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Chiral-induced spin selectivity: A polaron transport model
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Weak hyperfine interactions and spin-orbit coupling (SOC) in organic materials result in long spin lifetimes,
which is very promising for spintronics. On the other hand, they also make it challenging to achieve spin
polarization, which is of crucial importance for spintronics devices. To overcome this obstacle, we have proposed
a physical model for spin-polarized electron transport through a chiral molecule based on the chiral-induced
spin selectivity. Because the transport in the chiral molecule is not an isolated one, but rather an electron
coupled to its surrounding lattice distortions, namely, a spatial localized polaron, an indispensable polaron
effect is incorporated in our model. We show that the polaron transport through the chiral molecule exhibits
a spin-momentum-locked feature. Interestingly, no matter what their initial spin state is, all of the polarons could
transmit through the molecule with their spins being aligned to the same orientation due to the effective “inverse
Faraday effect.” The coexistence of the electron-lattice coupling and SOC results in the spin and lattice being
coupled, which leads to a strongly enhanced spin coherence and then a very high spin polarization of 70%. In
addition, the effects of the helix pitch, polaron size, and drift velocity on spin polarization are also discussed.
Our results open the possibility of using chiral molecules in spintronics applications and offer a paradigm for
information processing and transmission.
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I. INTRODUCTION

A chiral molecule is one that lacks inversion symmetry
and is not superimposable on its mirror image. Fascinatingly,
chiral molecules can act as efficient sources of spin-polarized
electrons even in the absence of heavy nuclei, magnetic
doping, or the application of external magnetic field due
to chiral-induced spin selectivity (CISS) effect; that is, the
electron transmission through the molecule is preferential
for one spin orientation over the other one [1–6]. Since
many biomolecules are chiral, the discovery of CISS opens
a window for exploring biomolecule-based spintronic devices
with no magnets. To date, the CISS effect has been experi-
mentally observed in several organic systems such as DNA
[7,8], bacteriorhodopsin [9], oligopeptides [10], etc. Mean-
while, to explain the experimental data, a few theoretical
models as well as density function theory calculations have
been proposed [11–17]. By assuming an unrealistically large
spin-orbit coupling (SOC), measurable spin polarization (SP)
could be realized. To make up for this theoretical deficit,
Gutierrez et al. presented a minimal tight-binding model to
investigate the transport of an electron through a helically
shaped electric field (HEF). They concluded that to achieve
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the high SP in weak SOC materials, the chiral molecule
should exhibit a less dispersive electronic band and low charge
mobility [18].

We notice that, in all calculations reported in the litera-
ture, the chiral molecule was supposed to be rigid and the
Landauer-Buttiker theory was employed [15,18,19]. As is
already known, in organic chiral molecules, there are strong
electron-lattice (e-l) couplings, giving rise to the formation of
a polaron (see the white curves in Fig. 1 labeled P). It is a kind

of spatially localized charged quasiparticle with spin ± h̄

2
. In

addition, the polaron has a relatively large effective mass and
low mobility (lower than the acoustic velocity). Thus, it meets
perfectly the low-mobility requirement for achieving high SP.
Therefore, the most important carrier in organic materials is
the polaron, instead of the free electron. However, the role
played by polarons in CISS was never investigated in previous
theories.

In this work, we study spin polaron transport through a
chiral molecule with spin-related quantum dynamics. The
results show that, driven by a static electric field Ez, both
spin-up (P↑) and spin-down (P↓) polarons can pass through
the chiral molecule, but with different spin dynamics: the spin
parallel to the drift velocity will keep its orientation, while
the antiparallel one will undergo spin switchings (see Fig. 1).
Our results are in contrast to those previously proposed such
as the free-charge scattering mechanism, where only one spin
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FIG. 1. Schematic illustrations of (a) the spin-up (see blue arrow
in the lower part) and (b) spin-down (see red arrow in the lower
part) polaron (white curves labeled by P) propagation through a
chiral molecule driven by a static z-direction electric field Ez (green
arrows indicate the Ez direction, and white dotted arrows indicate
the polaron drift direction). In both cases, the final stabilized spin
state is orientated up (see blue arrows in the upper part), indicating
a clear spin-momentum-locked character. The notations b, a, and �z
denote the helix pitch, helix radium, and z-direction distance between
two neighboring sites, respectively. Referring to the example of
B-DNA, the parameters can be set as b ∼ 3.2 nm, a ∼ 0.7 nm, and
�z ∼ 0.32nm [18].

component is allowed to pass through the helically shaped
potential. Then the high SP is compensated by the reduction
of current intensity. Here, because all of the charge carriers’
spins are totally aligned to the same orientation, SP can be as
high as 70%.

II. MODEL AND FORMULATION

We depict the chiral molecule using the Hamiltonian

H = He + Hh. (1)

He is the extended Peierls-Hubbard Hamiltonian, which was
used to describe the conventional molecule without chirality
[20,21]:

He = −
∑

j,s

t j (c
†
j,sc j+1,s + H.c.)

+ K

2

∑
j

(
u2

j+1 − u2
j

) + M

2

∑
j

u̇2
j

+ U
∑

j

(
n j,↑ − 1

2

)(
n j,↓ − 1

2

)

+ V
∑

j

∑
s,s′

(n j,s − 1)(n j+1,s′ − 1). (2)

Here, t j = t0 + (−1) jte − α[u j+1(t ) − u j (t )] is the hopping
integral between sites j and j + 1, with t0 being the nearest-
neighbor transfer integral for a uniform lattice structure and
te being the symmetry-breaking parameter introduced to lift
the ground-state degeneracy in nondegenerate polymers; uj

denotes the z direction displacement of the jth site from its
equilibrium position, and α is the e-l coupling constant. The

second line of Eq. (2) describes the elastic and kinetic energies
of lattices, where K denotes the elastic constant and M is the
single site’s mass. U represents the on-site Coulomb interac-
tions, and V is the strength of the nearest-neighbor Coulomb
interactions; the notation n j,s denotes the spin-s electron den-
sity operator on site j.

Hh in Eq. (1) is the Hamiltonian related to the chirality
symmetry of the molecule, acting as a HEF on the particle.
The analytical results for such a HEF were derived in Ref. [18]
and are expressed as

Eh = −E0

∑
l,i

gl,i(z)[cos(Qi�z), sin(Qi�z)], (3)

where gl,i(z) = {1 + [(z − lb − i�z)/a]2}−3/2 and
Q = 2π/b. The configurations of the chiral molecule
are labeled by a, b, and �z (see Fig. 1). Index l counts
the helix turn number, and i labels the atomic site along
one turn of the helix. Assuming one helix turn contains
N0 sites, N0�z ≡ b. The constant E0 is determined by the
charge density at each site and the helix radius. One charge
passing through this HEF along the z axis leads to an effective
SOC: HSOC = λ σ(p × Eh), with λ = eh̄/2mc being the
SOC strength, p being the polaron momentum, and σ being
a vector whose components are the Pauli matrices σx, σy,
and σz. As the polaron propagates along the z direction, we
will assume px = py = 0, pz �= 0. We assume the periodic
boundary condition of the molecule and Eh(z) = Eh(z + mb),
m = 1, 2, . . . . Under such circumstances, the distribution of
Eh(z) becomes dependent on only the change in the helix
angle, namely, Eh(z) = −E0G0exp(−iQ j�z), where the
index j ≡ (l − 1)N0 + i runs along all the sites and G0 is
a constant whose value is related to the helix geometry
parameters. Applying a standard second quantization
procedure, the helix-symmetry effect is finally described
as the following effective tight-binding model [22]:

Hh = tS-O

∑
j

(e−i jωc†
j,↑c j,↓ + ei jωc†

j,↓c j,↑)

+ tS-I

∑
j

(e−i jωc†
j+1,↑c j,↓ − e−i jωc†

j,↑c j+1,↓

− ei jωc†
j+1,↓c j,↑ + expi jωc†

j,↓c j+1,↑), (4)

where tS-O = −iωβ/�z and tS-I = β/2�z denote the on-site
and intersite SOC strengths, respectively (β = λh̄G0E0), and
ω = 2π/N0 denotes the change in the helix angle when the
electron propagates a distance �z. Notice that the SOC here
originates from the helix structure rather than from the atoms.
It is worthwhile to recall that to preserve the Hamiltonian Hh

as Hermitian, a symmetrization procedure, in which the small
phase factor determined by ω is neglected, is carried out [22].
Since Eq. (4) possesses time-reversal symmetry, one cannot
expect SOC alone to generate any SP.

In the following, unless otherwise noted, we set
the parameters [23–26] t0 = 30 meV, t1 = 0.2 t0, U =
0.8 t0, V = 0.2 t0, K = 630 meV/Å2, α = 120 meV/Å, M =
26 meV ps2/Å2, tS-I = 0.08t0 = 2.4 meV, N0 = 40. At half
filling, the self-consistent calculation of Eq. (1) gives rise to
the Peierls-gapped ground state with the lattices being dimer-
ized. Further injecting one electron at the lowest unoccupied
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molecular orbital of the gapped ground state leads to the for-
mation of a negatively charged polaron. The polaron-induced
lattice distortions can be identified by the smoothed bond
orders, defined as ỹ j (t ) = (−1) j[2y j (t ) − y j−1(t ) − y j+1(t )],
with y j (t ) = u j+1(t ) − u j (t ) being the change in bond length
between sites j and j + 1. Meanwhile, the polaron possesses
either a spin-up or spin-down state of 50%. It is evaluated
by the spin-density distributions sz

j (t ) = 〈n j,↑(t )〉 − 〈n j,↓(t )〉.
The static lattice configuration and the spin distributions of a
static polaron are demonstrated in Fig. 2(a) [black curve for ỹ j

and red (blue) curve for spin-down (spin-up) distributions]. It
can be recognized that the polaron size is around 20�z along
the z axis.

Electric field Ez drives the polaron to propagate along the
molecule chain. The effect induced by Ez can be simulated
by adding a phase factor e−iγ A(t ) ahead of the hopping term
[27,28]:

c†
j,sc j+1,s → e−iγ A(t )c†

j,sc j+1,s, (5)

where the coefficient γ is taken as γ = e�z/h̄c, with e being
the electron charge and c being the velocity of light; the time-
dependent vector potential At reads

A(t ) = −cEzt . (6)

Then, the Hamiltonian of the chiral molecule subjected to an
electric field Ez becomes

H(t ) = −
∑

j,s

t j[e
−iγ A(t )c†

j,sc j+1,s + H.c.]

+ K

2

∑
j

(u2
j+1 − u2

j ) + M

2

∑
j

u̇2
j

+ U
∑

j

(
n j,↑ − 1

2

)(
n j,↓ − 1

2

)

+ V
∑

j

∑
s,s′

(n j,s − 1)(n j+1,s′ − 1)

+ tS-O

∑
j

(e−i jωc†
j,↑c j,↓ + ei jωc†

j,↓c j,↑)

+ tS-I

∑
j

(e−i jωc†
j+1,↑c j,↓ − e−i jωc†

j,↑c j+1,↓

− ei jωc†
j+1,↓c j,↑ + expi jωc†

j,↓c j+1,↑). (7)

Notice that H(t ) in Eq. (7) is no longer time-reversal symme-
try preserved due to the existence of the phase factor e−iγ A(t )

ahead of the hopping terms.
The evolution of wave functions of the polaron propagating

along the chiral molecule chain is obtained by solving the
time-dependent Schrödinger equation:

ih̄
̇κ (t ) = H(t )
κ (t ). (8)


κ (t ) is the column vector of the κth orbital wave function,
which is expanded as


κ (t ) = [· · ·ψκ
j,↑(t )ψκ

j+1,↑(t ) · · · ψκ
j,↓(t )ψκ

j+1,↓(t ) · · · ] (9)

in Wannier space. A finite Hh induces the mixing between the
spin-up and spin-down components of 
κ (t ). Simultaneously,

0.04 0.04sz

0.44 0.26

sz

20

40

60

80

100

0.040.04 0.00

t  [ps]
0.0 0.8

0.04 0.04sz

t  [ps]
0.0 0.8

120

0.38 0.32 0.2 0.4 0.6 0.2 0.4 0.6

si
te

FIG. 2. (a) The lattice-distortion configuration ỹ j (black) and the
spin-density distribution of the polaron with spin ± h̄

2 (blue and red)
at t = 0 and time evolutions of sz, j when the polaron is initially
(b) spin down and (c) spin up at eEz�z = −0.001t0 in a chiral
molecule but zero HEF is assumed. The periodic boundary condition
is adopted to calculate the polaron transport dynamics.

the lattice dynamics are calculated by Newton’s equation of
motion:

Müj (t ) = α[ρ j (t ) − ρ j−1(t )]

+ K[u j−1(t ) + u j+1(t ) − 2u j (t )], (10)

where ρ j = ∑
s

∑′
κ [e−γ A(t )ψκ∗

j,s (t )ψκ
j+1,s(t ) + H.c.], with

∑′
κ

indicating taking a summation over the occupied orbitals.

III. RESULTS AND DISCUSSION

To gain insight into the mechanism of spin selectivity,
let us start with investigating the polaron transport in a chi-
ral molecule by switching off the HEF, namely, Hh = 0,
corresponding to conventional molecules. The resultant spin-
related dynamics is demonstrated in Figs. 2(b) and 2(c).
Obviously, the dynamics of spin-up and spin-down polarons
are degenerate. Unless the field strength reaches a threshold
at which the polaron is delocalized, the coherence between
the local lattice distortion and the spin packet can be kept
during the polaron transmissions. We define the SP as SP =
(I↑ − I↓)/(I↑ + I↓), where Is ≡ Ds · vs is the spin-polarized
current, with Ds ≡ ∑

j sz
j and vs denoting the spin-s polaron’s

population and drift velocity, respectively. Since the velocity
difference between the two spin-polarized polarons is small,
we can take the approximation SP = (D↑ − D↓)/(D↑ + D↓).
The calculated SP is zero in Fig. 2.

We proceed to investigate the polaron transport dynamics
by switching on the chirality-symmetry effect; namely, the
whole Hamiltonian presented in Eq. (1) is used in our cal-
culations. Figure 3 demonstrates the spin-state evolutions of
P↓ and P↑ in a chiral molecule for different z-axis electric
fields: eEz�z = 0 [Figs. 3(a1) and 3(a2)], −0.001t0 [Figs.
3(b1) and 3(b2)], and 0.001t0 [Figs. 3(c1) and 3(c2)]. For
eEz�z = 0, both P↓ and P↑ remain stationary, i.e., v↑(↓) = 0.
The spin orientation keeps the initial state without flipping,
and therefore, SP = 0. For eEz�z = −0.001t0, the polaron
starts to move toward the +z direction; interestingly, the
spin-state evolution differs for P↑ and P↓: the former passes
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FIG. 3. Time evolutions of sz
j at (a1) and (a2) eEz�z = 0, (b1)

and (b2) −0.001t0, and (c1) and (c2) 0.001t0 for the polaron with
initial spin-down (left column) and spin-up (right column) states in
chiral molecules.

through the helix molecule without feeling the existence of the
HEF, while the latter undergoes spin switching after passing a
certain distance. Consequently, all the polaron spins are finally
aligned to the same orientation. Therefore, the SP reaches as
high as 70%. In addition, unlike the scattering model [29,30]
and the spin-associated charge tunneling model [31], there is
no charge loss during the transmission. For eEz�z = 0.001t0,
the polaron moves along the opposite direction and feels the
opposite-helicity HEF. Therefore, it changes to be that P↓ is
not affected by the HEF and P↑ undoes spin switching. It can
be concluded that the spin dynamics is coupled to the polaron
momentum in a chiral molecule.

It is heuristic to compare the physics revealed in Fig. 3 with
the spin-associated dynamics in two other common cases, e.g.,
conventional organic molecules and rigid chiral molecules. In
conventional organic molecules, SOC is absent, while in rigid
chiral molecules, e-l coupling is missing. In the former, the
SP is zero (Fig. 2). In the latter, although SP is nonzero, it is
usually quite small. Differently, both SOC and e-l coupling
are involved in our model. This builds a bridge between the
degrees of freedom of the spin and lattice. Remember that,
for conventional spin transport in inorganic semiconductors,

usually, the SP is small because of the short coherence time
caused by various scattering channels. When spins and lattices
are strongly coupled as in spin polarons, however, the spin
coherence is significantly enhanced due to reduced scattering
channels because of their lager mass. Hence, the SP can be
very high.

We propose the mechanism of the helicity-dependent spin
switching presented in Figs. 3(b1) 3(b2), 3(c1), and 3(c2)
originates from an effective “inverse Faraday effect” [32]. The
transmission of a spin-polarized polaron through the HEF is
in analogy to the case in which a local spin is irradiated by a
proper circularly polarized light [33–37], where spin switch-
ing may take place depending on the light helicity. According
to the principle of the inverse Faraday effect, an effective
magnetic field, i.e., Mz ∝ E∗

h × Eh, is generated along the
z direction during the polaron transmission. The orientation
of Mz depends on whether the helix of the molecule is left-
or right-handed, as seen from the propagating polaron. This
effective magnetic field breaks the time-reversal symmetry
and further leads to spin polarization. Figures 3(a1) and 3(a2)
show that the time-reversal symmetry is maintained for a static
polaron in the finite HEF; on the other hand, Figs. 2(b) and
2(c) show that spin selectivity does not take place for the
polaron propagating through a conventional molecule with
zero HEF either. Actually, to achieve clear spin selectivity,
the following two conditions have to be satisfied simultane-
ously: (i) an effective SOC formed by a finite HEF and (ii)
a charge (polaron) propagating through the HEF (realized
by applying Ez). Such important ingredients were elsewhere
alternatively elaborated as a “cumulative effect” [19]. That is,
when an electron is passing through the chiral molecule, it
visits each atom and orbits the nucleus. The helix structure
ensures the orientations of the orbits visited by the elec-
tron bias toward a specific direction. Then the cumulative
effect of the small magnetic field of the atomic SOC leads
to a strong one which gives rise to the spin polarization.
Obviously, the “visiting” of the electron and the finite SOC
are both indispensable to achieve CISS. Our model agrees
with and expands such a scenario to the polaron transport
scheme.

The principle difference between our model and other the-
ories is that the charge carriers are polarons rather than free
charges. As a quasiparticle, the polaron (explicitly speaking,
large polaron) exhibits a large size over 20 sites, which is
determined primarily by the e-l coupling strength. It is natural
to query the effect of the comparability between the polaron
size and the helix pitch on the CISS. Figure 4(a) displays
the evolution of SP at eEz�z = 0.001t0 with varying N0. As
shown, when N0 = 10, i.e., one polaron ranges over two helix
pitches, SP = 0. This is because the polaron cannot feel the
varying of the HEF during its transport when its size is too
large. The effective inverse Faraday effect is absent, and then
both the spin-up and spin-down polarons pass through the
chiral molecule without spin fluctuations. Increasing N0 to
20, i.e., the polaron size is comparable to the helix pitch,
CISS takes place, and SP reaches about 50%. Obviously, a
relatively larger N0 will be a benefit for the polaron to more
clearly feel the HEF during transport. Further increasing N0

will nonlinearly increase SP until it reaches saturation of about
70% at N0 = 40.
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FIG. 4. Time evolutions of SP for different (a) N0, (b) Ez, (c) tS-I,
and (d) U .

As shown in Figs. 3(a1) and 3(a2), if the polaron is station-
ary, CISS does not occur, and SP = 0. However, if the drift
velocity is too high, it is not a benefit to achieve a high SP
either. Figure 4(b) displays the evolution of SP by fixing N0 =
40 by tuning Ez (stronger Ez accelerate the polaron faster). It is
shown that in the low-field regime, such as eEz�z = 0.001t0,
0.0015t0, the SP can reach 70%. Further increasing Ez leads
to a decrease of SP. The underlying physics is as follows.
Two important timescales should be compared during polaron
transport: one is the spin dephasing time under a HEF, and
the other is the time interval of a polaron passing through
one helix turn. If the latter timescale is much shorter than the
former, the polaron spin cannot be effectively modulated by
the HEF. In addition, we observe another two important trends
with increasing Ez [38]: (i) polaron spins prefer to oscillate
under higher Ez rather than switching to the steady opposite-
orientation ones; (ii) the polaron localization is weakened, and

the polaron coherence is easily lost as time goes by. Then the
transport carriers change to free charges; that is, the polaron-
transport channel collapses. These two factors further lead to
the decrease of SP.

Figure 4(c) further demonstrates time evolutions of SP
for different tS-I, keeping other parameters unchanged. As
shown, in the regime of small tS-I (tS-I � 0.06t0), SP is al-
most zero (green line). With increasing tS-I, SP increases. At
tS-I = 0.07t0, SP reaches its maximum value, which is greater
than 70% (red lines). With further increasing tS-I, however,
the SP starts to reduce (see black, blue, and yellow lines). By
checking the polaron’s spin-lattice evolutions, we find that at
tS-I = 0.1t0, the dynamics exhibits a behavior similar to that
at a strong Ez; namely, the polaron spins oscillate, rather than
reverse. In addition, the polaron undergoes a delocalization,
losing its coherence during propagation. Therefore, high SP
is feasible only in the regime of the low external field and
moderate SOC strength.

Electron-electron (e-e) correlation also affects the SP. It
was theoretically reported that e-e correlation would en-
hance SP of the current through a short chiral chain [39].
Figure 4(d) illustrates the dependence of SP on the on-site
e-e interaction. We find that, in the relatively weak U regime
(U = 0.4t0, 0.6t0, and 0.8t0), the SP is almost insensitive to U .
However, when U is large, e.g., U = 1.0t0, the SP is sharply
decreased. At first glance, this result seems to contradict that
reported in Ref. [39]. Actually, the difference in the effect of
U on SP between our results and that presented in Ref. [39]
stems from distinct dynamical processes. In our model, as the
spin carrier is a polaron, the e-e interactions’ effect on SP is
mainly ascribed to the polaron spin’s response. If U is not
too large, the spin density localized by polaron is mainly due
to lattice distortions induced by the e-l couplings; therefore,
tuning U does not cause a significant change in SP. However,
when U is large, the energy difference between the spin-up
and spin-down states is enlarged. Then, a very strong effective
magnetic field is required to reverse the spin. In contrast,
such a polaron-spin reversal mechanism was not considered
in Ref. [39], and the main transport mechanism was tunneling
of free charges instead of polaron propagation. Hence, such a
scenario was absent there.

IV. SUMMARY

We note that one comparative work was done recently [40]
in which the lattice vibrations were treated as phonons. It
was found that the lattice vibrations could induce additional
conductance tunnelings and enhance the electronic coherence
effect, which would increase SP. Undoubtedly, the degree of
freedom of lattice vibrations is being regarded more and more
as an important ingredient for achieving high SP.

In this work, we proposed a polaron transport mechanism
in the chiral molecule to explain the CISS effect and high SP.
We demonstrated that the different spin-orientated polarons
exhibit distinct dynamics while passing through the HEF of a
chiral molecule: the polaron whose spin orientation is parallel
to its drift velocity direction keeps the spin state unchanged,
while the others switch their spin to opposite orientations.
The current generated by polaron transmission is thus spin
orientation unified. Due to the strong coupling between spins
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and lattices, the spin coherence is significantly enhanced, and
thus, a very high SP greater than 70% can be achieved even
with a relatively weak effective SOC. Different from the pre-
viously proposed scattering model, the spin-flip process in our
model not only significantly enhances SP but also intensifies
current intensity. To achieve a clear CISS effect, we suggest
the helix pitch should be much larger than the polaron size.
Furthermore, the external electric field applied to drive po-
larons should not be too large, and the SOC strength should
not be too strong, so that the polaron does not lose coherence,
leading to a decrease in SP. We hope our work will inspire
more and more theoretical and experimental interest.
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