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Thermal transport in compensated semimetals: Effect of electron-electron scattering on Lorenz ratio
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It is well known that the electronic thermal conductivity of clean compensated semimetals can be greatly
enhanced over the electric conductivity by the availability of an ambipolar mechanism of conduction, whereby
electrons and holes flow in the same direction experiencing negligible Coulomb scattering as well as negligible
impurity scattering. This enhancement—resulting in a breakdown of the Wiedemann-Franz law with an anoma-
lously large Lorenz ratio—has been recently observed in two-dimensional monolayer and bilayer graphene
near the charge neutrality point. In contrast to this, three-dimensional compensated semimetals such as WP,
and Sb are typically found to show a reduced Lorenz ratio. We investigate the reasons for this difference,
focusing on the low-temperature regime where the electron-electron scattering is expected to dominate over
other scattering mechanisms. We show that the different regimes of Fermi statistics (nondegenerate electron-hole
liquid in graphene versus degenerate electron-hole liquid in compensated semimetals) are not sufficient to explain
the reduction of the Lorenz ratio in the latter. We propose that the solution of the puzzle lies in the large
separation of electron and hole pockets in momentum space, which allows compensated semimetals to sustain
sizable regions of electron-hole accumulation near the contacts. These accumulations suppress the ambipolar
conduction mechanism and effectively split the system into two independent electron and hole conductors. We
present a quantitative theory of the crossover from ambipolar to unipolar conduction as a function of the size
of the electron-hole accumulation regions, and show that it naturally leads to a sample-size-dependent thermal

conductivity.
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I. INTRODUCTION

The thermal and electric conductivities of compensated
semimetals such as single- and double-layer graphene near
the charge neutrality point have been a topic of great interest
in recent years—mostly because these systems can be made
very clean and feature strong Coulomb interactions between
nondegenerate electron and hole carriers near the point of con-
tact of the conduction and valence bands. This clears the way
for the observation of hydrodynamic transport, as opposed to
conventional single-particle diffusive transport [1-19].

In this regime, the thermal resistivity (og, = x~!)—defined
under the standard condition of zero electric current—is pri-
marily controlled by momentum-nonconserving interactions
(scattering from impurities and phonons), while the electric
resistivity (o~!) is primarily controlled by momentum-
conserving electron-hole collisions. The physical reason for
this difference is well understood. The application of a ther-
mal gradient causes electrons and holes to drift in the same
direction [see Fig. 1(a)]. This ambipolar mode of conduc-
tion is charge-neutral and therefore automatically satisfies the
condition of zero electric current, which is essential to the
measurement of the thermal conductivity. At the same time
the thermal current is directly proportional to the total mo-
mentum of the electron-hole system, which cannot be changed
by electron-hole collisions. Hence, except for momentum-
nonconserving processes, such as electron-impurity collisions
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and umklapps, the thermal conductivity would be infinite. On
the other hand, an electric field causes electrons and holes
to drift in opposite directions [see Fig. 1(a)]. Although the
total momentum is now zero, electron-hole collisions transfer
momentum between electrons and holes, giving rise to the
Coulomb resistivity pe;. Under these conditions the Lorenz ra-
tio L = k /(o T) is much higher than the conventional Lorenz
ratio Ly = (w2/3)(kg/e)* (=2.44 x 1078 W Q K~2) of the
Wiedemann-Franz law, and is given by [16]

1
L=L0<l+ﬁ>, 1

where I'2 = (3/7T2)(,0e1,dis/,0e1) « 1 is the ratio of the ordi-
nary Drude resistivity, pej gis, to the Coulomb resistivity pe;
the smaller this is, the deeper we are into the hydrodynamic
regime. [Notice that this formula is valid at or near the charge
neutrality point, i.e., for chemical potential 1 = O or, at least,
w/(kgT) < I'.] The resulting Lorenz ratio, L > Ly, is clearly
seen in the experiments of Ref. [3], which we reproduce in
Fig. 1(b), and is well above what would be computed in a
theory that does not take into account electron-hole scattering.

Notice that the presence of two kinds of carriers with
opposite charges is essential to the enhancement of the Lorenz
ratio. If we had only one kind of carrier, then the requirement
of zero electric current in a thermal transport experiment
would force these carriers to adopt a distribution in which
their direction of drift changes sign depending on whether
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FIG. 1. (a) Schematic illustration of the difference between heat and charge current in a charge-neutral system. A thermal current can be set
up in a semimetal simply by letting electrons and holes drift with equal speeds in the same direction (upper row). Electric field causes electrons
and holes to drift in opposite directions (lower row). (b) Experimental observation of the enhanced Lorenz ratio in monolayer graphene (the
solid lines are guides to the eye); data were reproduced from Ref. [3]. (c) Experimental observation of the reduced Lorenz ratio in WP,; data
were reproduced from Refs. [20,21]. The insets in (b) and (c) depict the low-energy bands in graphene systems (dashed curves for monolayer
and solid curves for bilayer) and in a compensated semimetal, respectively. In both cases, the chemical potential is taken as the zero of the

energy.

their energy is above or below the Fermi level. In this case,
Coulomb interactions between the carriers would increase the
thermal resistivity, producing a Lorenz ratio that is less than
Ly [22], exactly the opposite of what happens in the ambipolar
case.

In view of the above discussion, it may come as a sur-
prise that well-known compensated semimetals, such as WP,,
do not show, experimentally, any sign of ambipolar thermal
transport. On the contrary, the Lorenz ratio of this and other
compensated semimetals is found to be lower than Ly [23],
which, as we have just seen, is a signature of interaction
effects in wunipolar transport. Earlier measurements on Bi
[24,25] also found a reduction of the Lorenz ratio rather than
an enhancement. A cartoon of the band structure of a compen-
sated semimetal with a negative indirect gap is shown in the
inset of Fig. 1(c). For simplicity, we assume parabolic bands
of opposite curvature for electrons and holes. The electron and
hole bands are well separated in momentum space, in contrast
with those of graphene where electrons and holes coexist in
the same region of momentum space. Experimental measure-
ments of the thermal and electric conductivity, reproduced in
Fig. 1(c), clearly show the reduction of the Lorenz ratio in a
range of temperatures kg7 < & in which electrons and holes
can be safely regarded as degenerate Fermi liquids. Here, e
is the Fermi energy of electrons and holes measured from the
bottoms of the respective bands, while the chemical potential
is 0 = 0 as required for charge neutrality.

What is the reason for this difference?

The first explanation that comes to mind invokes the dif-
ferent regimes of Fermi statistics of electrons and holes in the
two types of semimetals, which we will hereafter refer to as
“type I’ (graphene-like) and “type II” (WP,-like). Electrons
and holes are degenerate Fermi liquids in type-II semimetals,
where the inverse quasiparticle lifetime scales as (kg T)? /€F,
but, in type-I semimetals, they are nondegenerate, strongly in-
teracting (Planckian) particles whose inverse lifetime scales as
kgT . The difference manifests in the behavior of the intrinsic
electric resistivity (caused by electron-hole scattering): pg is
essentially independent of temperature in single- and double-
layer graphene, but becomes proportional to (kg7 /er)* < 1
in type-II semimetals. The small value of pg suggests that
the “hydrodynamicity” parameter 1/T'? of Eq. (1) in type-II
semimetals is much smaller than 1, consistent with the fact
that electrons and holes are degenerate Fermi liquids. These
considerations lead one to expect that L should be close to
Ly, but not smaller than L,. We note in passing that recent
theoretical calculations of the thermal conductivity of com-
pensated semimetals [26] have yielded L < Ly only because
the ambipolar conduction channel was not allowed to be part
of the solution. Those results for the thermal conductivity are
qualitatively similar to what would be obtained by enforcing
the zero electric current conditions separately for electrons
and holes, without allowing for the possibility that the electric
currents of electrons and holes cancel against each other.
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FIG. 2. (a) Schematics of the thermal conductivity measurement.
(b) Spatial distribution of the electron and hole components of the
electric current. £p is the diffusion length. The ambipolar transport
region is shaded. The red dashed lines represent the enhanced density
of electrons and holes near the contacts.

Another possible mechanism for the reduction of L in type-
II semimetals is inelastic electron-phonon scattering. Indeed,
below the Bloch-Griineisen temperature inelastic electron-
phonon scattering becomes nearly momentum-conserving and
its contributions to the electrical and the thermal resistivity
[in reduced units, as explained after Eq. (7)] scale as T3
and T3, respectively [20,27]: this shifts the balance in fa-
vor of the electric conductivity and thus tends to reduce the
Lorenz ratio. In the same regime, however, it is possible that
electron-electron scattering dominates over electron-phonon
scattering, shifting again the balance in favor of the thermal
conductivity and making L > 1. For semimetals in which this
is the case, we are then left with the following problem:
Why is the ambipolar channel of thermal conduction appar-
ently disabled in these systems while it is clearly operative in
graphene? In this paper we propose a resolution of this puzzle.

II. AMBIPOLAR TRANSPORT IN THE PRESENCE
OF CONTACTS: QUALITATIVE DESCRIPTION

In a typical thermal conductivity measurement [see
Fig. 2(a)] no electric current is extracted from the system. This
gives us the condition

Jetjn=0, @)

where j, and jj, are the electric currents associated with
electrons and holes, respectively. At the contacts, however,
both the electron and the hole currents are expected to vanish
and therefore we have the boundary condition j, = j, = 0 at
the contacts. In principle, this boundary condition could be
homogeneously enforced all along the sample (we assume
the sample is a channel of length ¢ extending from —¢/2
to +£/2 along the x axis). Then the electrons and the holes
would be effectively decoupled: there would be no reason
for momentum or energy to flow preferentially from one
group of carriers to the other. The thermal conductivity would
be k = k. + Ky, k. and k;, being the thermal conductivities
of electrons and holes in isolation. The pattern of motion
would reproduce that of a system with only one kind of
carrier: the drift direction would change sign depending on

whether their energy is above or below the Fermi level. Then
electron-electron and hole-hole interactions would ensure that
the Lorenz ratios /T o, and «,/T oj, with o, and o, being
the electric conductivities of electrons and holes in isolation,
are lower than the noninteracting ratio Ly. The total electric
conductivity o is lower than o, 4+ 05, due to the effect of
electron-hole collisions. However, this effect can be neglected
in the clean limit, because o, and oy, are very large. Therefore,
under this boundary condition we would expect the Lorenz
ratio to be lower than L, as it is indeed observed to be in
experiments.

But why should the boundary condition j, = j, =0 be
enforced homogeneously throughout the sample? Notice that
Jje and jj, are not separately conserved, due to the possibility
of electron-hole recombination. Therefore j, = 0 at the con-
tacts does not demand j, = 0 everywhere. On the contrary,
the principle of least entropy production [28] demands that
the system take maximal advantage of the ambipolar channel
of thermal conduction by keeping j, = —j; # 0 in the bulk.
The way this is achieved is by creating regions of increased
electron and hole density in the vicinity of the contacts. This
is shown schematically by the red dashed lines in Fig. 2(b).
The excess densities of electrons and holes are identical, so
that charge neutrality is preserved, but the local chemical
potentials for electrons and holes shift in opposite direction.
The gradients of electron and hole densities act as opposing
forces, which gradually bring the electron and hole currents
to zero. In the next section we will show that the size of the
electron-hole accumulation regions is given by the diffusion
length

tp = /Dr,, 3

where D is the diffusion constant of electrons or holes, re-
lated to the electric conductivity by the usual Einstein relation
[D ~ vi7 in a degenerate Fermi liquid, D ~ (kg7 /m)t in
a nondegenerate electron gas, where t is the momentum
relaxation time] and 7, is the electron-hole recombination
time. Notice that £p can be very large in a clean semimetal
with a long electron-hole recombination time. For example,
with a diffusion constant on the order of 10* cm?/s and an
electron-hole recombination time on the order of 107 s (e.g.,
see chapter 4 in Ref. [29]) we obtain £ ~ 10~ cm which
is comparable to the size of experimental samples [20,21].
It is also worth noting that this mechanism of gradual sup-
pression of the current is unique to ambipolar systems. In a
unipolar system, carrier accumulation is inevitably associated
with charge accumulation and the diffusion length is replaced
by the much smaller screening length: the electric current is
suppressed all over the sample by the uniform electric field
generated by a surface charge layer.

The following qualitative picture emerges from our dis-
cussion. In a typical thermal conductivity measurement the
system splits into three sections: (i) A central section of length
£ —2¢p (assuming £ > 2¢p) in which thermal transport oc-
curs via the ambipolar channel with j, = —j, # 0 and the
thermal resistivity is given by pp,ambi- (il) Two accumulation
regions of length £p adjacent to the contacts, in which j, and
Jjn are essentially zero and the thermal conductivity is given
by pth.uni = (ke + k)~ ). The thermal resistivities of the three
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sections add in series, leading us to the final result

Pth = o (£) o uni + [1 — a2 (€)]oth, ambi» )

where a(£) >~ 24p /€ for £ > 2¢p, and a(£) = 1 for £ < 24p.
This qualitative result will be substantiated in the next section
by detailed calculations. In particular, we will derive a more
accurate form of the weight function

_24p ¢
a(t) = =7 tanh <%> 5)

If, as we expect in very clean samples, P ambi < Oth.unis
Eq. (4) can be further simplified to

Pt = a(£) Pih,uni- (6)

Here the dependence of the thermal resistivity on the sample
size along the direction of flow is evident—as well as a distinct
possibility to get pm 2 pm,uni When £ and 2€p, are comparable.
No such complications arise in measurements of the electric
conductivity, because the system remains homogeneous in
those measurements.

According to this description, the difference between type-
IT compensated semimetals and graphene arises from the
difference between their electron-hole equilibration times. In
type-1II semimetals electrons and holes are well separated in
momentum space, making the recombination process very
slow. As a result, the diffusion length becomes comparable to
the size of the sample and the thermal conductivity reduces to
the sum of the thermal conductivities of electrons and holes in
isolation, implying a Lorenz ratio lower than Lo, as discussed
above. In single- and double-layer graphene, electrons and
holes coexist in the same (small) region of momentum space.
Transfer of nonequilibrium carriers between the conduction
and valence bands is fast, preventing the establishment of
different local chemical potential for electrons and holes.
Therefore the diffusion length is negligible and the thermal
resistivity plummets, leading to a Lorenz ratio higher than L.

Throughout this paper we have assumed that the current
density remains uniform in the direction perpendicular to the
flow. Thus, we have deliberately disregarded contributions to
the resistances arising from the transverse electronic viscosity
and boundary conditions which mandate the vanishing of the
electronic current along the lateral boundaries of the channel.
This corresponds to considering a wide conduction channel.
A detailed analysis of narrow-channel effects is beyond the
scope of this paper.

III. AMBIPOLAR TRANSPORT IN THE PRESENCE
OF CONTACTS: QUANTITATIVE THEORY

In this section we derive the 2 x 2 matrix of thermoelec-
tric resistivities for a 1D channel (—¢/2 < x < £/2). The
latter relates electric and thermal currents to electric fields
and thermal gradients. To simplify the following derivation,
we now define |j,s) = t(jnv Js) and |F) = "(—eE, —kgd,T)
the vectors of thermoelectric currents and fields, respectively.
Here j, = j. + jn, and j; are the electric and thermal cur-
rents, respectively, while E is the electric field and 9,7 the
temperature gradient. Then, the resistivity matrix p, such that

|Fus) = Pl Jjus), has the form

~ Pel + szlh —0pm
= , 7
P ( —0pm Pth ™

where p and py, are the electric and thermal resistivities in
reduced units. That is to say, they are the usual electric and
thermal resistivities multiplied by ¢* and k3T, respectively,
while Q is the Seebeck coefficient in units of kg/e. Through-
out this paper we work with these reduced units.

This well-establish two-mode description is however in-
sufficient in describing thermoelectric transport in systems
where conduction can occur via both electrons and holes, if
one wishes to separately impose boundary conditions on the
particle and hole currents j, and jj,. It is in fact clear that, by its
own construction, such description allows imposing boundary
conditions only on the total electric current, j,, which is the
sum of electron and hole currents. To treat these currents
separately, it is necessary to extend this theory by adding a
third mode, the “imbalance” current js = j. — ji, as well as
the corresponding imbalance field F; = —d,(u. — ). Here,
e and py are the electron and hole chemical potentials,
respectively. Indeed, by taking linear combinations of the im-
balance and electric currents, it becomes possible to separately
describe the propagation of electrons and holes.

We stress that the imbalance mode plays a rather special
role in the present theory. From an experimental perspective,
only two fields and currents, the electric and thermal ones,
can be externally applied and measured. On the contrary, js
and Fj are not directly accessible. They represent the internal
rearrangement that the particle flow undergoes as a result of
the application of external probes, while being subject to the
boundary conditions. Their presence in the theory is vital
to the correct implementation of boundary conditions and
particle-hole recombination. However, in order to describe
experiments, it is sufficient to downfold such unfamiliar three-
mode theory, resulting from the introduction of imbalance
currents and fields, to the more conventional two-mode one
of Eq. (7). Here we show that, by applying the boundary con-
ditions on js in the presence of particle-hole recombination,
we are able to integrate out the imbalance current and reduce
the three-mode thermoelectric resistivity to the more familiar
2 x 2 matrix of Eq. (7). From that we will then be able to read
out the values of electric and thermal resistivities, as well as
of the Lorenz ratio and the Seebeck coefficient.

In the three-mode theory, the fields are related to the cur-
rents via a 3 x 3 resistivity matrix:

1Fas)\ _ _Pus | 10s) ) ( Lins)
<ES>_<<,05||P88 )(ja)' ®

Here p, is a 2 x 2 block, whereas |ps) is a two-component
vector. Hereafter (v| denotes the transpose of the vector |v).
The vector of currents on the right-hand side of Eq. (8) spec-
ifies the state in which the system is prepared. Once such
state is defined, this equation tells us which potential drops,
thermal gradients, and imbalance fields can be measured at
the boundaries of the sample. We note that the specific forms
of pns, |ps), and pss are immaterial, as we proceed to show.
The only property of the 3 x 3 matrix of Eq. (8) that we will
use in what follows is that its determinant vanishes. We stress
that such property is not generic to all thermoelectric matrices,
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but is a consequence of the existence of a conserved mode (the
total momentum) in the present theory.

In fact, when electron-electron interactions are the domi-
nant scattering mechanism, and barring umklapp processes,
the total momentum is a conserved quantity which must
always be included in the theory, regardless of boundary
conditions. This can be accomplished in two ways. One possi-
bility is that the total momentum is already present explicitly
in the 3 x 3 resistivity matrix of Eq. (8). This happens in
very specific cases in which one of the three currents (j,, js,
or js) coincides with the momentum density. For example,
in a parabolic band electron gas the electric current density
coincides with the momentum density, whereas for massless
Dirac fermions (e.g., in undoped graphene) the momentum
density is directly proportional to the heat current density. Fi-
nally, in a gapless parabolic-band semimetal such as undoped
bilayer graphene, the momentum density coincides with the
imbalance current density js.

In all these cases, the current that is proportional to the
momentum cannot decay over time, since particle-particle
collisions do not affect it. Once launched, it can only be
relaxed by momentum-nonconserving scattering processes
(e.g., electron-phonon collisions). By the very definition of
hydrodynamic regime of transport, however, such processes
seldom occur and are in fact neglected altogether in a first
approximation. This fact has a striking consequence. If the
system is prepared in a state in which only such conserved
current exists, since it experiences neither resistance nor dis-
sipation during its propagation, it cannot give rise to a drop in
electric field or thermal gradient. Mathematically, if such non-
trivial state is introduced on the right-hand side of Eq. (8), and
is thus multiplied by the 3 x 3 resistivity matrix, it produces a
null vector of fields. It is, therefore, a “zero mode” of the resis-
tivity matrix. Since it is nontrivial, i.e., it is not the vector with
all currents equal to zero, this in turn implies that the determi-
nant of the 3 x 3 resistivity matrix of Eq. (8) must vanish.

In general, however, none of the three currents coincides
with, or is directly proportional to, the total momentum.
Therefore, to include such mode one should in principle
start from four-mode theory, the fourth component being the
momentum. Then, via a downfolding procedure similar to
the one we will describe momentarily, one can obtain the
3 x 3 resistivity matrix of Eq. (8). This procedure is shown
in the Appendix: the end result is that the momentum mode
is implicitly included in the 3 x 3 resistivity matrix and its
determinant still vanishes (it is indeed possible to construct
a current which is a combination of particle, thermal, and
imbalance ones that cannot decay over time). As we proceed
to show, the vanishing of the determinant of the three-mode
matrix, a consequence of the presence of a conserved mode in
the theory, plays a fundamental role in describing the transi-
tion between unipolar and ambipolar regimes, as well as the
size dependence of the thermal resistivity.

To take into account particle-hole recombination and
boundary conditions in the thermoelectric transport, we now
assume that the imbalance density, ng, satisfies the following
continuity equation:

. VY
s + Oy jis = —r—”(ue — ), ©)

I3

where 7, is a phenomenological electron-hole recombination
time, while vy is the density of states of electrons and holes
(assumed to be equal) at the Fermi level. Equation (9) encodes
the fact that nonequilibrium electron and hole densities are
not separately conserved and therefore the imbalance den-
sity decays over time with a typical timescale t,. Note that
conservation of the imbalance density is obtained in the limit
7, — 00; hence Eq. (9) is completely general.

Before continuing, it is necessary to discuss which bound-
ary conditions apply in different situations. In a typical
measurement of the thermal resistivity, the channel is con-
nected to two thermal reservoirs. There is no charge transfer to
the reservoirs and only heat can be exchanged between them
and the channel. Hence, the currents of electrons and holes
have to vanish at the boundaries. This in particular implies
that js(££/2) = 0. This leads to the accumulation of electrons
and holes at the boundaries. Such accumulation, which locally
preserves charge neutrality, is required to stop the two currents
from propagating in the channel. Hence, the imbalance field Fj
can be finite. On the contrary, when the electric resistivity is
measured, a charge current is passed through the system and
a voltage drop is detected. In this case, the imbalance current
needs not to vanish at the boundaries and is in fact uniform
throughout the channel. However, since there is no applied
imbalance field, F5; must vanish.

We will start by considering the measurement of the ther-
mal resistivity. Taking the derivative of Eq. (9), in the steady
state we get

. Vo
32 js(x) = —F.

r

(10)

From the last line of Eq. (8), we get that F5 = (05| jus) + 0s5Js-
Using this into Eq. (10), and then solving by imposing the
boundary conditions js(££/2) = 0, we get

Js(x) = —M[l —a(l, x)]. (11)
Pss
In this equation,
w(l, x) = cosh(x/€p) ’ (12)
cosh[£/(2¢p)]

where £p = /7,/(Vopss) is the recombination length. To get
Eq. (11), we have assumed that the thermal and particle cur-
rents are constant throughout the channel, while the (electric,
thermal, and imbalance) fields depend on position. This im-
plies that there is no loss of energy along the channel. This
is compatible with the system being in the hydrodynamic
regime: energy loss occurs via phonon emission, which is
however assumed to occur at a much slower rate than electron-
electron collisions.

We note that the hydrodynamic hypothesis also explains
why £p can assume drastically different values in com-
pensated semimetals and in, e.g., graphene systems. In a
compensated semimetal, electron and hole Fermi surfaces are
centered at distant points of the Brillouin zone. Electron-hole
recombination occurs at the Fermi surface and requires a large
transfer of momentum, much larger than the typical Fermi
momenta of the involved particles. Therefore, it requires
momentum-nonconserving scattering process to be effective
in equilibrating particles and holes with each other. But this
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is exactly what is prevented in the hydrodynamic regime
of transport, in which momentum-nonconserving collisions
with impurities or phonons seldom occur. Hence, t, becomes
very large, while electrons and holes are largely indepen-
dent. When the recombination time t, — 00, £p diverges and
(€, x) — 1. Under this condition, the imbalance current of
Eq. (11) vanishes everywhere and the system behaves as two
independent unipolar systems.

On the contrary in, e.g., graphene systems, electron-hole
recombination (and therefore the equalization of their chem-
ical potentials) occurs at a much faster rate, with typical
time scales of few tens of femtoseconds. Hence, the typical
relaxation times for imbalances in chemical potential are very
short, i.e., T, — 0. In this case, £p vanishes and « (¢, x) — 0.
Since the imbalance current can be finite, the system displays
ambipolar behavior. We stress that, in graphene, electron-hole
recombination occurs in general much faster than cooling,
which has typical timescales of few picoseconds [30].

Substituting the result of Eq. (11) into the first line of
Eq. (8), we obtain an equation of the form |F,;) = p(x)|jus),
where the 2 x 2 position-dependent thermoelectric matrix is

_ 1ps){ps]

Pss

According to the discussion above, from Eq. (13) we can
define the unipolar and ambipolar resistivity matrices as

P(x) = Pns [I — (£, x)]. 13)

Puni = a@l}f{; . P(X) = Dns,
e . |0s){ps]
Pambi = lim P(X) = Pns — . (14)
a(l,x)—0 0ss

Each infinitesimally thin slice of the channel at position x
contributes a resistivity p(x), which is in series to those of all
other slices. The total resistivity of the channel is therefore ob-
tained by summing the resistivities of the infinitesimally thin
slices that compose it, and dividing the result by its total length
£. This is equivalent to averaging Eq. (13) over the length of
the channel. We finally obtain the sought 2 x 2 thermoelectric
matrix subject to thermal-measurement boundary conditions

P = Puni@(€) + Pambvi[l — e (£)]. 15)

We now observe that p.,; can be calculated, as shown in
Ref. [17], by solving Boltzmann’s kinetic equation within a
two-mode approximation. As such, the electric and thermal
resistivities calculated from it are always finite [17], and the
resulting Lorenz ratio is lower than Ly. On the contrary, Pamp;
corresponds to the resistivity matrix calculated by explic-
itly accounting for the conserved momentum mode [16,17].
Therefore, in the absence of momentum-nonconserving inter-
actions, it exhibits a vanishing thermal resistivity (o ambi =
0) when the semimetal is compensated [16,17]. Furthermore,
as a consequence of momentum conservation, the determinant
of the 3 x 3 matrix of Eq. (8), det(Pambi), 1s always zero
regardless of the doping level [17]. This in turn implies that
the product pm ambiPel,ambi = 0; 1.e., either the electric or the
thermal resistivity vanish, but not both at the same time since
there is only one conservation law. Since ppampi = 0 in a
perfectly compensated system, we conclude that pe) ampi must
be different from zero even in the absence of momentum-
nonconserving interactions [16,17], and therefore the Lorenz

ratio calculated from p,mp; is larger than Lj,. As shown
in Ref. [16], momentum-nonconserving interactions such as
quenched disorder allow for similar violations to be observed
in a window of densities around perfect compensation. It is
evident that the role of the function «(¢) in Eq. (15) is to
interpolate between these two opposite limits. In passing, we
note that pe) ampi in @ compensated system equals the electrical
resistivity that could be naively calculated from pPyy;.

Note that we can easily add a contribution due to
momentum-nonconserving processes pp in series to p by
replacing POuni — POuni + Pp and Pampi —> Pambi + Pp. Com-
paring Eq. (15) with the definition (7), we immediately
identify the thermal resistivity

Pt = o (£) o, uni + [1 — a(€)]oth,ambi- (16)

It follows from what was said above that, in a compensated
semimetal and in the absence of momentum-nonconserving
interactions, pg = &(€) P, uni- Using Egs. (8) and (15) we can
also derive the Seebeck coefficient as

_ () oeh,uni Quni + [1 — a(€)]0th, ambi Qambi
a(€)ph,uni + [1 — a(£)]oh,ambi

where Qi and Qumpi are the Seebeck coefficients of the sys-
tem in the unipolar and ambipolar regimes, respectively.

To derive the electric resistivity, we have to start again from
Eq. (8) and apply the boundary condition F5 = 0. Since we
impose no condition on the imbalance current, the latter has
a uniform value which is determined by the applied fields. In
this case, the electric resistivity is simply that of the ambipolar
channel, i.e., Pe] = Pel.ambi- In fact, given that the boundary
conditions do not treat particles and holes separately, there
is no such thing as a “unipolar” electric resistivity. This can
be seen also mathematically, by setting F; = 0 in Eq. (8) and
solving its last line. The result is js = —(0s|jus)/Pss, Which
is identical to Eq. (11) in the limit «(¢, x) — 0. Therefore,
as expected, the system behaves as purely ambipolar and p =
Pambi- Therefore, the Lorenz ratio reads

L — Pel
()P, uni + [1 — ()] ot ambi

In the absence of interactions and in the unipolar regime, L
tends to Ly, the value prescribed by the Wiedemann-Franz
law. In a compensated semimetal and in the absence of
momentum-nonconserving interactions, Eq. (18) reduces to
the Lorenz ratio calculated within a two-mode approximation
[17], which is always smaller than Ly, divided by «(¢). The
latter function becomes vanishingly small when £ > 2¢p, i.e.,
when the ambipolar limit is approached, and therefore the true
Lorenz ratio calculated from (18) can become larger than Ly.

Q

. an

(18)

IV. NUMERICAL RESULTS AND DISCUSSION

In this section we present numerical results for Eqs. (16)—
(18) for the thermal resistivity, the Seebeck coefficient, and
the Lorenz ratio, respectively. We assume the semimetal
to be perfectly compensated; i.e., the number of electrons
equals the number of holes. For the sake of clarity, we
start by discussing the electrical and thermal resistivities in
the ideal intrinsic limit, in which momentum-nonconserving
interactions are completely neglected. These will be
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pth,uni
0.5

pun [R/(KET)] ; per [h/€’]

FIG. 3. Intrinsic unipolar and ambipolar thermal resistivities (as
defined in the text) as well as the intrinsic electric resistivity as
functions of temperature (scaled with 7). In the presence of dis-
order the total electric and thermal resistivities, respectively, become
Pel + Pel dis AN Pth,unizambi + Oin,gis (MOt shown in the figure), where
Pel.dis 1S constant at low 7' (impurity-dominated regime) and lin-
early scales with 7 when phonons are relevant. Making use of the
Wiedemann-Franz law for a noninteracting disordered system, we
have assumed 01 gis/ Pin.ais = 72/3 (in reduced units).

reintroduced later, in order to regularize the results pertaining
to the Lorenz ratio.

Our results are summarized in Fig. 3. We plot the di-
mensionless electrical and thermal resistivities, pe; and oy,
as functions of temperature. The thermal resistivities P uni
and P ambi> subject to homogeneous unipolar and ambipolar
boundary conditions, are plotted as solid and dotted lines
respectively. As discussed above, the unipolar boundary con-
dition sets electron and hole currents, j, and j,, individually
to zero. This is equivalent to requiring that both the electric
and the imbalance currents vanish. On the other hand, the am-
bipolar boundary condition sets only the total current j, + jj
to zero. Note that, as explained in the previous section, the dis-
tinction between unipolar and ambipolar boundary conditions
does not apply to the electric resistivity. In Fig. 3 we see that,
while the ambipolar thermal resistivity vanishes, the unipolar
thermal resistivity remains finite. In the latter case the system
is essentially equivalent to two independent electron and hole
fluids with no electron-hole interactions.

Since our model enjoys particle-hole symmetry, the
thermal conductivity of electrons and holes are equal.
Thus, pn.ui = 1/(2k.). We use the well-established kinetic-
equation methods of Refs. [16,17] to calculate the intrinsic
thermal conductivity k. of a single parabolic band at a
fixed carrier density, defined by the Fermi energy er. These
techniques can be viewed as a simplified version of the calcu-
lations performed in Ref. [26]. We rely on a simpler ansatz
for the nonequilibrium distribution function [16] and find
puni = Iin/(2D3), where Dy = Y (3 fi/ € ) vk - vic[(ex —
eep)/kBT]2 ~ 9{(3)/(471?12/3) is the thermal Drude weight,
while Iy, is the Coulomb collision integral projected onto

the thermal channel. For a system with a single parabolic
band, the velocity vy ~ k coincides with the momentum zero
mode, and therefore only the thermal moment of the collision
integral, Iy, associated with the relaxation of energy (thermal)
currents, survives. This implies that, while the electric resis-
tivity is exactly zero, the thermal resistivity remains finite. We
make use of standard approximations for the Coulomb col-
lision integral (screened interaction plus Fermi golden rule),
previously used for graphene systems [16,17], and find I, to
be

1 * V(g, o)
In = T A (T Z/ dw%
7w (kgT) S sinh”(fiw/2kgT)
x [(Im T1;)? — Im [TyIm I15], (19)
where V(q,w) =v,/|1 —v,I1o(q, w)| is the screened

electron-electron Coulomb interaction and v, = 2me?/(eq).
Here, ¢ is the dielectric constant that accounts for the
surrounding medium as well as screening from remote bands.
We set € =1 in our calculation. The response functions
I1,(q, w) are defined as

(&kVk — EktqUirg)" (S — f/?Jrq)
€k — €ktq + v 4+ i0T

M(q, @) =2 ., (0
k

where & = ¢ — e is the band energy measured from the
Fermi energy. In the degenerate Fermi liquid regime (7" <
Tr), Iy is the well-known zero-temperature 2D Lindhard
function [31] and we find that for /iw < &F, [[12 — ToITp] ~
w®, resulting in Iy, ~ T*. As Dy(T < Tr) ~ T we find

Pt (T <K Tr) ~ T*In(T). (1)

This behavior of the thermal resistivity is consistent with pre-
vious results obtained for degenerate Fermi liquid graphene
[22]. We find that pw uni peaks around 7' =~ T and decreases
as~In(T)/T? for T > Tr (i.e., in the nondegenerate regime);
see blue solid curve in Fig. 3.

Next, we study the the temperature dependence of the
intrinsic electric resistivity p. of the compensated semimetal.
We distinguish the Planckian regime, in which there is only
one energy scale kgT (T > Tr), from the Fermi liquid one, in
which there are two energy scales, kg7 and ¢r. The tempera-
ture dependence of p. (in reduced units) is given by

1
Del(T)Teh(T) '

where 7.,(7) is the electron-hole scattering rate and D¢ (T)
the Drude weight in the electric channel, which is defined
as Dy = Zk v,%(a Jfx/0€x). In the Planckian regime the max-
imum scattering rate allowed by the energy-time uncertainty
principle [32] is 1/ten(T) ~ kgT /h while in the Fermi liquid
regime 1/7ey(T) ~ (kgT)?/hep. Similarly, in the Planckian
regime the Drude weight D, o kg7, whereas in the Fermi
liquid regime it is independent of temperature. Hence, the
intrinsic resistivity pe is independent of temperature in the
Planckian regime, while it scales as ~72 in the Fermi liquid
regime. The red dashed curve in Fig. 3 shows precisely these
limiting behaviors.

We now introduce momentum-nonconserving interactions
and discuss the calculation of the Lorenz ratio of Eq. (18).

Pel ™~ (22)
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FIG. 4. Lorenz ratio as a function of (a) temperature for different values of «(£) from O (perfect ambipolar regime) to 1 (perfect unipolar
regime) with a step of 0.01 and (b) as a function of «(£) (in logarithmic scale) for different temperatures as labeled. The strength of the
charge impurity- and phonon-limited resistivities were defined through the hydrodynamicity parameters Fizmp = Pelimp/Pet (T >> T) and I‘;h =
Pet,ph/ pel (T > Tr), respectively. The inset in (b) shows «(£), Eq. (5), as a function of £/£p. The onset temperature for phonons is taken as
Ton = 25 K. In the hydrodynamic regime, i.e., 0 < T < 25 K in this figure, the Lorenz ratio deviates from its standard (impurity/phonon)-
limited value L. Due to the ambipolar constraint j, + j, = 0, the violation of the Lorenz ratio is a large enhancement while with the unipolar
situation (j, = j, = 0) the Lorenz number is drastically reduced below L.

Momentum-nonconserving scattering is necessary to regular-
ize results in the ambipolar limit: as is clear from Fig. 3
and the definition (18), the ratio between the electrical and
thermal resistivity (o ambi) Would diverge if the contribution
of disorder were neglected. To include disorder we consider
the following simple but realistic model. At low temperatures
impurities are the dominant disorder mechanism while, as
temperature increases, electron-phonon scatterings become
more important.

The Drude resistivity due to scattering against impurities
is here defined as Qelimp = Mm*/(nTimp), Where m* and n are
the electron effective mass and density, respectively. The im-
purity scattering rate 1/7iy, is assumed to be independent
of temperature for both short- and long-range impurities.
Since the particle density n and the effective masses are
fixed in compensated semimetals, once the electron and hole
Fermi energies are set, the electric resistivity due to scattering
against impurities, Pel imp, 1S independent of 7.

As the temperature increases, the resistivity due to
collisions with phonons e pn becomes the dominant
contribution to the total electric resistivity. Above the
Bloch-Griineisen temperature, ppn increases linearly with
T [33]. We therefore posit the following model for
the momentum-nonconserving scattering: pej gis(7 < Ton) >~
Pel,imp ™ constant and pel,dis(T 2 ]})h) = Pel,ph ™~ T, where
Tpn is defined as the onset temperature at which phonons
start to become the dominant scattering mechanism. Assum-
ing that the Wiedemann-Franz law is satisfied when only
momentum-nonconserving (electron-impurity or electron-
phonon) processes are taken into account, we obtain in
particular that the thermal resistivity of impurities in reduced
units is Pth,imp = (3/7T2)pe],imp~

Figures 4(a) and 4(b) show the results for the Lorenz ratio
of Eq. (18) as a function of (a) temperature for different
values of «a(f£) (corresponding to different sample lengths)
and (b) as a function of «(¢) for different temperatures. The

onset temperature for phonon-dominated scattering is taken
to be T, >~ 25 K. We determine the strength of the charge
impurity as well as phonon resistivities, respectively, through
the hydrodynamicity parameters Ffmp = Pimp/ Per(T > Tr)

and th = ppn/pa(T > Tr) (i.e., the ratio of the charge
impurity /phonon resistivities to the intrinsic Coulomb resis-
tivity in the nondegenerate regime, T >> Tr). For the results
in Figs. 4(a) and 4(b) we have taken I'jy,p, = 0.01 and I'p, = 3.

We observe that the Wiedemann-Franz law is violated in
two radically different ways, depending on whether we are
in the ambipolar (£ > £p) or unipolar (£ < £p) limit. While
in the former we observe a large enhancement of the Lorenz
ratio, in the latter we observe a moderate reduction. The
ambipolar limit is the situation realized in graphene systems
[see Fig. 1(b)], while the unipolar one occurs in compensated
semimetals such as WP, [see Fig. 1(c)]. We stress that the
large enhancement of the Lorenz ratio cannot be explained
without taking into account strong electron-hole scattering in
the electric conduction channel.

Figure 5 displays a 2D plot of L/Lj as functions of temper-
ature and scaled sample length (¢/¢p). Based on the behavior
of the Lorenz ratio we identify a phase diagram of possible
transport regimes in a charge-neutral system. When 7' — 0 as
well as for temperatures 7' 2 Tpn, L/Ly — 1 resulting from
the disorder-limited transport in these regimes, i.e., impurity-
dominated at 7 — 0 and phonon-dominated at T 2 Tpp. In
the hydrodynamic regime (0 ST < Tph), one can tune the
Wiedemann-Franz ratio from an enhancement when ¢ > {p
(bipolar condition) to a reduction when ¢ < £, (unipolar
condition).

Finally, we calculate the Seebeck coefficient according
to Eq. (17). For a symmetric electron-hole system
(Q. = —Qp), the Seebeck coefficient always vanishes at
the charge neutrality point, both in the absence and in the
presence of disorder. Note that in the intrinsic regime at
perfect compensation, in which momentum-nonconserving
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FIG. 5. 2D plot of the Lorenz ratio as a function of /¢, (sample
length scaled with the diffusion length) and 7. Different trans-
port regimes are indicated on the figure. The onset temperature of
phonons T, =25 K and the hydrodynamicity parameters I'j,, =
0.01 and I'y, = 3 were chosen to be the same as in Fig. 4. The
enhancement of the Lorenz ratio (in the ambipolar hydrodynamic
regime) is relevant for graphene systems and is a consequence of
electron-hole scattering, which selectively enhances the electric re-
sistivity. The reduced Lorenz number (in the unipolar hydrodynamic
regime) is relevant for compensated semimetals, where the electron
and hole bands are well separated in momentum space.

processes are absent, pgn.ambi = 0. This in turn implies that
o = &(€)pn,uni and Q = Oypi. In this case, while the thermal
resistivity depends on the system size, the Seebeck coefficient
is independent of it.

V. OUTLOOK

The breakdown of the Wiedemann-Franz law, which re-
sults in an anomalously large Lorenz ratio near the charge
neutrality, has been recognized to occur in clean graphene
samples and has inspired a considerable amount of theoreti-
cal work. On the contrary, experiments in three-dimensional
semimetals such as WP, and antimony show a radically
different result. Although a phenomenology similar to that
of graphene would naively be expected, a puzzling reduced
Lorenz ratio is observed at low temperatures, when both elec-
trons and holes form degenerate Fermi liquids.

In this study, we have shown that this apparent contra-
diction is explained by the completely different transport
situations realized in the two systems: truly ambipolar trans-
port in graphene versus two independent channels of unipolar
transport in compensated semimetals. In contrast to graphene
and its bilayer, electron and hole pockets in compensated
semimetals are well distanced in momentum space, resulting
in a long recombination time. Since both electron and hole
currents must separately vanish at the contacts, this results in a
suppression of the bulk ambipolar conduction mechanism. Ef-
fectively, electrons and holes behave as two independent and
decoupled Fermi liquids throughout the channel (a situation
analogous to unipolar transport).

The violation of the Wiedemann-Franz law in both the am-
bipolar and unipolar transport regimes occurs in a temperature
window in which the so-called hydrodynamic regime of trans-
port is realized, i.e., when momentum-conserving collisions
among particles constitute the dominant scattering mechanism
(we note that in a Fermi liquid the Wiedemann-Franz law
is satisfied when disorder scattering dominates). We have
presented a simple theory for a general unipolar/ambipolar
system and demonstrated a crossover from ambipolar to
unipolar conduction as a function of a weight function (related
to the electron-hole recombination time) which naturally leads
to a sample-size-dependent thermal conductivity as observed
in experiments. Although our theory has been presented for
a two-dimensional system, the results would qualitatively re-
main valid for three-dimensional ones.
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APPENDIX: EXPLICITLY ACCOUNTING FOR
MOMENTUM: THE FOUR-MODE THEORY

In this Appendix we consider the general case in which
the total momentum, the conserved mode of hydrodynamic
conduction, does not coincide with either the electric, thermal,
or imbalance currents. Given its importance in determining
the transport properties of the system, it is necessary to in-
clude it explicitly. In the resulting four-mode description, the
total momentum is added to the list of currents flowing in
the system. To stress the fact that it is a zero mode of the
resulting 4 x 4 resistivity matrix, i.e., a nontrivial vector with
eigenvalue zero, we will call the total momentum jy. A force
Fy that couples explicitly to it will also be included. The
goal of this Appendix is therefore to show how the 4 x 4
resistivity matrix that connects the four currents to the four
fields can be downfolded to obtain the 3 x 3 matrix of Eq. (8).
We will guide the reader through this process and show that
the determinant of the resulting resistivity matrix vanishes,
as stated in Sec. III. This in turn implies that the zero mode,
although not explicit, is still included in the three-mode the-
ory. Therefore, no information about the physical implications
of the conservation of momentum is lost in the downfolding
process.

The derivation here parallels that given in Sec. III. Fields
and currents are now related by the 4 x 4 resistivity matrix p.
Explicitly,

<F0 )=< poo | {(pol )( Jo )
|an6) |100> | Ibnsé‘ |jns6) )

Here |jns§> = t(jn, js’ ]6) and |Fn.¥5> = t(_EEa _kBaxTa Fé)v
Dnss 18 @ 3 x 3 block, and |pp) is a three-component vector.

(AD
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The determinant of the 4 x 4 matrix in Eq. (A1) is

det(p) = det(Puss)[ P00 — (001 Ppss100)], (A2)

and it is equal to zero since there is at least one nontrivial vec-
tor with eigenvalue zero (i.e., the total momentum). Indeed,
if the system is prepared in a state such that only jy # O,
the vector on the left-hand side of Eq. (A1) is a null vector.
By assumption, the only zero mode is the momentum, so the
determinant of the 3 x 3 block p,;s is finite and such matrix is
therefore invertible. Thus, it must be that

P00 = {PolPyesl00)- (A3)

The property (A3) plays a pivotal role in the following proof.

To downfold the four-mode theory of Eq. (Al) into the
three-mode one of Eq. (8) we need to apply the boundary con-
ditions on the momentum. Since no external field that couples
specifically to the momentum is applied, we will set Fy = 0,
while the momentum j, is allowed to assume an arbitrary
value. The latter is determined by the values of the electric
and thermal currents and fields, as well as by the boundary
conditions imposed on the imbalance current. The first line of
Eq. (A1) implies that

(p0|jn58>

jo = =
£00

(A4)

When this relation is substituted into the last line of Eq. (A1)
we get

. lpo) (pol |, .
|Fns5> = |:l0ns6 I |Jns6>-
£00

(A5)

The matrix in square brackets on the right-hand side of
Eq. (AS) is the 3 x 3 resistivity matrix of Eq. (8). We now
prove that its determinant is zero. To do so, it is sufficient to
show that there exists a nontrivial vector | j,ss) such that, when
the matrix acts on it, the result is exactly zero. It is easy to see
that such vector is ﬁn’sh po). Indeed, using the property (A3),
we have

. lpo)(pol |, _
|Fm‘8> = |:prw$ — A pnsé|p0>
L00
Al
oo — |po)(,0<A)|7/)1m§|P0> _o, (A6)

(001 0,551 00)

which proves the assertion. Hence, the 3 x 3 resistivity matrix
of Eq. (8) can be assumed to have determinant equal to zero
and to implicitly retain the information about the conservation
of momentum by electron-electron interactions.

[1] D. A. Bandurin, I. Torre, R. K. Kumar, M. Ben Shalom, A.
Tomadin, A. Principi, G. H. Auton, E. Khestanova, K. S.
Novoselov, I. V. Grigorieva, L. A. Ponomarenko, A. K. Geim,
and M. Polini, Science 351, 1055 (2016).

[2] F. Ghahari, H.-Y. Xie, T. Taniguchi, K. Watanabe, M. S. Foster,
and P. Kim, Phys. Rev. Lett. 116, 136802 (2016).

[3] J. Crossno, J. K. Shi, K. Wang, X. Liu, A. Harzheim, A. Lucas,
S. Sachdev, P. Kim, T. Taniguchi, K. Watanabe, T. A. Ohki, and
K. C. Fong, Science 351, 1058 (2016).

[4] A. Principi, G. Vignale, M. Carrega, and M. Polini, Phys. Rev.
B 93, 125410 (2016).

[5] B. N. Narozhny, I. V. Gornyi, M. Titov, M. Schiitt, and A. D.
Mirlin, Phys. Rev. B 91, 035414 (2015).

[6] U. Briskot, M. Schiitt, I. V. Gornyi, M. Titov, B. N. Narozhny,
and A. D. Mirlin, Phys. Rev. B 92, 115426 (2015).

[7] L. Fritz, J. Schmalian, M. Miiller, and S. Sachdev, Phys. Rev. B
78, 085416 (2008).

[8] M. Miiller, L. Fritz, and S. Sachdev, Phys. Rev. B 78, 115406
(2008).

[9] H.-Y. Xie and M. S. Foster, Phys. Rev. B 93, 195103 (2016).

[10] D. Svintsov, V. Vyurkov, V. Ryzhii, and T. Otsuji, Phys. Rev. B
88, 245444 (2013).

[11] D. Svintsov, Phys. Rev. B 97, 121405(R) (2018).

[12] D. Y. H. Ho, L. Yudhistira, N. Chakraborty, and S. Adam,
Phys. Rev. B 97, 121404(R) (2018).

[13] A. Principi and G. Vignale, Phys. Rev. B 91, 205423 (2015).

[14] A. Lucas and S. Das Sarma, Phys. Rev. B 97, 245128 (2018).

[15] A. Lucas and S. A. Hartnoll, Phys. Rev. B 97, 045105 (2018).

[16] M. Zarenia, A. Principi, and G. Vignale, 2D Mater. 6, 035024
(2019).

[17] M. Zarenia, T. B. Smith, A. Principi, and G. Vignale, Phys. Rev.
B 99, 161407(R) (2019).

[18] M. Zarenia, . Yudhistira, S. Adam, and G. Vignale, Phys. Rev.
B 101, 045421 (2020).

[19] M. Zarenia, S. Adam, and G. Vignale, Phys. Rev. Research 2,
023391 (2020).

[20] A. Jaoui, B. Fauqué, C. W. Rischau, A. Subedi, C. Fu, J. Gooth,
N. Kumar, V. Sii}, D. L. Maslov, C. Felser, and K. Behnia,
npj Quantum Mater. 3, 64 (2018).

[21] J. Gooth, F. Menges, N. Kumar, V. Sii}, C. Shekhar, Y. Sun,
U. Drechsler, R. Zierold, C. Felser, and B. Gotsmann, Nat.
Commun. 9, 4093 (2018).

[22] A. Principi and G. Vignale, Phys. Rev. Lett. 115, 056603
(2015).

[23] A. Jaoui, B. Fauqué, and K. Behnia, arXiv:2006.01861.

[24] C.F. Gallo, B. S. Chandrasekhar, and P. H. Sutter, J. Appl. Phys.
34, 144 (1963).

[25] C. Uher and H. J. Goldsmid, Phys. Stat. Sol. 65, 765
(1974).

[26] S. Liand D. L. Maslov, Phys. Rev. B 98, 245134 (2018).

[27] L. Pitaevskii and E. Lifshitz, Physical Kinetics (Elsevier Sci-
ence, Oxford, 2012).

[28] D. Pines and P. Nozieres, The Theory of Quantum Liquids:
Normal Fermi Liquids (W. A. Benjamin, Boca Raton, 1966).

[29] B. G. Streetman, Solid State Electronic Devices (Prentice-Hall,
Inc., 1990).

[30] Y. Chen, Y. Li, Y. Zhao, H. Zhou, and H. Zhu, Sci. Adv. 5,
eaax9958 (2019).

[31] G. Giuliani and G. Vignale, Quantum Theory of the Electron
Liguid (Cambridge University Press, Cambridge, 2005).

[32] S. A. Hartnoll, Nat. Phys. 11, 54 (2015).

[33] S. Kasap, C. Koughia, and H. E. Ruda, Electrical Conduction in
Metals and Semiconductors (Springer International Publishing,
Cham, 2017).

214304-10


https://doi.org/10.1126/science.aad0201
https://doi.org/10.1103/PhysRevLett.116.136802
https://doi.org/10.1126/science.aad0343
https://doi.org/10.1103/PhysRevB.93.125410
https://doi.org/10.1103/PhysRevB.91.035414
https://doi.org/10.1103/PhysRevB.92.115426
https://doi.org/10.1103/PhysRevB.78.085416
https://doi.org/10.1103/PhysRevB.78.115406
https://doi.org/10.1103/PhysRevB.93.195103
https://doi.org/10.1103/PhysRevB.88.245444
https://doi.org/10.1103/PhysRevB.97.121405
https://doi.org/10.1103/PhysRevB.97.121404
https://doi.org/10.1103/PhysRevB.91.205423
https://doi.org/10.1103/PhysRevB.97.245128
https://doi.org/10.1103/PhysRevB.97.045105
https://doi.org/10.1088/2053-1583/ab1ad9
https://doi.org/10.1103/PhysRevB.99.161407
https://doi.org/10.1103/PhysRevB.101.045421
https://doi.org/10.1103/PhysRevResearch.2.023391
https://doi.org/10.1038/s41535-018-0136-x
https://doi.org/10.1038/s41467-018-06688-y
https://doi.org/10.1103/PhysRevLett.115.056603
http://arxiv.org/abs/arXiv:2006.01861
https://doi.org/10.1063/1.1729056
https://doi.org/10.1002/pssb.2220650237
https://doi.org/10.1103/PhysRevB.98.245134
https://doi.org/10.1126/sciadv.aax9958
https://doi.org/10.1038/nphys3174

