems. The assumption implies
that the electron system thermalizes instantaneously through
electron-electron interaction and similarly, the phonon system
thermalizes immediately through phonon-phonon interaction
or that the electron-phonon coupling and specific heat is in-
dependent of the phonon modes. The time evolution of the
two subsystems can then be described by the time dependence
of the electron temperature 7; and the phonon temperature 7,
derived from the following coupled equations [20]:

8T2TM
e = —Gep(T;™ — T7™) + P(0), (1
BTZTM
p 2 2
CpT — Gep(];, ™ _ YWe TM). (2)

The specific heat constants for electrons C, and phonons C,,
as well as the electron-phonon coupling constant G, can be
determined either experimentally or by first-principles calcu-
lations [21]. P(¢) represents the absorbed power from the laser
excitation.

However, recent experimental and theoretical works have
evidenced that ultrashort laser pulses induce strong out-
of-equilibrium dynamics that cannot be described by sim-
plified thermal models in the subpicosecond time regime
[10,22,23]. As a consequence, a large number of theoreti-
cal and experimental studies have tried to shine light on the
laser-induced out-of-equilibrium dynamics [24-35]. New the-
oretical models have been derived to improve the modeling
on ultrashort timescales. One approach is to consider distinct
phonon-branch dependent dynamics [22]. Further approaches
introduce mode-dependent couplings and consider out-of-
equilibrium distributions for electrons or phonons [36—40].
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Here we use a microscopic out-of-equilibrium dynamics
model derived by Maldonado et al. to investigate laser-
induced dynamics of the phononic system in different metallic
materials on picosecond timescales based on first-principles
calculations [36]. The model includes phonon-mode depen-
dent electron-phonon and phonon-phonon coupling. It is
based on the notion that, in contrast to the phonon system,
the electron system thermalizes very fast, by electron-electron
scattering on the femtosecond timescale, leading to an approx-
imately uniform electron temperature within 50 fs [41-44].
We discuss the out-of-equilibrium dynamics in gold, alu-
minum, nickel, iron, and cobalt. Our results reveal strong
deviations from those provided by the two-temperature model
even a long time after the laser excitation, evidencing thus the
failure of the two-temperature model at these timescales. We
demonstrate the relevance of the mode-dependent electron-
phonon coupling and show the distinct dynamical behavior
of the different materials studied. Furthermore, we show that
electron-phonon coupling has a significant role in the lattice
equilibration mechanism, specifically, as a channel to trans-
fer heat from hot to cold phonon modes via the electronic
system.

II. MICROSCOPIC OUT-OF-EQUILIBRIUM
DYNAMICS MODEL

In the following we will describe the theoretical model
which provides the out-of-equilibrium system dynamics trig-
gered by an ultrashort laser pulse in different metals, showing
additionally the microscopic mechanisms involved in the
equilibration process. Here it is important to mention that
although the out-of-equilibrium electron dynamics is of spe-
cial relevance to understand different laser-induced ultrafast
phenomena, such as ultrafast demagnetization [5] or energy
relaxation in strongly correlated electronic systems [45], it
has been shown recently that the electronic relaxation time is
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only about a few tens of femtoseconds [41-44]. Considering
that the relevant timescales of this work span several tens
of picoseconds, we can safely assume a thermal distribution
of the electronic system during the whole process with a
transient electron temperature 7 (¢). Contrarily, the lattice dy-
namics needs an explicit out-of-equilibrium representation of
the phonon population [36].

To determine the change of the phononic distribution
function, ng = dnp/0t, it is important to consider different
modifying processes such as diffusion, external fields, and
scattering. Within the Boltzmann transport model they are
usually represented as

: - field

nQ — nQ + };lSQcatt. + l;l(éif', (3)

where O = (q, v) with q and v being the phonon wave vector
and branch, respectively. Assuming that the external field
caused by the laser has disappeared at time ¢+ = 0 and also
considering only relatively short timescales after the laser
excitation and a constrained geometry, we can neglect the
influence of diffusion and external field on the change of the
phonon population. Therefore, we only consider the scattering
term as the driver of the relaxation between the laser excited
electron bath and the phonons, and we can write

ng = iy, )

The scattering term can be determined employing many-body
perturbation theory and Fermi’s golden rule to estimate the
probability of a transition between two states due to a specific
scattering mechanism [46]. Since in this work we are only
interested in the interactions among electrons and phonons,
we have

S peP PP
ng =ngy +ng, (@)
where 72,,” and 7y,” denote the scattering terms due to electron-

phonon and phonon-phonon interaction [46], respectively,
with

Z 1D _gxx*[(ng + D + Digd(wg + wp — wpr) + (ng + D(mp + Dmd(wg + wp

—wy) — nong(ny + 1)8(wg — wp + wi) — ngng (ng + 1)8(wp + wp — wi)
+(ng + Dmnpd(wg — wp — wi) — no(my + D(np + 1)8(wg — wp — wy)]. (6)

Here wg is the frequency of the phonon mode Q and the
®_p i are the matrix elements that involve three-phonon
scattering processes [47,48], for details see Appendix A)
and
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with g7 (K, q) being the electron-phonon matrix elements
that couples the electronic states of different quantum num-
bers (k wave vector, n band index) but with the same ¢ spin
through a phonon Q. f;} is the transient electronic population
of the state specified by quantum numbers nk and o. Under

(

the assumption of a thermalized electronic system it becomes
the Fermi-Dirac distribution with transient electronic temper-
ature T;(¢), which can be obtained by solving
oF,
ot

== hwoiig” + P(t), (8)
[

with P(t) the absorbed laser power.

Hence, we can determine the transient phonon dynamics by
solving numerically the set of coupled equations provided by
Egs. (4), (6), (7), and (8), where the only unknown quantity in
the description, which are the distinct electron-phonon matrix
elements, can be computed from first-principles calculations
(see Appendix B).
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Alternatively, we can use an equivalent formulation based
on an “effective” phonon temperature following that the
phonon distributions are continuous functions. In doing so,
we use the ansatz that the phononic out-of-equilibrium distri-
bution function can be written as

1

no(t) = N

o® exp(ﬂJr\y(t))—]
[PYAO) Q

®

where T,(t) is the lattice temperature and Wy is a mea-
surement of the deviation from equilibrium [49,50]. Cor-
respondingly, we can rewrite the above expression with a
more compact notation by defining a phonon mode-dependent
effective phonon temperature TpQ () that can notably differ for
distinct regions of the Brillouin zone (BZ),

1
th _
exp (kBTp%)) !

These branch and wave-vector-dependent phonon temper-
atures have their counterparts for the electronic states at
different regions of the Fermi surface as proposed theoreti-
cally by Schutt et al. [51]. Then, by using the conservation
of total energy and the Boltzmann kinetic theory, a set of
coupled equations of motion for the temperatures of each
phonon mode Q and of the electron bath can be derived:

no(t) = (10)

oT,
Ce " = Yo voCo(T2 = T)I[1 + (T — T.)] + P(1).
(1
aT? 0 0
— = —70Co(T,? = T)[1 + /(1,7 = T)]I(T.)

- Z Color (T2 - Tpk'k/)
k/

U2 - 1) a2)

where C; and Cy are the electronic and phonon-mode Q heat
capacities, and yp and I'gy are the phonon linewidths due
to electron-phonon and phonon-phonon scattering, respec-
tively. Note than only electrons around the Fermi level have
been taken into account, consistent with the energy interval
achievable by the hot electron temperatures. The effect of
high electronic temperatures has furthermore been included
through the function /(7). These quantities are obtained from
first-principles calculations, in our case on a dense grid of
203 k points. Details of the derivation of these equations can
be found in Appendix A (see also Maldonado et al. [36]).
However, it is important to mention that the model [36] has
been further improved in this work to explicitly avoid the
use of the single relaxation approximation in the derivation
of Egs. (11) and (12).

The laser excitation is considered to have a Gaussian dis-
tribution with the rate of the absorbed energy given by

Pit)=(1-R)pa 2 ex (—iﬂ) (13)
= S\/ﬂ P = .

The full width at half-maximum of the laser pulse o is 100 fs
and given by o = /s/[2+4/21In(2)]. We consider a laser flu-
ence of ¢ =50 mJ/cm?. R is the reflectivity and « is the
adsorption coefficient, for which we use values at room tem-
perature. For a better comparison of the results obtained for
the different metallic systems here studied, we use the same
rate of absorbed energy for all cases. The amount of absorbed
energy is defined initially for gold, and then taken as a refer-
ence for the other systems. In this case, the reflectivity is given
by R =0.98 and the absorption coefficient is o = 0.80916
cm™~! for a 800 nm wavelength of the laser pulse. Note that the
adsorption coefficients can vary largely for the materials and
therefore the laser fluences have been modified accordingly.
In the following we will use the “effective” phonon tem-
perature formulation, and solve Eqs. (11) and (12) rather than
obtaining the out-of-equilibrium phonon populations directly
from Egs. (4), (6), (7), and (8), to have a transparent and
direct way to check the validity of the two-temperature model
and to establish a clear framework for those investigations
that use the electron, lattice, or spin transient temperatures
to model different ultrafast physical phenomena [48,52-57].
Additionally, this formulation allows for an easy interpretation
of the energy flow, able to account for different “hot” and
“cold” dissipation channels, e.g., in highly correlated systems
[45]. Finally, it is worth mentioning that this formulation is
equivalent to solving directly the rate equations in the form of
phonon populations [Egs. (4), (6), (7), and (8)] up to second
order in the effective phonon temperature expansion and for
the low fluences used in this work (see Appendix A). Thus,
the here-developed formalism can equally well be used to
provide the transient phonon dynamics from which we can
compute relevant experimental quantities such as the diffusive
scattering and Bragg diffraction intensities [39,45,58].

III. RESULTS

Before analyzing the out-of-equilibrium dynamics ob-
tained as a solution of Eqgs. (11) and (12) for the different
metallic systems here studied, i.e., gold, aluminum, iron
nickel, and cobalt, we have computed the phonon-mode de-
pendent linewidths using the ABINIT software [59] to extract
the electron-phonon couplings and the system’s force con-
stants. We have also calculated the electron-phonon coupling
constant Gep = ), ¥oCo, commonly used as a free param-
eter in the two-temperature model. In our case Gep, will be
used to compare the results of our out-of-equilibrium model
with the two-temperature model. The results for the different
materials computed at 7 = 300 K are summarized in Table I,
along with averaged values for the phonon linewidth due to
electron-phonon coupling (yp) = 1/Ng ZQ Yo, and the aver-
aged value for the phonon linewidth due to phonon-phonon
coupling (I'g) = 1/Ng >, To.

Importantly, we obtain that in gold and aluminum the
role of anharmonicities is more significant, indicated by the
larger phonon-phonon linewidth as compared to nickel, iron,
and cobalt. Moreover, in the case of gold this coupling
is even larger than the electron-phonon coupling strength,
and therefore a fast lattice equilibration could be expected,
which would justify the use of the two-temperature model.
Contrarily, we find for the rest of the systems studied that the
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TABLE 1. Computed material’s specific constants. Given are
the averaged linewidth for electron-phonon coupling (y), and for
phonon-phonon coupling (I'p), and the corresponding electron-
phonon coupling constant Gp,.

Material (vo) (GHz) (I'o) (GHz) Gep [10"7 W/(m3 K)]
Gold 4.7 90.6 0.225
Aluminum 101.1 77.2 4.47

Iron 164.0 6.7 10.5

Nickel 272.5 27.0 18.9

Cobalt 458.7 16.8 334

electron-phonon strength coupling is larger than the phonon-
phonon coupling strength, and therefore it could be already
expected that the lattice cannot be modeled with a thermal
distribution having a single lattice temperature. The values of
the electron-phonon coupling constants reported in Table I are
in good agreement with previously published works, except
for the case of iron where a large deviation is observed [60].
In contrast to our work, where we use first-principles compu-
tation of the quantities, the electron-phonon coupling constant
was previously estimated by using a Debye approximation, to
which we associate the discrepancies with our results.

Here it is important to stress that our model has been
derived under the assumption that the spin subsystem plays
a negligible role in the lattice dynamics due to the usually
small magnetic heat capacities that lead to a small energy
absorption in the spin systems. Although this assumption is
rigorously valid for nonmagnetic materials such as Au and Al
it is only valid at low temperatures for magnetic systems and
it might fail close to the Curie temperature. On the other hand,
we include an explicit dependence of the electron-phonon
coupling on the electron spins (the total electron-phonon cou-
pling is the result of the sum of the coupling for minority
and majority electrons). Here we consider the spin-dependent
values for fully magnetized systems. Although we assume that
the inclusion of the spin subsystem in our model will modify
the quantitative behavior of the dynamics, the qualitative be-
havior would be the same, and therefore the timescales of the
dynamics and conclusions drawn in this work remain valid.

A. Out-of-equilibrium dynamics in gold

One of the main assumptions of the two-temperature model
is that phonons are in complete thermal equilibrium during
the interaction with the electrons. This condition can be ful-
filled either by assuming an homogeneous electron-phonon
coupling such that the heat is homogeneously distributed
or by assuming a phonon-phonon interaction strength much
larger than the electron-phonon coupling strength such that
the lattice is equilibrated instantaneously. As for the case
of Au, the former condition is not fulfilled as we can see
in Fig. 1(a) where we show the calculated mode-dependent
phonon linewidth due to electron-phonon interaction as a
function of the frequency. Note that multiple points at one
frequency occur, since each data point represents a phonon
at the state (vK). The broad dispersion of linewidths along the
phonon frequencies evidences how the energy will be largely
inhomogeneously distributed among the different phonon
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FIG. 1. Calculated electron-phonon linewidths (top) and
phonon-phonon linewidths (bottom) in gold as a function of the
phonon frequency for the three phonon branches.

modes. On the other hand, the phonon linewidths due to the
phonon-phonon interaction, which are also strongly mode de-
pendent, present values that are one order of magnitude larger
than those stemming from the electron-phonon scatterings, as
illustrated in Fig. 1(b). This potentially suggest the validity
of a thermal description of the lattice in the two-temperature
model for Au. Quantitatively this is also suggested by the av-
eraged electron-phonon linewidth which has a value of about
4.7 GHz, corresponding to an averaged lifetime of 106 ps,
whereas the averaged phonon-phonon linewidth is 90.6 GHz
corresponding to a lifetime of 5.5 ps.

We compute the dynamics of the electron and phonon sys-
tems that are initially at 300 K after laser excitation by using
the two-temperature model, given by Eqgs. (1) and (2), as well
as by the microscopic out-of-equilibrium dynamics model de-
scribed by Egs. (11) and (12). To compare the two models, we
calculate the averaged temperature T,"%, as well as the mini-
mum and maximum effective temperature of the phonons 7;™"
and 7™ The results are shown in Fig. 2(a). The dynamics of
the electron temperature 7; and the averaged effective phonon
temperature 7, ¢ of the microscopic out-of-equilibrium dy-
namics model are very similar to the predictions for the
electron temperature 7™ and the phonon temperature 7,”™
from the two-temperature model when using our computed
parameters. The electron subsystem is heated up to almost
2400 K within the first picosecond and afterwards the system
equilibrates within about 12 ps having a final temperature of
about 380 K. The electron and lattice temperature evolution
in the microscopic out-of-equilibrium dynamics model are
slightly faster than in the two-temperature model.
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FIG. 2. Time evolution of the electron and phonon temperatures
in gold. (a) Comparison of the temperatures computed from the
two-temperature model (labeled 2TM) with those of the microscopic
out-of-equilibrium dynamics model as a function of time after laser
excitation. (b) Time dependence of exemplary phonon modes illus-
trating their different relaxation dynamics.

Furthermore, the large inhomogeneous energy distribution
due to the strongly mode-dependent electron-phonon coupling
is reflected in the very different dynamics of the maximum,
minimum, and averaged effective temperatures. On the one
hand, the maximum effective phonon temperature reaches a
value of about 415 K at ~5 ps while the averaged effective
phonon temperature only slowly converges to 380 K at around
10 ps. On the other hand, a few modes remain with tempera-
tures around 300 K after 20 ps, since they couple very weakly
or do not couple with electrons nor with other phonons, but
possibly only to impurities which are not considered in our
model. In Fig. 2(b) we show the temporal evolution of the
effective temperatures of exemplary phonon modes by several
dashed-dotted orange lines. Here we have chosen two modes
with low energy and weak electron-phonon coupling and one
phonon mode with high energy and a large electron-phonon
coupling. These examples demonstrate that the temporal evo-
lution of individual modes can differ significantly from the
averaged time evolution. Furthermore, we observe in Fig. 2(b)
that the maximum effective phonon temperature can even
exceed the electron temperature, which is a clear evidence
of the lattice being nonthermal. Further details on the mode-
dependent effective phonon temperature distribution can be
found in Appendix C, where we show that phonon modes
with large electron-phonon coupling strength, corresponding
to high energy phonons, reach higher effective temperatures,
while low energy phonon modes—which couple weakly to
electrons and other phonons—correspond to phonons with

Au
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Tavg

0.05 i
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relative weight
S
¥
b
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0.25 J
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300 320 340 360 380 400 420
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FIG. 3. Phononic temperature distribution at different times dur-
ing the electron-phonon relaxation in gold. The red bars show the
computed relative weights of phonon frequencies having a temper-
ature within a range of 1 K for several different times. Vertical
black lines give the average phonon temperature 7, and the vertical
dashed line gives the electron temperature T;.

low effective temperatures that thermalize slowly and are not
thermalized even at 10 ps after laser pumping.

We gain further details of the out-of-equilibrium system
dynamics by plotting in Fig. 3 the relative weight of all the
phonon modes at a specific temperature within an interval of
1 K. At 1 ps we observe that the temperature range spanned
by all the modes is already of about 45 K. Since the electron
temperature is still above 2000 K at 1 ps, phonons are further
heated and their distribution broadens as shown at 5 ps. At this
time the majority of the phonons are distributed nearly sym-
metrically around the averaged effective temperature within a
range of 90 K. At 10 ps, the averaged effective temperature of
the phonons is nearly converged and the electron temperature
is reduced to below 500 K. The phonon distribution starts
narrowing due to energy redistribution within the phonon
system. The hottest phonons are cooling down by transferring
their energy to the rest of the phonon system via phonon-
phonon scatterings. At 15 ps, the temperature distribution
becomes deltalike and the phonons can be considered nearly
in thermal equilibrium. Nonetheless, a few modes are still
below the averaged temperature, due to their low electron-
phonon and phonon-phonon coupling. This demonstrates that
although phonon-phonon thermalization is very relevant in
Au, deviations from the two-temperature model still occur
and a correct description of the lattice dynamics requires an
out-of-equilibrium description.
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FIG. 4. (a) Calculated electron-phonon linewidths as a function
of the phonon frequency for the three phonon branches in aluminum.
(b) As (a), but for the phonon-phonon linewidths. (c) Comparison
of the computed temperatures obtained from the two-temperature
model with those of the microscopic out-of-equilibrium dynamics
model as a function of time after laser excitation.

B. Out-of-equilibrium dynamics in aluminum

Unlike the case of gold, and as illustrated in Table I, alu-
minum has a larger electron-phonon coupling strength than
the one provided by the phonon-phonon interaction, with an
averaged value of about 101 GHz and a lifetime of 4.9 ps.
The phonon-phonon coupling is lower than in gold with an
averaged linewidth of 77 GHz corresponding to a lifetime
of 6.5 ps. The mode-dependent linewidths for both cases
are shown in Figs. 4(a) and 4(b). In contrast to the depen-
dence found in other materials, the electron-phonon coupling
varies strongly for the different phonon branches. Longitudi-
nal phonon modes couple significantly stronger to electrons
and also have on average a stronger phonon-phonon coupling
than the other two branches. Similar results have been shown
by Tang et al. [61].

The time evolution of electrons and averaged effective
phonon temperatures in comparison with predictions from the
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FIG. 5. Phononic temperature distribution at different times dur-
ing electron-phonon relaxation in aluminum. The relative weights of
phonon frequencies with a temperature within an interval of 1 K is
shown for different times by the red bars.

two-temperature model are shown in Fig. 4(c). Electrons are
heated up to above 1800 K, whereas the relaxed temperature
is again about 380 K. The larger electron-phonon coupling, as
compared with the gold quantities, leads to a faster relaxation
than in the case of gold, having the averaged effective phonon
temperature and electron temperature practically converged to
acommon value at 1 ps. However, it is important to emphasize
that in this case we additionally observe larger deviations
between the microscopic out-of-equilibrium dynamics model
and the two-temperature model. In particular, the electron
temperature is lower in the two-temperature model compared
to the microscopic out-of-equilibrium dynamics model and
the subsequent dynamic exhibits a faster relaxation.

We also calculate the temperature distributions during the
different stages of the relaxation process and the results are
shown in Fig. 5. The phonon distribution is much broader
than for gold. Additionally, some phonon modes reach an
effective temperature of about 100 K more than the averaged
value. Below 2 ps, the distribution of the phonon tempera-
tures is still very broad and asymmetric, evidencing a strong
nonequilibrium state. The broad distribution results from the
independent dynamics of the different phonon branches. The
longitudinal phonon modes couple stronger to the electrons
and among each other, whereas the other two branches have a
lower electron-phonon coupling and a lower phonon-phonon
coupling. This separates their dynamics and causes a very
distinct dynamics for the different branches.

At 2 ps, the phonon distribution has narrowed. Since
the electron temperature is in the range of the effective
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phonon temperatures, an indirect energy redistribution via
electron-phonon coupling is possible. Although the electron
temperature and the averaged effective phonon temperature
converges at 1 ps, the phonons can only be considered to
be in thermal equilibrium after around 5 ps. These results
are in agreement with recent experimental observations and
numerical results by Waldecker et al. [22]. In their work
they assign the deviations from the two-temperature model
to a phonon branch-dependent coupling to the electrons, with
a phenomenological phonon-phonon coupling that is fitted
to reproduce the experimental equilibration. However, it is
relevant to stress that our results reveal an additional strong
phonon frequency-dependent behavior, which leads to an even
more complex dynamics and very broad effective phonon-
temperature distributions.

C. Out-of-equilibrium dynamics in nickel

The cases studied previously, for Au and Al, show the
capabilities of our model to describe the out-of-equilibrium
lattice dynamics of nonmagnetic systems with very different
electron-phonon and phonon-phonon couplings. In the fol-
lowing we will extend the description to study the relaxation
dynamics of ferromagnetic materials, specifically nickel, iron,
and cobalt. First, we compute the phonon linewidths due
to electron-phonon coupling for the different materials by
using spin-dependent densities of states and spin-dependent
electron-phonon coupling. The mode-dependent linewidths
in nickel are shown in Figs. 6(a) and 6(b). The averaged
linewidth due to electron-phonon coupling is 272.5 GHz
equivalent to a lifetime of about 1.8 ps which is significantly
larger than for gold and aluminum (see Table I). The phonon-
phonon linewidth in this material is on average only 27 GHz
leading to a lifetime of about 19 ps.

In Fig. 6(c) the temperature evolution of electrons and
phonons computed for the two-temperature model and the
microscopic out-of-equilibrium dynamics model are shown.
Due to the strong electron-phonon coupling, the electrons are
heated up within 100 fs to about 750 K and electrons and the
averaged phonon temperature are nearly converged at about
0.75 ps to a temperature of 349 K. In Fig. 7 the effective
phonon temperature distribution at different stages of the re-
laxation are shown. At 0.2 ps, a broad distribution with a range
of 60 K is reached due to the mode-dependent coupling with
the electrons. The maximum effective phonon temperature is
much lower than in gold and aluminum and only about 380 K.
The maximum linewidth of electron-phonon coupling in alu-
minum is three times larger than the average value, whereas
in nickel the maximum value is less than a factor 2 larger
than the average. This leads to narrower phonon temperature
distributions during the relaxation in nickel.

The thermalization of the phonons is mainly driven by
electron-phonon coupling. Hotter phonons transfer their en-
ergy back to the electrons which are already colder than these
phonons and this energy is again distributed to the less heated
phonons. This is illustrated by the asymmetric temperature
distributions at 1 and 2 ps in Fig. 7. The peak of the phonon-
temperature distribution is formed slightly above the electron
temperature and it still deviates by several Kelvin from the
averaged temperature. Hence, although the results provided
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FIG. 6. (a) Calculated electron-phonon linewidths dependent on
the phonon frequency for the three phonon branches in nickel. (b) As
(a), but for the phonon-phonon linewidths. (¢) Comparison of the
computed temperatures obtained from the two-temperature model
with those of the microscopic out-of-equilibrium dynamics model
as a function of time after laser excitation.

by the two-temperature model and the calculated averaged
dynamics of our model show a good agreement, the use of
the two-temperature model leads to a wrong interpretation of
the physical phenomena involved in the lattice thermalization
in Ni.

D. Out-of-equilibrium dynamics in iron

Iron presents the lowest phonon linewidths due to phonon-
phonon interaction among the here-discussed materials with
an averaged value of 6.7 GHz (equivalent to a lifetime of
75 ps) as shown in Table I. Additionally, the computed aver-
aged electron-phonon coupling in iron is 164 GHz (equivalent
to 3 ps lifetime), suggesting a larger relevance of this scat-
tering mechanism in the dynamics than the phonon-phonon
interaction. More specifically, this is illustrated in Figs. 8(a)
and 8(b), where the mode-dependent phonon linewidths are
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FIG. 7. Phononic temperature distribution at different times dur-
ing electron-phonon relaxation in nickel. The red bars show the
computed relative weights of phonon frequencies having a temper-
ature within a range of 1 K for several different times. Vertical
black lines give the average phonon temperature 7, and the vertical
dashed line gives the electron temperature T;.

shown due to electron-phonon and phonon-phonon scatter-
ings, respectively. The time evolution of the electron and
phonon temperatures computed with the two-temperature
model and the microscopic out-of-equilibrium dynamics
model are summarized in Fig. 8(c). The results show that the
two-temperature model provides a dynamics that is in sig-
nificant contrast with the out-of-equilibrium model, showing
a faster relaxation with an electronic temperature reaching a
maximum value of around 200 K lower than in our model.
Despite this discrepancy it is noteworthy to observe that the
averaged effective phonon temperature in our model shows
a very good agreement with the lattice temperature from the
two-temperature model.

The distributions of the effective phonon temperatures dur-
ing the relaxation are shown in Fig. 9. Unlike the case of
nickel where the range of effective temperature deviations
was about 70 K, in iron the range of temperatures is above
100 K due to a strongly phonon mode-dependent electron-
phonon coupling. Moreover, the temperature distribution is
very asymmetric with practically the same relative weight of
phonons for all the temperatures spanned. As a consequence a
large percentage of phonon modes have much larger temper-
atures than the averaged effective phonon temperature and,
more importantly, larger than the electron temperature. This
results in a flow of energy from those phonon modes to the
electronic system which then deliver the energy to the phonon
modes with lower temperatures. Since the phonon-phonon
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o
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& .
o 800 + j;é;:\f; ........ 4
E 5 TSQTI\/I
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1S
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FIG. 8. (a) Calculated electron-phonon linewidths dependent on
the phonon frequency for the three phonon branches in iron. (b) As
(a), but for the phonon-phonon linewidths. (c) Comparison of the
computed temperatures from the two-temperature model with those
from the microscopic out-of-equilibrium dynamics model as a func-
tion of time after laser excitation.

coupling strength is small, it plays a small role in the lattice
relaxation. Additionally, even though the averaged effective
phonon temperature and the electron temperature are con-
verged after 1 ps, Fig. 9 shows that the phonon system remains
in an out-of-equilibrium state for longer times and only after
more than 5 ps can we start considering that the system is in a
quasiequilibrium state.

E. Out-of-equilibrium dynamics in cobalt

As a last example we study the relaxation dynamics in
hcp cobalt, which, as shown in Table I, has the largest
electron-phonon coupling strength among all the systems
here analyzed. Moreover, hcp cobalt has two inequivalent
atoms in the primitive cell, which leads to six different
phonon branches instead of three as in the other materials.
The calculated phonon linewidths due to electron-phonon and
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FIG. 9. Phononic temperature distribution at different times dur-
ing electron-phonon relaxation in iron. The red bars show the
computed relative weights of phonon frequencies having a temper-
ature within an interval of 1 K is shown for several different times.

phonon-phonon couplings are shown in Figs. 10(a) and 10(b).
The averaged electron-phonon linewidth is about 244.4 GHz
corresponding to a lifetime of only 2 ps and the averaged
phonon-phonon linewidth is about 16.4 GHz giving a life-
time of around 31 ps. The larger complexity of the primitive
unit cell in Co, with respect to the other materials studied,
favors a larger possibility for the electrons to interact with the
phonons, leading to a very strong mode-dependent electron-
phonon coupling.

The temporal evolution of the effective temperatures
after laser excitation is shown in Fig. 10(c). The two-
temperature model deviates strongly from the microscopic
out-of-equilibrium dynamics model. The maximum electron
temperature in the microscopic out-of-equilibrium dynamics
model remains below 900 K, whereas the two-temperature
model predicts a maximum electron temperature above
1200 K. Also, the relaxation times of both models strongly
deviate from each other. The electron and phonon tempera-
tures of the two-temperature model converge already shortly
after 0.1 ps, whereas the averaged effective phonon tem-
perature and the electron temperature in the microscopic
out-of-equilibrium dynamics model converge at about 0.2 ps.
The final temperature is much lower than in the other cases
caused by the higher heat capacity of the phonons due to the
larger number of phonon branches.

In contrast to the other two ferromagnetic metal systems,
the effective phononic temperature distribution in cobalt is
narrower as shown in Fig. 11. The overall heating effect in the
phononic system is smaller than for the other cases studied
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FIG. 10. (a) Calculated electron-phonon linewidths dependent
on the phonon frequency for the three phonon branches in cobalt.
(b) As (a), but for the phonon-phonon linewidths. (c) Comparison
of the computed temperatures obtained from the two-temperature
model with those of the microscopic out-of-equilibrium dynamics
model as a function of time after laser excitation.

here due to the large phonon heat capacity. The broadest
distribution is already obtained before 0.2 ps and the effective
phonon temperature range is about almost 80 K. It is important
to mention that during the timescale at which the system’s
evolution occurs the electrons remain out-of-equilibrium, and
therefore the assumption of thermal electrons is not well jus-
tified and probably requires a more advanced description that
is beyond the scope of this work.

IV. DISCUSSION AND CONCLUSIONS

We have applied a microscopic out-of-equilibrium model
to study the laser-induced relaxation dynamics in five different
metals, i.e., gold, aluminum, nickel, iron, and cobalt. As a gen-
eral observation we have evidenced that the two-temperature
model fails to describe accurately the lattice dynamics and, in
some cases as in cobalt and iron, also the electronic dynam-
ics. Surprisingly, this is evidenced even in the case of gold,
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FIG. 11. Phononic temperature distribution at different times
during electron-phonon relaxation in hcp cobalt. The red bars show
the computed relative weights of phonon frequencies having a tem-
perature within an interval of 1 K for several different times.

where the assumptions on which the two-temperature model
are based would seem better justified.

To describe the out-of-equilibrium state more quanti-
tatively we calculate the mean deviation from the time-
dependent averaged effective phonon temperature A, =
ZQ(lTQ — Taygl)/No. A comparison of the resulting deviation
as a function of time is shown in Fig. 12. In all cases the
mean deviation first increases when the electron temperature
is higher than the effective phonon temperatures and then
decays on different timescales. Due to the strong phonon-
phonon coupling in gold, the mean deviation does not exceed
12 K, but due to the small electron-phonon coupling, some
deviations still appear on a timescale longer than 5 ps. The

A (K)

time ¢ (ps)

FIG. 12. Computed mean deviation from the time-dependent av-
eraged phonon temperature as a function of time for all materials
studied.

relative weight

time t (ps)

FIG. 13. Relative weight of phonon frequencies within a range
of £1K (red curve), 5K (dark blue curve), and £10 K (light blue
curve) around the averaged phonon temperature as a function of time
for the different metals considered.

largest mean deviation is obtained in aluminum for which
the mean deviation is around 33 K after 1 ps of the laser
excitation, evidencing a very spread distribution of phonon
temperatures. In the ferromagnetic metals iron, nickel, and
cobalt the mean deviation is always below 20 K for the laser
intensities used. In these cases, the averaged phonon linewidth
due to electron-phonon coupling is larger than in aluminum,
but the relative deviations from the averaged linewidth are
smaller. Therefore, in aluminum we obtain larger values for
the mean deviations indicating a state far from equilibrium,
whereas in other materials the mean deviations are lower
and the phononic systems are not driven as far from equilib-
rium. Nonetheless, these data underline that the assumption of
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thermalized phonon distributions is not fulfilled on the pi-
cosecond timescale for all materials. As a last step we
evaluate how good the description of the averaged phonon
temperature captures the overall behavior of the lattice re-
laxation. For that purpose we consider the relative amount
of phonon modes around the averaged temperature within a
range +1, £5, and 10K, which is shown for all materials
in Fig. 13. The relative number of effective phonon temper-
atures around the averaged effective temperature first drops
strongly and then smoothly recovers. Aside from the different
timescales of the relaxation, the dynamical behavior itself
differs between the materials. The relative number of phonons
within a range of 10 K around the averaged temperature in
gold drops to about 80% which means that the averaged
effective temperature represents the overall behavior of the
majority of the modes. But in aluminum the value drops to
only 15% and the averaged temperature cannot be considered
at all as a good description for the system. Afterwards the
value increases to almost 1 at around 5 ps, whereas the number
increases slower in gold and is still below 1 at 10 ps.

In the ferromagnetic metals we observe a different behav-
ior. For iron and nickel the number of phonon modes around
the averaged effective temperature with a difference up to
10 K decreases below 50% and recovers on different material
specific timescales. One can see that at certain times jumps
occur, where the relative number around the averaged effec-
tive temperature strongly increases. This indicates that larger
fractions of phonon modes have acquired similar effective
temperatures that deviate from the averaged value. During
thermalization the effective temperature of those modes con-
verges towards the averaged temperature leading to a large
increase of the relative amount of modes with an effective
temperature around the averaged value. In cobalt, the drop
of the relative weight is less strong for the +5 and +10K
intervals, again due to the large heat capacity of the phonons.

In summary, we have shown strong out-of-equilibrium
phononic distributions after laser excitation on the
picosecond timescale demonstrating the limitations of the
two-temperature model on that timescale. Our microscopic
out-of-equilibrium dynamics model based on an ab
initio input parameter such as phonon mode dependent
electron-phonon coupling and phonon-phonon coupling
demonstrate that the obtained out-of-equilibrium dynamics
are very material specific and the phonon-mode dependencies

J

scatt. 27 36

of the coupling processes have to be considered. In aluminum
we have found the strongest deviations from equilibrium due
to the decoupling of the different phonon branches. It was
proposed earlier by Waldecker et al. to use a different coupling
for each branch [22], which can improve the description of the
dynamics. Our findings show that this works only in certain
materials such as aluminum and although this can improve
the description, it lacks still the strong mode-dependent
electron-phonon coupling within each branch.

Our simulations clearly show that the temperature of the
hottest phonons can exceed the electron temperature and relax
on longer timescales than the electrons. This is in contrast
to a simplified model for electron-phonon relaxation by
Sadasivam er al. [38], in which they assume that the hottest
phonons would follow the electron temperature. Such an
assumption would exclude a possible energy redistribution of
the highly excited phonon modes to lower excited ones via
electron-phonon coupling. Through our explicit calculations,
we demonstrate that this relaxation channel plays an important
role in the case of strong electron-phonon coupling and weak
phonon-phonon interaction.

All this previously unnoted behavior exemplifies that the
two-temperature model is an insufficient description of the
relaxation process of electrons and phonons after laser ex-
citation in the picosecond time range and mode-dependent
dynamics have to be considered in order to describe the
heating process and subsequent system dynamics on that
timescale.
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APPENDIX A: MICROSCOPIC PHONON-PHONON
SCATTERING TERM

The scattering term for the phonon population due to
phonon-phonon interaction can be written as [46]

ng phph = 12 o Z |®_g . [(ng + V(g + Dnpd(wg + wp — op) + (ng + D(npy + Dmd(wg + wp — wx)

kK

— nan(nkr + I)S(a)Q —wp + wy) — nony (ng + 1)5(60Q + wp — wy)

+ (ng + Dmnpd(wg — wp — wy) — ng(ng + (g + 1)8(wg — wp — wy)].

(AD)

The factor 3¢ is introduced due to the (3!)? equivalent terms from the summation in the phonon-phonon matrix elements and the

2

factor 1/2 to avoid double counting in the summation in Eq. (A1). We can now use the following relations [and additionally, we

define B(k) = e ):

= keli

1

”knk’ =

1

(PO — 1)) — 1) (e + e

1
(e + 1) = O ] <eﬂ<k’> 1

1
+ DS -1
-1
+ 1) = =) g w — 1

(A2)

(A3)

214305-11



RITZMANN, OPPENEER, AND MALDONADO PHYSICAL REVIEW B 102, 214305 (2020)

and then Egs. (A2) and (A3) become

my = (mg +np + Dng(Bo),  for 8(wg — wp — wr), (A4)
m(np +1) = —(g — m)ng(Br), for (wo + wp — wy), (A5)
np(ng + 1) = —(mpy — mng(B2), for S(wg — wp + ay), (A6)
with
, hag(Ty — Ti) + hogTy, — ho oy Ty — Tx hao wp Ty — Ty
ok, k', Q) = po = el =21+ = 21+ =", (A7)
kg Ty Ty kg Ty wo Tx kp Ty wo Ty
o (Ty — T; hwoT, h Ty — T, h Ty — T
Bk K. Q) = py = LT =T Hhoole _ Feo () ox T — T\ _ hog () on Tk — Ty (A8)
kg Ti Ty kg Ty wg Ti kT wg Ty
ho (T, — Ty hwoT, h T — T, h T — T
Bath, K, Q) = p = hrB—Ti) Fhooly _ R [y onTe — Ty Ao () oele —T) )
kg T Ty kg Ty wg Ti kg Tx wg Ty
Finally, Eq. (A1) can be written as
. |scatt. 367 2
nQ|ph—ph =2 Z |P_gkk " [k — mi){8(wg + wr — wp)[n(B2) — ngl — 8(wg — @i + wi)n(Br) — nel}
ok
+[n(Bo) — nol(ny + np + 1é(wg — wi — wi')] (A10)
36 2
=7 Z | D_p kx| [(mk — m)[n(B2)8(wg + wp — wir) — n(B1)8(wg — wi + wy)]
ok
+n(Bo)(m + np + 1)8(wg — wp — wpr)]. (All1)

Then, depending on the cases considered, T‘pk’k, defined in
Egs. (11) and (12) will be equal to 7, = 7;,(1 — 2 Li=liy™!

, wg Ty

or T = 11+ 2 el

From Eq. (All) we can reach Eq. (12) as derived in
Maldonado et al. [36] by Taylor expanding the phonon dis-
tributions about the phonon temperature difference.

On the other hand, the phonon linewidth y, due to
electron-phonon coupling and phonon linewidth I'gp due to
phonon-phonon scattering are given by (see also Ref. [36])

Vo =2mwg Y |8 (K, QI”8(eg, — er)8(eg, — €r),
ko
(A12)

7 2
Cox = 7|¢7Q,k,k’| {(ng — mp)

x [§(wg + wx — wp) — §(wg — wi + wy)]
+ (nk + np + 1)d(wg — wr — wir)}. (A13)

Here g% . (k,q) and ®_pr denote electron-phonon and
phonon-phonon matrix elements and €x,, is the energy of
the electron with momentum K’, electron band »n’ and spin o,
and ep is the Fermi energy. Although the transient changes
of the phonon population depend explicitly on the chang-
ing mode-dependent phonon distributions, the linewidths in
Egs. (A12) and (A13) can still be computed using phonon
modes at equilibrium for the cases of low laser fluences,

(

where this approximation provides results equivalent to using
time-dependent out-of-equilibrium phonon linewidths.

The quantity /(7;) introduced in Eqs. (11) and (12) is a
correction factor for the electron-phonon coupling accounting
for scattering of electrons away from the Fermi surface. It can

be computed by
dfi gle)’

)=~ /,oo Y9e glery

where g(e€) is the electron density of states at energy e.
The quantity J(wg, TpQ) in Egs. (11) and (12) represents the
second-order term in a Taylor expansion in temperature dif-
ferences of the out-of-equilibrium phonon population

(Al4)

th

hwg [ SXP (kBTPQ) +1 B 2kg T2

kB T2 liwg

I (@, 1Y) =
p €xXp (m) —1

(A15)

ha)Q

APPENDIX B: FIRST-PRINCIPLES CALCULATIONS

The electron-phonon coupling constants were computed
as response function quantities using the density-functional
perturbation theory (DFPT) as implemented in ABINIT [59].

The harmonic phonon dispersion and the anharmonic
phonon properties were obtained by performing calculations
with the finite displacement method using the PHONO3PY
package [47] and the Vienna ab initio simulation package
(VASP) [62] employed as the ab initio code to calculate the
pairwise and cubic interatomic force constants.
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The phonon linewidths due to phonon-phonon interaction
were determined using many-body perturbation theory on a
third-order anharmonic Hamiltonian which included up to
three-phonon scatterings [47]. Under these conditions the
phonon linewidth computation reduces to knowing the third-
order anharmonic interatomic force constants which can be
determined from density functional theory calculations. To
evaluate the anharmonic interatomic force constants we em-
ploy supercells consisting of 4 x4 x4 primitive cells.

APPENDIX C: MODE-DEPENDENT PHONON
DISTRIBUTION IN GOLD

As an addition to the effective phonon temperature dis-
tribution at different time delays, given in Sec. III A, we
discuss here which phonon modes show high or low effec-
tive temperatures for the exemplary case of gold. Similar
observations can be made for the other materials. In Fig. 14
we show the computed effective phonon temperature as a
function of the frequency of the phonon modes for two
different times delays. In the top panel the results are
shown at 5 ps after laser pumping. The effective temper-
ature distribution is nonhomogeneous which evidences that
the phonon system is clearly out-of-equilibrium. It is im-
portant to note that the obtained effective temperature of
each mode results directly from the mode-dependent electron-
phonon coupling strength. Modes that couple efficiently to
the electrons obtain the highest effective temperatures and are
typically modes with higher frequencies. The lowest effective
temperatures occur for phonon modes with lower energies,
which, correspondingly, also exhibit a weak electron-phonon
coupling.

In the bottom panel of Fig. 14 we show the effective
temperatures at a 10 ps delay after laser excitation. The
results display a clear convergence to an almost final, ther-
malized phonon temperature, evidencing that the system
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FIG. 14. Effective phonon temperatures computed as function of
the frequency for gold at 5 ps (top panel) and 10 ps (bottom panel)
after laser excitation.

is near thermalization. The phonon thermalization in gold
is mainly driven by phonon-phonon interaction. Thus, the
phonon modes that present large phonon-phonon coupling
strength—mainly high frequency phonons—have reached ef-
fective phonon temperatures close to the average effective
temperature. On the other hand, phonon modes having weak
phonon-phonon coupling strength and low frequencies corre-
spondingly have effective temperatures that deviate from, and
are typically below, the average effective temperature.
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