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Motivated by recent experiments in fermionic polar gases, we study the nonequilibrium dynamics of two-
component dipolar fermions subject to a quasiperiodic potential. We investigate the localization of charge and
spin degrees of freedom time evolving with a long-range spin-SU(2) symmetric fermionic Hamiltonian by
calculating experimentally accessible dynamical observables. To study the nonequilibrium dynamics, we start
the time evolution with two initial states at half-filling: (i) product state with doublons [1]0 1} 0 1] 0 1 0 1))
and (ii) product state with singlons |1, 1] 1 1] 14 ). We carried out the real-time evolution via the fermionic
Hamiltonian using exact diagonalization (ED) and the time-dependent variational principle (TDVP) for finite
matrix product states (MPS), within experimentally relevant timescales. For the product state with doublons,
we observe a delocalized to localized phase transition varying disorder strengths by monitoring the decay of
charge imbalance with time. For the long-range interacting Hamiltonian of our focus, and in the presence
of strong enough disorder, starting the time evolution with singlons we find a strong reduction in the spin
delocalization, contrary to results of previous studies using the disordered short-range (on-site) Hubbard model
with SU(2) symmetry. In addition to the quench dynamics, we also demonstrate the localization of charge and
spin in the full energy spectrum of the long-range spin-SU(2) symmetric Hamiltonian by monitoring spin and
charge autocorrelation functions. Our predictions for localization of both charge and spin should be observable

in ultracold experiments with fermionic dipolar atoms subject to a quasiperiodic potential.
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I. INTRODUCTION

Recent progress in ultracold atomic gases experiments pro-
vides a promising platform for studying the nonequilibrium
dynamics of interacting systems [1,2]. More specifically, the
nearly perfect isolation from the environment, and tunability
of ultracold atomic gases properties, allow experimentalists to
probe the unitary time evolution of isolated quantum systems
[3]. These isolated systems can evolve in time through a
thermalizationlike process, where the memory of the initial
state is lost because of its own dynamics [4—7]. Remarkably,
the system itself acts effectively as a heat bath via the ex-
change of energy and particles among portions of the sample
[8]. We refer to these systems as ergodic. However, there
are exceptions. Both integrable and localized systems fail to
thermalize, preserving the memory of the initial states [9,10].
Recently, localized many-body systems with disorder poten-
tial have attracted considerable attention due to its possible
applications in quantum information theory and for exploring
new paradigms of statistical mechanics [11].

The localization of noninteracting particles in the presence
of quenched disorder was first described by Anderson [10]
[Anderson localization (AL)]. In this case the system shows
both an absence of transport and absence of thermalization.
In low-dimensional disordered systems, the presence of inter-
actions gives rise to a many-body localization (MBL) phase
[12—-15]. Interestingly, this MBL phase shows very different
characteristics in terms of spectral and dynamical properties
in comparison to the ergodic systems [16]. In the presence of
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sufficiently strong disorder, many-body localization occurs in
the full energy spectrum, leading to the area-law scaling of
excited eigenstates [17] (whereas ergodic systems exhibit a
volume law scaling [18]), and can be described by a complete
set of quasilocal integrals of motion, similarly as integrable
systems [19,20]. In the case of many-body localization, the
energy-level spacing statistics follows a Poisson distribution,
whereas ergodic systems follow a Wigner-Dyson distribution
[14].

The most popular way to characterize the MBL phase is
to follow the real-time dynamics of some initial product state
in the presence of both disorder and interactions. In a MBL
phase, the system carries the memory of the initial state even
at infinite time [21,22]. Under the unitary-time evolution from
an initial state in the presence of strong enough disorder,
the local observables evolve following a power-law decay,
but they converge to nonvanishing stationary values [23,24],
while in an ergodic system they would converge to zero with
increasing time. The transport of energy, charge, and spins are
absent in both the AL and MBL phases [25], while in the
ergodic phase a fast transfer of energy and particles after a
sudden quench is observed [26].

The dynamics of entanglement entropy provides an im-
portant tool to differentiate between AL, MBL, and ergodic
phases [22-25,27]. For short-range interacting disordered sys-
tems, in the MBL phase the entanglement entropy increases
logarithmically with time [28-30], in the AL phase this en-
tanglement entropy saturates to a small but finite value after a
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short time, and finally in the ergodic phase the entanglement
grows linearly with time (ballistically) [26]. Interestingly, the
MBL phase also has been found in long-range interacting
spin systems [31,32] (or in spinless fermions [33]), where
entanglement entropy was found to grow algebraically with
time, namely 7 [34,35]. The power-law exponent 7 takes a
universal value n. = 0.33 at the delocalized to localized MBL
transition for one-component long-range interacting systems
[35].

A. Previous results using the short-range (on-site)
disordered Hubbard model

Experiments in cold atomic systems in the presence
of a quasiperiodic potential, for on-site (i.e., short-range)
fermionic systems, support quite well the theoretical and nu-
merical predictions for the MBL phase with regards to the
localization of charge [36-38]. Specifically, in Ref. [36] the
many-body localization of interacting fermionic systems in
a quasiperiodic potential has been shown by observing the
decay of the density imbalance with time. The system was
modeled in terms of the on-site interacting fermionic Hubbard
model and the time evolution was carried out starting with
charge density wave states. But the localized vs delocalized
character of the spin sector was not addressed. Thus, the
evidence provided is only of partial MBL.

Interestingly, most of the experiments described above
were performed with spinfull fermionic Hubbard models,
where the system has a continuous non-Abelian SU(2) sym-
metry. However, theoretically it has been suggested that in
the presence of such a continuous non-Abelian symmetry the
system cannot have a full MBL phase even at large disorder
[39-41]. In fact, numerical studies of the one-dimensional
disordered Hubbard model with on-site interactions (and with
disorder in the charge sector) showed that the charge degree
of freedom is localized but the spin degree of freedom is
delocalized, contrary to the properties of the MBL where both
charge and spin should be localized [42—44]. In Ref. [44], by
mapping the Hubbard model to an effective spin Heisenberg
model in the presence of large disorder, subdiffusive transport
in the spin channel was observed. In a recent study [45] it
was argued that the delocalization of spin can also lead to
delocalization of charge after a very long time, depending
upon the fermionic occupancy, rendering the system even
more different than the MBL state. The restoration of the full
MBL phase was demonstrated in Refs. [42,46,47] by breaking
the spin SU(2) symmetry which now leads to the localization
of the spin, together with the charge. Thus, the presence or
absence of many-body localization in SU(2) symmetric sys-
tems is an ongoing topic of research [48], but the theoretical
consensus is that on-site (short-range) Hubbard models with
SU(2) symmetry do not produce a MBL phase and we need to
break SU(2) to stabilize such a state.

B. New results: SU(2) symmetric fermionic model
with long-range interactions and disorder

The above described studies of the MBL phase were
based on the disordered Hubbard model using local on-site
interactions. In this article we explore the localization of

spin and charge using a continuous spin-SU(2) symmetric
interacting fermionic Hamiltonian including long-range in-
teractions. This long-range interacting Hamiltonian is quite
relevant for experimental studies of nonequilibrium dynamics
in polar Fermi gases [49-51], trapped ions [52], and Rydberg
gases [53] because they naturally have long-range interac-
tions. However, as argued in Refs. [39,54], the continuous
non-Abelian symmetry of the disordered Hamiltonian creates
degeneracy in the spectrum. For these reasons, a number of
questions arise in the context of dynamics of charge and spin
degree of freedom with a spin-SU(2) symmetric long-range
interacting disordered Hamiltonian. How does the long-range
interaction influence the dynamics of charge and spin degrees
of freedom? What will be the nature of entanglement entropy
with time in the presence of strong disorder? Along with an-
swering these questions, we also discuss the role of the initial
state to observe localization of charge and spin in quench
experiments with a spin-SU(2) symmetric system.

As explained above, our work is motivated by recent exper-
imental progress in the study of polar Fermi gases [49-51] and
by experiments addressing the MBL with fermionic systems
in quasiperiodic potentials [36,38]. To explore the nonequi-
librium dynamics, we follow the quench protocol, namely
we start the time evolution with two simple and experi-
mentally feasible product states, specifically the doublons
state 1401} 01101401 ...) and the singlons state
T34t It 4t 4t 4 ...) at half-filling [55].

(a) Starting the time evolution from the product state with
doublons, we demonstrate the transition from a delocalized
phase to a localized phase by varying the disorder strength.
Analyzing the dynamics of local observables, such as the
charge imbalance, and also the global observable entangle-
ment, as well as charge and spin fluctuations, we are able to
show the localization of both the spin and charge separately.

(b) Starting the time evolution from the product state with
singlons, in the presence of strong disorder we discuss the
effect of the long-range interaction on the dynamics corre-
sponding to the spin degree of freedom, both in the large
and small interaction limits. Assuming the charge is local-
ized, we present a comparative study of the spin dynamics
corresponding to the disordered on-site Hubbard model and
our disordered long-range Hubbard model with SU(2) sym-
metry. In contrast to the previous studies using the disordered
local on-site interacting Hubbard model, here we find that
the delocalization of the spin degree of freedom is strongly
reduced for the long-range interacting model, even without
breaking the spin-SU(2) symmetry. More specifically, when
the long-range and on-site couplings of our model are of com-
parable strength, we show that the the spin imbalance decays
very slowly and the entanglement entropy grows linearly with
time. Furthermore, we demonstrate the effect of long-range
interactions on the localization of spin and charge in the full
spectrum by calculating the charge and spin autocorrelation.

The article is organized as follows. In Sec. II we discuss the
long-range model Hamiltonian and method used. Section III
contains the results and associated discussion, and it is divided
into three subsections. In Sec. II A, for the product states with
doublons, we show the presence of a delocalized to localized
transition in the presence of a quasiperiodic potential. In Sec.
II B we show the localization of the spin starting the time
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evolution from the product state with singlons, again in the
presence of a quasiperiodic potential. In Sec. II C we discuss
the localization of the spin and charge in the full energy spec-
trum. Section IV contains our conclusions. In the Appendixes
we discuss the stability of doublons for the on-site and long-
range Hubbard models without disorder. Then we provide an
intuitive description for the localization of the spin degree
of freedom in terms of exchange interactions with a large
disorder potential. We have presented the long-time dynamics
of charge and spin degrees of freedom for product states with
doublons and singlons.

II. MODEL AND METHODS

In this study we consider two-component (pseudospin-1/2)
dipolar fermions in a one-dimensional lattice at half-filling.
The effective Hamiltonian is

H = thop Z(CZJCH'LU +H.c)+U ZﬁiqTﬁi-i

i,o i

+ Y VG i+ A Y hcosQr i+ ). (1)
(i) i,o

where ¢; , is the annihilation operator with spin o =1, |, at
site i. Here the 1 and | states refer to two hyperfine states
of dipolar atoms or molecules. 77 = (77 — (n)) where i is the
number operator and (n) is the average density, which is
taken as 1 because it is a half-filled system. The hopping
amplitude is denoted as tpop (We set fpop = 1 for our numerical
calculation) and U is the on-site interaction term. V (i, j) is
the long-range interaction potential, which depends on the
relative orientation and distance between the polarized dipoles
as [32,51,56] Vg o< [1 — 3 cos?(9)]/r> in a standard spherical
coordinates notation. In an optical lattice, by using the Fesh-
bach resonance or by changing the lattice depth, the on-site
interaction strength U can be modulated. The model in Eq. (1)
preserves both U (1) and spin SU(2) symmetries, related to the
conservation of the total particle number N and to the total
spin of the system, respectively [57,58].

To study the effect of disorder on the localization of the
spin and charge degrees of freedom when using our long-
range Hamiltonian, we added a quasiperiodic on-site potential
[59,60]. The strength of disorder is measured by the co-
efficient A of this quasiperiodic potential and we choose
B = (~/5—1)/2, a commonly used value as employed in
Refs. [59,60]. The noninteracting model (U =V =0 and
thop = 1) with quasiperiodic potential shows a metal to insu-
lator transition at A = 2.0 [61]. Interestingly, for the critical
disorder at A¢c = 2.0 all the single particle states become
localized for irrational values of 8 [36,61,62].

The equilibrium phase diagram of this model (with A = 0)
is well known [63]. For positive U and V (where V is the
prefactor of the dipolar interaction 1/r%), and in the range U >
2V, the large on-site repulsive interaction leads the fermions
to form a spin-density wave phase. On the other hand, for
large repulsive interactions V and in the range U < 2V, two
fermions tend to reside at the same site and form a charge
density wave [64]. Here, in order to study the nonequilibrium
dynamics, we initialize the system in these two extreme kinds
of product states: (i) a product state of doublons and empty

sites, and (ii) a product state of singlons, both at overall half-
filling.

We have investigated numerically the time evolution of
these initial product states |W(0)), under the influence of
the system Hamiltonian, using |W(¢)) = exp (—iHt)|¥(0)). In
particular, we used the time-dependent exact-diagonalization
(ED) method for system sizes L = 8, 10, and 12. For larger
systems (up to L = 64 sites), using the ITensor library [65],
we have implemented the time-dependent variational prin-
ciple (TDVP) for the finite matrix product states (MPS)
time-evolution method [66,67]. To enlarge the bond dimen-
sion of the MPS for the TDVP time evolution, we have used
the recently developed global subspace expansion (GSE) al-
gorithm [65,68] for a few initial steps of the one-site TDVP1
time evolution (see Appendix C for more details).

III. RESULTS AND DISCUSSION

A. Quench from the product state with doublons
and empty sites at U = 2V

In this subsection we explore the localization of charge and
spin for our long-range model subject to a quasiperiodic dis-
ordering potential, starting the time evolution from a product
state with doublons and empty sites, namely [1 | 0 1] 0 1]
0 14 0 7). For the Hamiltonian Eq. (1) without disorder, i.e.,
A = 0, the doublons become unstable near the transition point
U ~ 2V, where they decay to single fermions (as explained
in Appendix A). The boundary U = 2V is chosen because: (i)
for U > 2V, doublons are very stable due to energy conserva-
tion, i.e., having so many doubly occupied sites considerably
increases the energy with respect to the ground state but there
are no energy-conserving channels to reduce the number of
these doublons, while (ii) for U < 2V the ground state already
has doublons thus there is no reason for the product state to
be unstable. Only at, or very close to the boundary between
phases, the product state of doublons can be unstable [see
Fig. 8(a)].

1. Delocalized to localized transition atU =2V =8

We have carried out the time evolution using the exact-
diagonalization method (L = 12), at fixed values of the
interaction parameters U = 2V = 8.0, and for various values
of the disorder strengths A. The transition from the delocal-
ized (DEL) to the localized phase is a dynamical quantum
phase transition [15] and can be observed in experiments by
monitoring the time evolution of local observables [36] and
entanglements [27].

In the MBL phase the system carries a memory of the
initial state and particles retain their initial position even after
long times. This has been observed in experiments by prob-
ing the time evolution of the charge imbalance /() = %;x”
where N, and N, are the number of fermions on even and
odd sites, respectively [36]. For the charge-density wave state
with doublons |1 J Ot} 0O, 01 Oy ...), atr =0 the
charge imbalance /(¢) is one. Figure 1(a) displays the time
evolution of the average charge imbalance for various values
of disorder strength A. Here the charge imbalance I(¢) was
averaged over sites followed by averaging over ten different
values of the phase factor ¢, for each disorder strength A. As
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FIG. 1. (a) Time evolution of the average charge imbalance /()
vs time ¢ (in log-log scale and time in units of 7i/f) at fixed inter-
action couplings U = 2V = 8 and for the various disorder strengths
A shown in the inset. The red curves between 5t to 80t represent
power-law fits to the I(z) decay. (b) Relaxation exponent « of the
charge imbalance decay vs A, for L = 8, L = 10, and L = 12, show-
ing the delocalized to localized transition increasing A. The size of
data point symbols (circle, square, triangle) represent the fitting error
bars. The delocalized region is denoted as DEL.

shown in Fig. 1(a), at low values of disorder, the imbalance
decays to zero (implying delocalization), while for large dis-
order strength, /(¢) saturates to a value close to the initial 1,
suggesting localization of particles.

To find more accurately the transition point from the delo-
calized regime to the localized phase, with increasing disorder
strength, we have extracted the relaxation exponent o by
power-law fitting the decay of 1(¢) ~ t* [38]. We find that for
low values of A, the charge imbalance /(¢) decays sharply
and with strong oscillation, giving comparatively a reduced
time window to fit using a power law for I(¢). To achieve a
better comparison of power-law fits across the delocalized to
localized transition, we fit the data in the time window from
5t to 80¢ for all the values of A [Fig. 1(a)] [38]. Figure 1(b)
displays the relaxation exponent « vs disorder strength A for
three different system sizes L = 8, L = 10, and L = 12. The
relaxation exponent o decreases monotonically in the delo-
calized phase with increasing disorder strength A. Near the
transition region (5.5 < A < 6.5) this exponent « decreases
slowly with increasing A, due to the slow dynamics near the
delocalized to localized transition [38]. As shown in Fig. 1(a),
for A > 6.0, I(t) saturates to the initial value and in Fig. 1(b)
the relaxation exponent « of different system sizes approaches
very small values for A > 6.0. We estimate the transition
from delocalized to localized phase to be Ac 2 6.0 £0.5.
Interestingly, due to the strong on-site U and long-range V
interactions, the transition from DEL to MBL occurred at val-
ues of A larger than those reported in recent experiments on
fermionic on-site Hubbard model in a quasiperiodic potential
[38]. In these experiments, the DEL to MBL transition was
studied starting with a charge-density wave, where up and

U =2V = 8 and use several values of A. The red curves show a
power-law fit of S(¢) at A = 6 and a logarithmic fitat A = 8.

down spin atoms are randomly distributed on even lattice sites,
and keeping all of the odd lattice sites empty [38].

Figure 2 contains the time evolution of the entanglement
entropy S(t) = —Tr[pa(t)Inpa(t)] for L= 10, U =2V =8,
and several values of the disorder strength A, where p4(t) is
the reduced density matrix of block A of size L/2. At small
A, the entanglement entropy S(¢) grows rapidly with time and
saturates to large values, which is expected due to the break-
down of doublons into single particles at U = 2V. Near the
phase transition, the entanglement entropy growth is power
law with time [S(z) ~ 7] with a small exponent n = 0.2 (see
Fig. 3). The growth rate in the entanglement entropy further
slows down with increasing A. In this regime the growth of
the entanglement entropy S(¢) can be described by a loga-
rithmic function of time S(¢) = 0.06In(z) + 0.18, compatible
with MBL. Recently, evidence for the logarithmic growth of
entanglement was reported experimentally in ultracold atomic
systems through the study of particle fluctuations and their
correlations [27].

2. Delocalize to localize transition at U =2V =4

Here we analyze the effect of V on the localization of
charge degrees of freedom, starting the time evolution with
the product state with doublons. Using the recently developed
time evolution method TDVP1 (with GSE to enlarge the bond
dimension, see Appendix C for detail) near the transition
region, we were able to calculate the charge imbalance I(z)
for significantly larger system sizes up to L = 48 (typical
system size used in cold atom experiments). For the TDVP
time evolution, we considered only nearest-neighbor V terms
along with the on-site interaction U. This is a good approxi-
mation for larger values of disorder strength [see Fig. 3(a): the
exponent « obtained from long-range interaction V coincides
with the nearest-neighbor interaction V for A = 4.0]. The
charge imbalance I(¢) shown in Fig. 3 is averaged over sites,
followed by averaging over ten different values of phase factor
@.

Figure 3(a) displays the decay exponent « for the dis-
ordered extended-Hubbard model vs disorder strength A.
The exponent o obtained by power-law fit to the decay of
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FIG. 3. Comparison of decay exponent « obtained by power-law
fit to the average charge imbalance /(¢) for (a) disordered extended-
Hubbard [H(U,V, A)] at U =2V = 4 and (b) disordered Hubbard
model [H(U, A)] at U = 4. Gray color (triangle) data point symbol
for long-range interacting Hamiltonian with same interaction param-
eter. Insets shows decay of charge imbalance vs time 7 (in log scale
and in units of /i/tp) near the transition region of delocalize to
localize transition. These results were obtained by using TDVP1 for
system sizes L = 24 and 48 and ED for L = 12.

charge imbalance I(¢) (as discussed in the previous subsec-
tion) for three different system sizes L = 12 (ED), 24, and 48
(TDVP1). In the delocalized regime, the exponent @ mono-
tonically decreases sharply with an increase in A. However,
near the delocalized to localized transition « decreases very
slowly (A 2 4.5). In the localized region the decay exponents
o shows a weak dependence on system size and « approaches
very small values. As shown in Fig. 3(a), the decay exponents
«a for three different system sizes takes similar small values,
indicating a delocalized to localized transition at A¢c ~ 5.0 +
0.3. The charge imbalance /(¢) almost saturates to a stationary
value near Ac 2 5.0 and does not decay with time [see inset
of Fig. 3(a)], also confirming the localization of charge.
Figure 3(b) contains the o exponent for the disordered
Hubbard model vs A. Compared to the disorder extended
Hubbard model (at U = 2V = 4) the doublons are more stable
at U = 4 (see Fig. 8), and for this reason the product state
with doublons are less delocalized. The decay exponent takes
comparatively smaller values even in the delocalized phase
[see Figs. 3(a) and 3(b)]. As shown in Fig. 3(b), the decay
exponents « for three system sizes coincide for A 2 4.0, and
the charge imbalance I(¢) at A = 4.0 almost saturated with
time ¢ [see inset of Fig. 3(b)], yielding as the estimate for the
delocalized to localized transition at A ~ 4.0 &= 0.3. Interest-
ingly, the transition from the delocalized to localized phase
occurs at smaller values of A for the disordered Hubbard
model (at U = 4) when compared to the extended-Hubbard
model (at U = 2V = 4). The critical disorder A for the Hub-
bard model decreases with an increase in U, because with an
increase in on-site interaction U the doublons are much more
stable [see Fig. 8(b)]. The doublons tunnel from one site to
another only through a second-order hopping process, which

leads to strong localization even for smaller values of disorder
strength [36]. However, for the extended Hubbard model at
U = 2V, a doublon can break into single fermions even for
strong interactions [see Fig. 8(a)], which induces a larger Ac.

In summary, the numerical analysis presented above [and
also the long-time dynamics of /(¢) shown in Fig. 14(a)] gives
evidence that the product state with doublons behaves as a
MBL state, even in the presence of spin-SU(2) symmetry and
strong interactions. The localization of charge and spin (see
Fig. 9) for larger values of A suggest that this product state has
overlap with the nonthermal sector (area-law eigenstates) of
the system Hamiltonian [45]. In an interesting study on a spin-
disordered Hubbard model with pseudospin SU(2) symmetry,
it has been argued that the system has both a large num-
ber of area-law and log-law eigenstates [69]. Furthermore,
from the time evolution they demonstrate that the product
state (quarter-filled singlons), which has overlap with area-law
eigenstates, shows all the dynamical properties of a MBL [69].

B. Quench from the product state of singlons

In this subsection we focus on the effect of the long-range
interactions V (with V the prefactor of the dipolar-interaction
1/r3) on the localization of the spin degree of freedom when
subject to a strong quasiperiodic potential. Our primary aim is
to investigate the localization of spin with a long-range spin-
SU(2) symmetric Hamiltonian, in both the large and small
U interaction limits. As discussed in Sec. I, it is believed at
present that with short-range SU(2) symmetric models, spin
localization does not occur. Including strong disorder, the
charge degree of freedom freezes [see Fig. 13(e)], but the
spin in principle could delocalize by virtual hoping processes
between different sites [45,70]. However, the virtual hoping
process depends strongly on the density of singly occupied
sites [45].

Here, in order to study the dynamics of the spin degree
of freedom, we started the time evolution using as an initial
state a Néel state |1 | 1 14 1t 1 14 ...) [where all sites
are singly occupied with spin up (1) and spin down ({) on
alternative sites, allowing for the possibility of fast spin dy-
namics]. To probe the spin localization, we use the local spin
imbalance [24] Is(i) = s; — 57, |, where 57 = %(”iT —n;y) is
the local spin operator at site i.

1. Large interaction U limit

We start the analysis of spin localization with a strong
on-site interaction U = 8§, performing the time evolution us-
ing ED for a system size L = 12 and disorder strength A =
16. Figure 4(a) shows the averaged spin imbalance Is(¢) =
% Zi(—l isf, i.e., the average of the spin over all sites, fol-
lowed by averaging over six different disorder phases ¢.
For U = 8 and V = 0 (the standard on-site Hubbard model
with disorder), the spin imbalance I(¢) decays exponentially
and oscillates around zero after ¢ 2 50/ /thop. The very fast
decay of the spin imbalance is due to the strong interac-
tion and to the single occupancy of fermions (with spin up
and spin down on alternative sites) of the Néel state, which
enhances the exchange processes and leads to a faster spin
delocalization. For U = 2V = §, the spin imbalance Is(t) still
decays exponentially, but comparatively at a slower pace than
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FIG. 4. (a) Time evolution of the spin imbalance Is(¢), with ¢ in
units of 7i/tp. The red curve represents the fit to Is(#) by using the
fitting functions described in the text. (b) Entanglement entropy S(7)
vs time ¢. The red curve contains the power-law fit to S(¢). These
results are obtained by ED at A = 16, using system sizes L = 12
[for Is(¢)] and L = 10 [for S(¢)], in the large interaction U limit.

at the (U =8, V = 0) case, and approaches zero after r >
1507 /thop. Based on the studies of spin dynamics in Heisen-
berg models [71-73], to describe the time evolution of spin
imbalance Is(z), we have used the fitting function Is(z) =
ae " cos (wit +0) + be™ + ce~¢" sin(wot + 0). The first
term of the fitting function captures the fast exponentially
decaying oscillations and it is similar to the clean case of
the anisotropic Heisenberg model [73]. The second term de-
scribes the exponential decay of spin imbalance with exponent
n, while the third term contains the characteristic oscillations
for spin imbalance Is(¢) [71]. We found that the decays of
spin imbalance for both the case U = 8 at V = 0 and the case
U = 2V = 8 are approximately described by the exponential
fitting function, with decay exponents n = 0.073 and 0.023,
respectively. Thus, in the regime analyzed thus far, spin delo-
calization occurs.

Interestingly, at U =V =8, i.e., increasing V, the spin
imbalance shows a drastically different behavior. In this case
the decay of spin imbalance Is(¢) is reduced strongly and now
it can be phenomenologically described using a linear fitting
function Is(t) = mt + ¢, with a very small decay rate m =
—0.0012. This is qualitatively different from the previous
exponential decay. Based on second-order perturbation theory
and using just two sites, we find that the nearest-neighbor term
V causes the decrease in exchange processes, which leads to
a strong reduction of spin delocalization at least for the finite
timescales explored here (see Appendix D for more details).

The SU(2) symmetry of the Hamiltonian changes the en-
tanglement structure of the eigenstates [39,69], which leads
to the faster growth of entanglement with time after a quan-
tum quench. The previous studies, based on the disordered
short-range Hubbard model with spin-SU(2) symmetry, find
that the time evolution of entanglement entropy grows as a
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FIG. 5. Time evolution of the spin imbalance /s(¢), with ¢ in units
of 7i/thep, in the small interaction limit U =V =1 and with strong
disorder A = 12. (a) Results using ED for a system size L = 12. (b)
Results using TDVP1 for a system size L = 64. The red curve rep-
resents the power-law fit to I (¢) using the fitting function described
in the text. The inset shows the time evolution of the entanglement
entropy S(¢) vs time ¢. The red curve displays the linear fit to S(¢).

power law with time (instead of logarithmic growth), even in
the presence of strong disorder [42]. Here, in order to study
the behavior of entanglement entropy S(#), with long-range
interaction and spin-SU(2) symmetry, for the product state
with singlons, in Fig 4(b) we have plotted S(¢), averaged over
six different disorder phases ¢, for a system size L = 10. At
U = 8 and with V = 0 the entanglement entropy S(z) exhibits
power-law growth with time ¢ (S(z) ~ 0.17t%°), which is
similar to previous results of a SU(2) symmetric on-site disor-
dered Hubbard model.

Interestingly, at U =V =8, the entanglement entropy
changes qualitatively its behavior. Now it increases linearly
with time rather than via a sublinear power law. More im-
portantly, the growth is very slow following S(t) = 0.143 +
0.002¢ with a small slope m = 0.002. The slow linear decrease
in the spin imbalance previously described, and the slow lin-
ear growth of the entanglement entropy with a small slope
shown here at U = V, provide evidence of a drastic reduction
of spin delocalization as compared to the on-site Hubbard
model (at U = 8 with V = 0). Surprisingly, we found that the
phenomena of slowdown of spin delocalizationatU =V =8
does persist also for other values of U =V (see Fig. 12 in
Appendix E).

2. Small interaction U limit

Furthermore, to better visualize the role of interactions
on spin dynamics, here we study the dynamics of the spin
degree of freedom in the small interaction U limit. We
consider on-site interaction U =1 and disorder strength
A = 12. Figure 5(a) shows the average spin imbalance
Is(t) for a system size L =12 at U =V = 1. The decay
of Ig(t) can be described by using the fitting function
Is(t) = ae /" cos (wit +0) + bt ™" + ct ¢ sin(wat +0), as
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FIG. 6. (a) Time evolution of the spin imbalance Is(¢), with ¢ in
units of /i/tyep, for the disordered on-site Hubbard model at small
U = 1andV = 0. The red curve represents the power-law fit to Is(z),
using the fitting function described in the text. (b) Entanglement
entropy S(t) vs t. The red curve shows the power-law fit to S(r).
These result were obtained using TDVP1 at A = 12 and for system
size L = 64.

suggested in Ref. [71] for the disordered Heisenberg model.
The spin imbalance decay term, with a small exponent
n = 0.010, implies the very slow delocalization of the spin
degree of freedom with time.

To confirm this effective localization of spin using larger
system sizes, in Fig. 5(b) we show the spin imbalance Is(¢) vs
t for a system size L = 64, using the TDVP1 time-evolution
method. For this TDVP1 time evolution, we approximate
the long-range interaction V by only a nearest-neighbor in-
teraction V =1 [74]. Using L = 64, the spin imbalance
can still be described by the same fitting function Is(¢) =
ae™'/7 cos (wit +6) + bt ™" + ct ¢ sin(wyt + ) with expo-
nent n = 0.011, very close to the 0.010 of the smaller system.
Finite size effects appear to be small for Ig(¢). The abnormally
small value n = 0.011 suggests localization of spin in the
weak coupling limit (at least for the timescales of our numer-
ical simulations). Interestingly, at U =V = 1 we find a very
slow linear increase in the entanglement entropy, which can
be described using S(¢) = 0.16 4+ 0.0001¢, with a very small
slope m = 0.0001 [inset of Fig. 5(b)]. Compared to the strong
U limit, we find that the slowdown of spin delocalization is
more effective at small U, i.e., the spin degree of freedom is
more localized at weak U coupling.

Figure 6(a) contains the average spin imbalance Is(¢) vs
time ¢, for the disordered on-site Hubbard model at U =1
and V =0, using two different system sizes L = 12 (ED)
and L = 64 (TDVP1). The decay of the spin imbalance I5(t)
for both sizes L = 12 and L = 64 follows a similar behavior
(except for some larger oscillations in the L = 12 case). This
suggests that finite-size effects are very small for the local
observable Is(r). The spin imbalance I5(¢) decays to approx-
imately zero at r 2> 160/ /typ, showing delocalization of the
spin degree of freedom. The overall decay of the spin imbal-
ance Is(t) can be well described by a fitting function I5(¢) =

ae™ /7 cos (wit + 0) + be™™ + ce % sin(wyt + 0), with ex-
ponential decay exponent n = 0.019. Interestingly, starting
the time evolution with the Néel state, we find that the delo-
calization of the spin degree of freedom becomes much faster
(U =1,V =0), as compared to previous studies based on
the on-site disordered Hubbard model with a different initial
product state [42]. The entanglement entropy S(z) at U = 1
also follows a similar pattern as the spin imbalance Is(¢), and
grows algebraically with a much faster rate compared to the
extended Hubbard model (at U =V =1 and A = 12). The
S(¢) initially grows as a power law with S(¢) = 0.14¢%34 for
t < 507 /tyop. After a small decrease in S(z) [for the same time
window where I5(¢) increases], at longer times S(¢) grows at
a faster rate [see Fig. 6(b)].

Summarizing, the inclusion of a long-range SU(2) sym-
metric term in the Hamiltonian drastically slows down the
delocalization of the spin degree of freedom, and qualitatively
alters the time dependence when compared with short-range
SU(2) symmetric models. We also find that in the strong U
limit the delocalization of spin is faster compared to the small
U limit [see Figs. 4(a) and 6(a)].

C. Localization of charge and spin in full energy spectrum

Thus far we have discussed the nonequilibrium dynamics
for a quantum quench starting with two extreme product states
at half-filling, one with doublons and another with singlons.
Such a procedure is quite useful in cold-atom experiments. For
a fully many-body localized MBL system, the charge and spin
both should be localized in the entire many-body spectrum
of the system Hamiltonian [19,20]. As discussed in previous
studies [39,40,54], a full many-body localization is not possi-
ble with a continuous non-Abelian symmetric system, due to
the appearance of degeneracies in the energy spectrum. Here,
to study the extent of localization of charge and spin in the full
energy-spectrum in the presence of a long-range interaction
V, we calculated the local charge and spin autocorrelation
[33,75] by full diagonalization of the system Hamiltonian
Eq. (1) on a chain with L = 8 sites and at large values of
disorder A = 16. The spin autocorrelation function is defined
as

4
Rs(i. 1) = = 3 (nlsisiO)ly)

4
= 5 2_expl=it(Ey — EDIWulsi )P, )

where D is the Hilbert space dimension, |¥,,) is the mth
eigenstate of the Hamiltonian, and s7 is the local spin operator
at site i. We explore the extent of spin localization at large
and small U, by measuring the spin autocorrelation averaged
over all sites, i.e., Rg(t) = (1/L) ) ; Rs(i, 1), followed by av-
eraging over five different values of the phase ¢. Similarly for
the charge, we define the charge autocorrelation as Re(t) =
1% >y Wl (t)]y,). For a fully localized system, both
Rc(t) and Rs(t) are expected to saturate with increasing time
to a value close to the initial value at # = 0, namely remain
finite even after a long-time evolution. By contrast, a Hamil-
tonian with a finite fraction of delocalization would show
a power-law decay and the extent of delocalization in the
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FIG. 7. Averaged spin autocorrelation Rg(7) vs time ¢ (in units of
I/ thop) for the cases of (a) large interaction limit U = 8 and (b) small
interaction limit U = 1. The red curves represent power-law fittings
of Rg(¢) with exponent 1. The inset shows the charge autocorrelation
Rc(t) vs t. These results were obtained using the full-diagonalization
method of a system size L = 8§ at A = 16.

spectrum can be measured with an exponent 1. As shown in
the inset of Fig. 7(b), the charge correlation Rq(¢) for U =
V =8 and U =V =1 remain constant with time, providing
evidence of localization of the charge degree of freedom at
A = 16. Figure 7(a) contains the spin-spin autocorrelation for
the SU(2) spin-symmetric Hamiltonian Eq. (1) at large U. We
observed that the power-law decay of Rg(¢) can be captured
by the fitting function Rg(t) = ae™/" cos (wit +0) + bt ™" +
¢t~ sin(wst +6). In the case of the long-range Hubbard
model (with U =V = 8), the spin-correlation Rg(¢) decays
with a small exponent n = 0.017, hinting to localization of the
spin degree of freedom in a large fraction of the energy spec-
trum. On the other hand, atU =2V =8andatU =8,V =0,
Rs(t) decays with a larger exponent n = 0.335 and = 0.344,
respectively, indicating delocalization of the spin degree of
freedom over a large fraction of the energy spectrum.

Figure 7(b) displays the spin-correlations Rg(¢) at small
U. For the long-range Hubbard model (U =V = 1), Rs(t)
remains constant with time (n = 0.0003, i.e., zero within our
accuracy). Thus, the spin autocorrelation [in Fig. 7(b)] and the
charge autocorrelation at U =V = 1 [inset of Fig. 7(b)] sug-
gest localization of spin and charge in the full energy spectrum
(at least for a finite system and for a finite time). On the other
hand, for the disordered on-site Hubbard model there is delo-
calization of the spin degree of freedom with Rs(¢) decaying
as a power law with a larger exponent n ~ 0.066 >> 0.0003.
The restoration of a full MBL using an on-site interacting dis-
ordered Hubbard model has been shown in a recent study [46]
by breaking the SU(2) symmetry of the Hamiltonian using
asymmetrical hopping ¢, # t,. Here we show that localization
of charge and spin in the full energy spectrum (at least for the
timescale of our simulation) can occur without breaking the
SU(2) symmetry but instead simply rendering the interactions
long range instead of short range.

IV. CONCLUSIONS

In conclusion, we have explored the localization of charge
and spin degrees of freedom for fermions with long-range
interactions, in the presence of a quasiperiodic potential to
add disorder and for experimentally relevant timescales. Our
Hamiltonian has a spin-SU(2) symmetry. We studied the dy-
namics of charge and spin using two different initial states.
Specifically, we considered two extreme cases of product
states: doublons |1} 01} 01y 01]) 01]) and singlons
[ 41 41 41 11 ), at half-filling. Compared to the on-
site (short-range) Hubbard model, in the long-range Hubbard
model at U ~ 2V we show that at large interaction U and
without disorder the doublons are found to be unstable. This
leads to larger values of Ac for the delocalized to localized
transition in the case of the extended Hubbard model. In fact,
for the product state with doublons, at strong interaction U =
2V = 8 we observed a transition from delocalized to localized
phases varying A by estimating the relaxation exponent of the
charge imbalance. Moreover, we found that for large disorder,
the transport of charge and spin stops [see Fig. 9], whereas
the entanglement entropy increases logarithmically with time.
Then, the product state with doublons acts as a MBL state
[irrespective of the spin-SU(2) symmetry]. Starting the time
evolution from the product state with doublons all of the
dynamical properties of the MBL described above should be
observed experimentally in dipolar fermionic systems. How-
ever, the system is not a full MBL at U = 2V because the
spin degree of freedom delocalizes over a large fraction of the
energy spectrum [see Fig. 7(a)].

Starting the time evolution with the product state of sin-
glons (Néel state), we presented a comparative study of
the disordered on-site Hubbard and disordered long-range
Hubbard models both at large and small interaction U limits.
In the large interaction U limit, but without long range, i.e.,
V = 0, the spin imbalance decays exponentially, compared to
an algebraic decay of spin for an on-site disordered Hubbard
model in previous publications. However, in contrast to previ-
ous studies with short-range Hubbard models, we found that
including a long-range interaction in the Hamiltonian (i.e.,
V nonzero) the decay of spin imbalance slows down dra-
matically. This occurs even without breaking the spin-SU(2)
symmetry. Eventually, at small U, when the long-range V and
on-site U interactions are equal in strength, the spin degree of
freedom localizes (at least for the timescales of our numerical
simulations). Using the TDVP1 time-evolution method, we
demonstrate that at small U and keeping U =V, the local-
ization of spin persists for the significantly larger systems
typically used in cold atom experiments. In contrast to the
algebraic growth of entanglement entropy in the disorder on-
site Hubbard model, the entanglement entropy shows a slow
linear growth for the extended-Hubbard model. Interestingly,
the phenomena of slowdown of spin delocalization of spin
also persist in the full energy spectrum with the long-range
interacting Hamiltonian. We observed that for large disorder
the charge and spin both localizes in the full energy spectrum
when the on-site and long-range interactions are equal in
strength (at least for a finite system and a finite time).

We have carried out the dynamics for long enough time
and system sizes to reach experimentally relevant timescales
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FIG. 8. Time evolution of the site average double occupancy
d(t) vs time ¢ (in units of /i/tyo,) (a) long-range Hubbard model
(b) Hubbard model, for different values of interaction parameters.
In both cases L = 12, and A = 0 (no disorder).

and system sizes in which the localization of both charge
and spin should be observed in dipolar systems subject to
a quasiperiodic potential. However, due to the non-Abelian
spin SU(2) symmetry there is the possibility that spin can be
delocalized for much longer timescales. Our work based on
SU(2) symmetric long-range fermionic dipolar systems, and
using simple initial product states, opens the possibility to
understand special nearly many-body localized systems where
the relaxation rate is anomalously very slow and the system is
expected to thermalize on much longer timescales [76].
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APPENDIX A: STABILITY OF DOUBLONS
WITHOUT DISORDER

For the on-site Hubbard model (i.e., without long-range
interactions V = 0) in the large interaction limit (U > tyop),
doublons are quite stable and cannot decay to single fermions
[see Fig. 8(b)] for the energy-conserving time evolution we
are carrying out [77]. On the other hand, for the extended
Hubbard model with V' nonzero at nearest neighbors, the
doublons become unstable at U = 2V and can decay to single
fermions [see Fig. 8(a)] even with full energy conservation
[78].

Here we investigate the stability of doublons by start-
ing the time evolution with a product state of doublons
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FIG. 9. Time evolution of the bipartite fluctuations: (a) charge-
fluctuation Fy (¢) and (b) spin-fluctuation Fy(¢) vs time ¢ (in log-scale
and in units of /i/ty,,). We work at U =2V = 8 and use several
values of A. The red curves show a power-law fit to the charge and
spin fluctuations near the transition point A = 6.

140101 01)04]) using a long-range interacting
Hamiltonian without any disorder, i.e., A =0. We find
that the site average double occupancy, defined as d(t) =
13 {nin;y), at U = 2V = 8, decays quickly to a small but
finite value and after a few oscillations [Fig. 8(a)]. This indi-
cates that at U ~ 2V the doublons are partially unstable and
can decay to individual fermions. On the other hand, for large
values of on-site interactions U = 20 and V = 4, the number
of doublons almost remains the same as the initial value at¢t =
0, showing doublons are quite stable in this regime (Fig. 8). In
the case of the on-site Hubbard model (V = 0) even without
any disorder (A = 0), with an increase in on-site interaction
U the doublons are very stable [see Fig. 8(b)] and do not
break into single fermions [78]. However, in the long-range
Hubbard model at U = 2V, doublons are unstable providing
a window to study a delocalized to localized transition with
disorder even at large interactions.

APPENDIX B: BIPARTITE CHARGE AND SPIN
FLUCTUATIONS FOR PRODUCT STATE
WITH DOUBLONS

To characterize the transport properties with increasing
disorder strength A and at interaction parameter U = 2V = §,
we analyze the time-dependent bipartite charge and spin fluc-
tuations [Figs. 9(a) and 9(b)] by dividing the system (L = 12)
into two equal parts: blocks A and B. The charge fluctua-
tions of block A are defined as Fy(t) = (\Il(t)lN/fllL’(t)) -
(W()|Na|W(1))? [79], where Ny = Y52 4. Similarly, the z
component of the spin fluctuations of block A are defined
as Fy(t) = (W(O)I(S3)’[W()) — (W(0)IS5W(1))?, where S5 =
Z,L=/ f s7. These charge and spin fluctuations can be related to
the transport of charges and z component of spins from block
A to B [80,81]. For small values of disorder strength A, the
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doublons can break into two single unpaired fermions (at U =
2V), giving raise to a rapid enhancement in the charge Fy ()
and spin Fg(¢) fluctuations in the system. Interestingly, near
the phase boundary of the delocalized-localized transition
(A ~ 6.0), the charge Fy(¢) and spin Fs(¢) fluctuations grow
slowly as a power-law ~t", with small exponent ny = 0.194
and ng = 0.218, respectively (see Fig. 9). For large values
of disorder A = 8.0, the doublons are quite stable (they do
not break into single fermions). Doublons fluctuate close to
the original lattice sites within some localization length. As
a consequence, charge and spin fluctuations almost saturate
to a small value, indicating the suppression of transport of
charge and spin degrees of freedom from block A to block B.
Remarkably, the bipartite fluctuations can also be measured
in ultracold atomic systems via quantum gas microscopy
[27,82,83].

APPENDIX C: ED VERSUS TDVP TIME EVOLUTION

Using the ITensor library [65] we have implemented the
one-site version of TDVP in finite matrix product states (MPS)
for the time evolution of fermionic systems. Compared to
other time evolution methods (t-DMRG or TEBD), the one-
sitt. TDVP preserves the energy of the system during the
time evolution and does not depend on the Suzuki-Trotter
decomposition of local terms of the system Hamiltonian
[67,68]. In the TDVP method the time evolution of MPS
is performed by projecting the right-hand side of the time-
dependent Schrodinger equation [% = —iPvpsH|¥)] to
the tangent space of the variational MPS manifold of fixed
bond dimension x [66]. By this process it constrains the
time evolution of the system to a specific manifold of matrix
product states with particular bond dimension . In our work,
first we have enlarged the bond dimension of the MPS using
the global subspace expansion (GSE) method [68] for the
first few time steps of the time evolution. After reaching
the desired value of bond dimension y, we have performed
the time evolution with fixed bond dimension y using one-site
TDVP.

Figure 10 presents the comparison of the time evolution of
charge imbalance /(¢), using the TDVP and ED methods for
the disordered extended Hubbard [H(U,VA) U =2V = 4]
and on-site Hubbard [H (U, A) at U = 4] models for disorder
values near the transition region. We have used time-step
size 6 = 0.01 (in units of /i/tyep) and 10 to 12 time steps to
enlarge the bond dimension (using GSE-TDVP1) for the time
evolution. We found that after 10 to 12 time steps of the time
evolution, the bond dimension of MPS reaches approximately
x = 300 to 500 depending upon the system size, interaction,
and disorder strengths. As shown in Fig. 10(a), for the disorder
value A = 4.5 (before the transition point), the I(¢) using
TDVP shows a very small deviation from ED results for large
times, while for A 2> 5.5 ED and TDVP results match quite
accurately. On the other hand, for the disordered Hubbard
model [Fig. 10(b)] the decay of /(¢) using TDVP follows the
ED results near the transition region. These numerical results
[Figs. 10(a) and 10(b)] show that the TDVP method works
quite well near the transition region involving the delocalized
to localized transition.
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FIG. 10. Comparison of the charge imbalance /(¢) near the tran-
sition region: using ED (solid lines) and TDVP (broken red lines)
time evolution methods using system size L = 12. (a) For an ex-
tended disordered Hubbard model at fixed value of U = 2V = 4 and
for different values of A. (b) For a disordered Hubbard model at
U = 4 and for different values of A. The charge imbalance /() is
averaged over sites followed by averaging over ten different values
of phase factor ¢.

APPENDIX D: PERTURBATIVE ANALYSIS
FOR THE NéEL STATE

At large disorder strength A, the charge degree of freedom
localizes, but the spin can interact through the exchange mech-
anism. For the disorder on-site Hubbard model in Ref. [45],
by considering the virtual hopping between singly occu-
pied distant sites, the effective spin Hamiltonian Hgpy, =
ij J,,,,jS,‘. . S,j was derived. The exchange coupling J;, ,,
between two spins at distance |r; — r;| has been obtained
by using 2(r; — r;)th order of perturbation expansion in the
hopping amplitude. The initial states were the product state of
singly occupied or doubly occupied/empty sites [45].

Here, in our case for the long-range interacting disor-
dered Hubbard model using as an initial state the Néel state
[ 31 41 41 1 J), the most dominating exchange process
occurs between nearest-neighbor sites (this exchange occurs
from virtual hopping of a particle with spin 4 to a neighboring
site with spin | or vice versa) [70]. To gather insight into
the physical picture related to the localization of the spin
degree of freedom, we consider just two fermions interacting
with on-site U and nearest-neighbor V couplings, at large
disorder strength A >> #,4p, and with the system initialized in
a Néel state |1, |). Starting with only two fermions |1, |)
with opposite spins, we will use the canonical transformation
of H:

A= exp (iSA)H exp (—iAS). (D1)

Here H = Hp +AH,, in the basis (|1,1),[!,1),
[14,0),]0, 1)) where the diagonal part of the Hamiltonian
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matrix is
€1+ € 0 0 0
o = 0 €1+ e 0 0
=1 o 0 2¢, +U -V 0
0 0 0 Uu-v
and the hopping term of the Hamiltonian matrix is
0 0 _thop _thop
0 0 Thor
H; = P
! _thop thop 0
_thop thop 0

To deduce the Hermitian matrix S, we used the condition
H,, +ilS, Hp]l = 0, which results from requesting a
vanishing first-order term in the hopping, i.e.,

0 0t _he
S=i Thop thop 0 0
A A
hop  __ thop
o o 0 0

Here A=(e1 —€)+ (U —V) and B=(e; —€1)+ (U —
V). After substituting the S matrix in the second-order term
of the perturbative expansion in the hopping amplitude and
projecting into the subspace (|1, |), |{, 1)), we obtain the
Hamiltonian Hypin ~ Jf;dSi -S; for two spins with exchange
constant

4t§0p(U -V)
(€ —€)>— (U —=V)?

We assumed A > 12 and that there are no doublons formation
during the time evolution. Here €; = A cos (27 8i). The form
of the exchange Jf;?d allows us to explain qualitatively the
behavior of the spin dynamics when in the presence of
large disorder. For the Néel state |1+ |1 |1 |1 {1 1) the
most dominating exchange occurs from second-order virtual
hopping process [84].

As shown in Fig. 11(a), for (U =0,V =4) and (U = 4,
V = 0) the dynamics of spin imbalance I(¢) is quite similar
up to intermediate times (the magnitude of |J; ;| is the same for
these two values of interaction parameters). On the other hand,
for U =V = 4, the spin imbalance I5(¢) remains close to ini-
tial values as the exchange constant reduces to smaller values
providing evidence that the reduction in spin delocalization
of the L = 12 sites fermionic system (at intermediate times)
can be explained qualitatively by the second-order exchange
process between two fermions. Figure 11(b) displays the av-
erage doublons occupancy d(r) = ) ;{n;+n;)/L vs time ¢,
showing that for U = V = 4 there is no significant increase
in the average number of doublons with time. Figure 11(c)
displays the time-averaged spin imbalance g vs long-range
interaction V, at U = 2 and A = 16. For the time averaging
of Is(t), we employ data from ¢ = 150 to 200 in //tyop units.
With an increase in V, the exchange process between fermions
reduces (for V < U = 2), which leads to a decrease in spin
delocalization. As a result, the average value of the spin imbal-
ance I increases with V. On the other hand, for V > U = 2,
the exchange process again increases by increasing V, which
leads to an increase in spin delocalization. As a result, Is de-
creases with an increase in V, Fig. 11(c). Interestingly, when

2nd __
Jn = -

D2)

FIG. 11. (a) Time evolution of the spin imbalance Is(¢) vs time
t (in units of /i/tp) for different interaction strengths. (b) Average
doublons occupancy vs time ¢. (¢) Time-averaged spin imbalance /g
vs V at U = 2, showing that the spin imbalance acquires maximum
values when U =V = 2. These results are obtained using ED at
disorder strength A = 16, ¢ = 0, and for a system size L = 12.

on-site and long-range interactions are equal in strength the
I takes maximum values at U = V = 2, showing the strong
reduction in spin delocalization at U = V.

APPENDIX E: EFFECTS OF INTERACTIONS AND
DISORDER ON SPIN AND CHARGE DYNAMICS
FOR NEEL STATE

In Fig. 12 we present the averaged spin imbalance I5(z) at
fixed A = 12 and for different values of interactions strength

10—
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FIG. 12. Spin imbalance Is(¢) vs time ¢ (in units of /i /t,,,) work-
ing at A = 12, and for different interaction strength when U =V
(where V is the prefactor of long-range interaction and U is on-site
interaction): (a) U =V =1, (b) U =V =2, (c) U =V =3, and
(d) U =V = 4. The red curves represent the power-law fit to Is(r)
using the fitting function described in the text, while the cyan curve
represents a linear fit to Is(z).
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when U = V. We find that for lower values of U = V/, the spin
imbalance remains almost constant with time (forU =V =1
[Fig. 12(a)] and U =V = 2 [Fig. 12(b)]). However, increas-
ing the interaction strength the spin imbalance decays linearly
with a very small slope (for U =V = 3 [Fig. 12(c)] and U =
V =4 [Fig. 12(d)]). In the strong disorder limit, the charge
degree of freedom freezes and only the spin degree of free-
dom plays an important role in the dynamics. Thus, based on
the studies of spin dynamics in Heisenberg models [71-73],
to describe the time evolution of spin imbalance Is(t), we
have used the fitting function Is(t) = ae™/" cos (wt +0) +
br=" + cr~¢ sin(wyt + ). The first term of the fitting func-
tion captures the fast exponentially decaying oscillations w,
and relaxation time t similar to the clean case of Heisen-
berg model [73]. The second term describes the power-law
decay (with nonuniversal exponent ) of the spin imbalance.
The third term contains the subdominating power-law decay
(exponent ¢) with characteristic oscillations w, of the spin
imbalance Ig(z) [71].

Interestingly we find w; is almost independent of inter-
action strength and takes the same value (w; = 1.99) for all
the range U =V considered, while the relaxation time t
decreases with increasing U = V. The power-law exponent
[n=0.001 (U=V =1),0.008 U=V =2), 0016 (U=
V =2), and 0.038 (U =V = 4)] increases with an increase
in interaction strength, showing a slight increase in the de-
localization of spin with an increase in interaction strength.
The characteristic oscillation w, of spin imbalance takes
different values depending on interaction strength [w, = 2.56
U=v=1,313U0=V=2),25U=V =2),and 0.9
(U =V =4)]. As shown in Fig. 12(d), for larger values of
interaction strength U =V = 4, the decay of spin imbalance
with time is better described by the linear fitting function
Is(t) = 0.8 — 0.001¢. Thus, to describe the decay of I(¢) with
time for large values of U = V = 8 in Fig. 4(a), we have used
the linear fitting function.

Figure 13 contains the average spin imbalance Ig(z) at
U =V =1 and for different values of disorder strength A.
For low values of disorder A =4, the spin imbalance de-
cays with a faster rate. The decay of spin imbalance can
by described by using an exponential fitting function Is(¢) =
ae™/7 cos (wit + 0) + be™ + ce % sin(wst + 0), with de-
cay exponent = 0.016. Whereas with an increase in disorder
(A Z 8.0) the time evolution of Ig(¢) can be described by
the power-law fitting function I5(t) = ae™/™ cos (wit + 6) +
br™" 4 cr~¢ sin(wot +0). We find the relaxation time T
increases with increasing A. The power-law exponent 1 de-
creases with increasing A [ = 0.024 (A = 8), 0.0025 (A =
12), and 0.0002 (A = 16)], showing an increase in localiza-
tion of the spin with an increase in the disorder strength. The
characteristic oscillation w; of I5(¢) depends on disorder A
[wy = 0.77 (A = 8),2.5 (A =12), and 2.01 (A = 16)]. Fig-
ure 13(e) shows bipartite charge fluctuations Fy(¢) vs time ¢
for the product state with singlons (Néel state). For lower val-
ues of disorder strength A = 4.0, Fy(t) grows algebraically.
On the other hand, for larger values of A = 12, Fy(¢) oscillate
around a fixed value, indicating localization of the charge
degree of freedom [85].
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FIG. 13. Spin imbalance I(7) vs time ¢ (in units of /i/typ) wWork-
ing at U =V =1, and for different values of disorder strength A:
(@) A=4,(b) A=38,(c) A =12, and (d) A = 16. The red curve
represents the fit to Is(z) using the fitting function described in the
text. (e) Bipartite charge fluctuation Fy(¢) vs time ¢ for A = 4.0 and
12.0.
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FIG. 14. Long-time dynamics of charge and spin imbalance us-
ing TDVPI method for larger system size L = 64. (a) The charge
imbalance Ic(¢) vs time ¢ (in units of 7i/f,,) for product state with
doublons at U = 2V =4 and A = 12. (b) The spin imbalance Is()
vs time ¢ for product state with Néel state, working at A = 16 and
U=1V=1.
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APPENDIX F: LONG-TIME DYNAMICS OF CHARGE AND
SPIN IMBALANCE: WITH DOUBLONS AND NEEL STATES

To study the long-time dynamics, we have carried out the
time evolution for significantly larger system size L = 64 for
product states with doublons and Néel states. Using the time
evolution method TDVP1 (with GSE to enlarge the bond-
dimension), based on the ITensor library [65], we are able to
reach t = 400/i/t,op for large disorder A. Figure 14(a) con-
tains the time evolution of average charge imbalance /. (¢), for
the product state with doublons |1 | 0 1) 04} 01 0 1))
at U =2V =4 and A = 12. Interestingly we find that the
charge imbalance saturates to a constant value and does not
decay with time. The decay exponent 7 obtained by a power-

law fit to the charge imbalance I(¢) ~ ¢~", approaches zero
(n = 0.0005), confirming the localization of charge for the
product state with doublons.

Figure 14(b) plots the time evolution of the average
spin-imbalance Ig(t) for the product state with singlons
[T It It it it l)atU =1,V =1,and A = 16. We find
a very slow decay of the spin imbalance Is(¢) even after a
long time. The decay of Is(¢) with time can be described by
the power-law fitting function I5(¢) = ae™ /7 cos (wit + 6) +
br=" + cr~¢ sin(wst + 0), where n = 0.009 shows the very
slow decay of Ig(t) with time even for a significantly larger
system L = 64 for cold atom experiments. However, there is a
possibility that due to the spin SU(2) symmetry of the system,
the spin imbalance may decay after a very long time.
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