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Ground-state energy density, susceptibility, and Wilson ratio of a two-dimensional
disordered quantum spin system
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A two-dimensional (2D) spin-1/2 antiferromagnetic Heisenberg model with a specific kind of quenched
disorder is investigated, using the first-principles nonperturbative quantum Monte Carlo calculations (QMCs).
The employed disorder distribution has a tunable parameter p which can be considered as a measure of
randomness (p = 0 correponds to the clean model). Through large-scale QMCs, the dynamic critical exponents
z, the ground-state energy densities E0, and the Wilson ratios W of various p are determined with high precision.
Interestingly, we find that the p dependencies of z and W are likely to be complementary to each other. For
instance, while the z values of 0.4 � p � 0.9 match well among themselves and are statistically different from
that of p = 0, the W values for p < 0.7 are in reasonably good agreement with W ∼ 0.1243 of the clean case.
Surprisingly, our study indicates that a threshold of randomness, pW , associated with W exists. In particular,
beyond this threshold the magnitude of W grows with p. This is somehow counterintuitive since one expects the
spin correlations should diminish accordingly. Similarly, there is a threshold pz related to z after which a constant
value is obtained for z. The results presented here are not only interesting from a theoretical perspective but also
can serve as benchmarks for future related studies.
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I. INTRODUCTION

Spatial dimension two is extraordinary from a theoreti-
cal point of view. This is because according to the famous
Mermin-Wagner theorem, for finite systems with short-range
interactions, continuous symmetries cannot be broken spon-
taneously at any temperature T > 0 [1–6]. As a result, for
two-dimensional (2D) quantum spin antiferromagnets (AF),
the associated studies have been focusing on certain exotic
finite-temperature properties of the systems. Particularly, sev-
eral universal quantities have been predicted and verified
numerically. Such a temperature region where these unusual
universal features exist is called the quantum critical regime
(QCR) in the literature and has been explored in detail during
the past few decades [7–19].

For 2D quantum spin AF systems, whenever QCR is
mentioned, it typically refers to a finite-temperature region.
However, such an exotic regime extends to zero temperature
at a quantum critical point (QCP). In addition, the (finite-T )
region above a QCP is where these profound characteristics
can be uncovered the most clearly [14,19].

A physical observable, namely, the spin-wave velocity c,
plays an important role in those mentioned universal quan-
tities of QCR for the 2D spin-1/2 antiferromagnets. For
instance, the value of c without doubt has great impact on
the determination of two universal quantities of QCR, namely,
χuc2/T ∼ 0.27 185 and c/(T ξ ) ∼ 1.04. Here χu and ξ are the
uniform susceptibility and the correlation length, respectively
[10,14,19]. In the phase with long-range antiferromagnetic
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order, c can be calculated efficiently using the spatial and the
temporal winding numbers squared [18,20,21].

Considering a clean 2D spin-1/2 AF which comes with a
given spatial arrangement of two types of antiferromagnetic
couplings, J ′ and J (J ′ > J), by tuning the ratio J ′/J (i.e., the
system is dimerized) a QCP may appear when J ′/J exceeds a
certain value, (J ′/J )c. The dynamic critical exponent z associ-
ated with such a kind of QCP takes the value of 1. For a QCP
gc, which is obtained by varying the associated parameter g,
the physical quantity c scales as c ∝ (gc − g)ν(z−1) close to
gc [10,13], where ν is the correlation length exponent. As a
result, c is a constant when the related z of a QCP is 1. For
2D quantum AF systems, the QCPs induced by dimerization
introduced above belong exactly to this case. When disorder
is present, z > 1 and c is zero at gc. Consequently, certain
universal quantities of QCR cannot be calculated in a direct
manner for disordered systems.

While for a 2D disordered quantum spin antiferromagnet
certain quantities of QCR such as χuc2/T cannot be directly
accessed, some observables do not encounter the difficulty
that c cannot be calculated with ease. One of them, namely,
the Wilson ratio W [10,17,18], is one of the main topics of
our study presented here.

W is a dimensionless quantity associated with the suscep-
tibility and the specific heat. Particularly, it characterizes the
relation between various types of interactions and plays an
important role in heavy fermion systems and Kondo lattices
[22–24]. By replacing the susceptibility with other quantities
(like the compressibility), one can study the Wilson ratios
of other systems such as the disordered (hard core) Bose-
Hubbard model, which is a model that has been investigated
in great detail in the literature [25–28]. Interestingly, despite
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its importance, the relevant (numerical) studies of W for spin
systems are rather limited, and how this quantity responds to
the presence of disorder in the systems has not been explored
(in detail) yet.

When quenched disorder is introduced into a clean spin
system, several physical quantities such as those mentioned
above may be affected. Moreover, understanding the depen-
dence of certain observables on the strength of randomness
is an interesting research topic to investigate as well. For
instance, the study of Ref. [29] leads to an exotic scenario of ν

with respect to the strength of a specific disorder distribution.
Here we carry such an exploration further by focusing on W .
We would like to point out that, since disorders often present
in real materials, our investigation is important as well from a
practicing point of view.

Due to these described intriguing motivations, in this
study we investigate the behavior of W with respect to the
strength of randomness, which is controlled by the parameter
p � 0, of an employed disorder distribution. Here p = 0 cor-
responds to the clean case. Apart from W , the dynamic critical
exponents z and the ground-state energy densities E0 of sev-
eral values of p considered in this study are determined as
well.

To carry out the proposed investigation, we have performed
a large-scale quantum Monte Carlo calculation (QMC). In
addition, several p are considered. For each of the studied
p there is an associated critical point, gc(p), beyond which
the long-range antiferromagnetic order is destroyed. In this
investigation, the simulations are done at the these critical
points gc(p).

Based on our numerical results, we find the magnitude of
E0 grows monotonically with gc(p) (hence, p as well since
gc(p) ∝ p as shown in Ref. [29]), similar to that of the correla-
tion length exponent ν [29]. Interestingly, the p dependencies
of z and W are likely to be complementary to each other.
For instance, while the z values of 0.4 � p � 0.9 match well
among themselves and are statistically different from z = 1,
which corresponds to the clean system, the W values for
p < 0.7 are in reasonably good agreement with that of p = 0
(W ∼ 0.1243).

The scenario of W indicates that there is a threshold of
randomness such that a randomness with less strength has
the same influence on both the susceptibility and the specific
heat. Moreover, the enhancement of W for p � 0.7 implies
that, beyond the mentioned threshold, the correlations be-
tween spins are getting stronger and stronger with p. This is
confirmed by the p dependence of χu obtained here and is
rather counterintuitive since spin correlations should diminish
with the strength of randomness.

Finally, the subtlety of calculating these physical quantities
for a disordered system is demonstrated here as well. Our
investigation is important and interesting in itself from a the-
oretical perspective. In particular, the obtained outcomes can
be used as benchmarks for future related studies.

The rest of this paper is organized as follows. In Sect. II
the studied model, the employed disorder distribution, and
the relevant observables are described. We then present our
numerical results, including the evidence for the mentioned
complementary relation for z and W , in Sec. III. Finally, in
Sec. IV we present discussions and conclusions.

FIG. 1. The 2D dimerized spin-1/2 herringbone Heisenberg
model on the square lattice investigated in this study [29]. The
antiferromagnetic coupling strengths for the thick and thin bonds are
J ′ and J , respectively.

II. MICROSCOPIC MODELS AND OBSERVABLES

The model investigated in our study has been described
in detail in Refs. [29,30]. Here we briefly summarize certain
technical perspectives of the considered system. The Hamil-
tonian of the investigated 2D disordered spin-1/2 herringbone
Heisenberg model (on a square lattice) is given by

H =
∑
〈i j〉

J �Si · �S j +
∑
〈i′ j′〉

J ′ �Si′ · �S j′ , (1)

where J (which is set to 1 here) and J ′ are the antiferromag-
netic couplings (bonds) connecting nearest-neighbor spins
〈i j〉 and 〈i′ j′〉, respectively, and �Si is the spin-1/2 operator
at site i. In this study we use the convention J ′ > J . Fig-
ure 1 is a cartoon representation of the considered model.
The quenched disorder introduced into the system is based
on the one employed in Refs. [29,30]. Specifically, for every
bold bond in Fig. 1, its antiferromagnetic strength J ′ takes
the value of 1 + (g − 1)(1 + p) or 1 + (g − 1)(1 − p) with
equal probability. Here g > 1 and 0 � p � 1. With the used
conventions, the average and the difference for these two types
of bold bonds J ′ are given by g and 2p(g − 1), respectively. In
addition, p can be thought of as a measure for the disorder of
the studied model.

To perform the proposed calculations to determine the
ground-state energy density E0, the dynamic critical exponent
z, and the Wilson ratio W for the considered disordered system
(with various p), the uniform susceptibility χu, the internal
energy density E , and the specific heat CV (as functions of the
temperature T or the inverse temperature β) are measured in
our simulations.

The uniform susceptibility χu is defined by

χu = β

L2

〈(∑
i

Sz
i

)2〉
, (2)

where β and L are the inverse temperature and the linear box
size used in the simulations, respectively. Furthermore, the
internal energy density E and the specific heat CV are given

214206-2



GROUND-STATE ENERGY DENSITY, SUSCEPTIBILITY, … PHYSICAL REVIEW B 102, 214206 (2020)

as

E = 1

L2
〈H〉, (3)

CV = ∂E

∂T
. (4)

Using these observables, E0, z, and W for various p of
the studied disordered model can be determined with high
precision.

III. THE NUMERICAL RESULTS

For each of the considered values of p = 0.0, 0.2, 0.4,
0.5, 0.6, 0.7, 0.8, and 0.9, to calculate the desired physical
quantities, we have carried out a large-scale QMC using the
stochastic series expansion (SSE) algorithm with a very effi-
cient operator-loop update [31,32].

SSE is one of the elegant algorithms for simulating (quan-
tum) spin systems and is based on an important sampling of
the high-temperature series expansion of the partition function
Z . It is well-documented in the literature and the associated
codes in various programming languages are available pub-
licly [33,34]. In the framework of SSE one considers the
contribution from the terms of the expansion of Z in an in-
telligent way. Particularly, when the z direction is chosen to
be the quantized direction, the associated Hamiltonian H is
divided into diagonal (H1 which contains Sz) and off-diagonal
(H2 which involves S+S− and S−S+) terms. Moreover, three
updates, namely, the diagonal update (add and remove H1), the
operator-loop update (exchange H1 and H2), and the isolated
spin flipping, are employed to efficiently sample the spin
configuration space. For the readers who are interested in the
technical details of implementing SSE in any programming
language, we refer them to Ref. [32], which also contains
many physical results obtained using SSE.

With SSE, the simulations are executed at the corre-
sponding critical points gc(p) for the chosen p. In addition,
depending on p and L (here L = 128 and 256 are considered),
(around) 330 to (around) 1300 randomness configurations are
generated. Each configuration (of bonds) is produced with
its own random seed and then is used for all calculations
involving the considered values of β. In particular, when the
simulation (which consists of both the thermalization and the
measurement processes) at an inverse temperature β1 is done,
the final state corresponding to β1 is employed as the initial
state for the thermalization associated with β2 = β1 + ε. Here
ε is some positive number and either 0.5 or 1.0 is adopted.
This procedure is conducted for all the used values of β.
With such a strategy, the equilibrium for any calculation of
a considered β is reached with moderate effort.

A. The strategy of calculating the Wilson ratio W

In the framework of SSE, the quantities of internal energy
density E and specific heat CV can be obtained by [32]

E = − 1

L2

(
〈n〉/β − 1

4

∑
b

Jb

)
, (5)

CV = 1

L2
(〈n2〉 − 〈n〉2 − 〈n〉), (6)

respectively, where the summation is over all the bonds b, and
n is the number of nonidentity operators in the SSE operators
sequence (operators string).

Based on the large-N expansion of the relevant effective
field theory, at the associated critical point it is predicted that
for the clean systems the (leading) low-T behaviors of χu, E ,
and CV are given by [10,18]

χu ∼ 1.0760

πc2
T, (7)

E ∼ E0 + 2.8849

πc2
T 3, (8)

CV ∼ 8.6548

πc2
T 2, (9)

respectively, where c is the spin-wave velocity. With these
leading T dependencies of χu, E , and CV , the Wilson ratio
W can be expressed as

W = χuT

CV
∼ 0.1243. (10)

While CV can be calculated directly from its definition
CV = ∂E/∂T [or CV = 1

L2 (〈n2〉 − 〈n〉2 − 〈n〉)], as shown in
the literature, such a direct approach will lead to very noisy
results at the region of low temperature [18]. In addition, the
fact that c is zero at the QCP of a disordered system prevents
one from determining c in a straightforward manner. Moti-
vated by the method outlined in Ref. [18], here we calculate
W through the following procedures.

First, from the β dependence of the internal energy density
E , namely,

E (β ) = E0 + aβ−1−2/z (11)

(here z is the dynamic critical exponent), one obtains a and z.
Then the specific heat CV , as a function of β, can be written
as

CV = a(1 + 2/z)β−2/z. (12)

Second, the β-dependence of χu is fitted to the expression

χu(β ) = bβ1−2/z. (13)

Finally, using Eqs. (12) and (13), one arrives at the following
formula for W :

W = b

a(1 + 2/z)
. (14)

In other words, instead of using CV directly, here W is
calculated through the coefficients z, a, and b obtained from
fitting the data of E and χu to their expected β-dependence
ansatzes, Eqs. (11) and (13).

B. The obtained χu and E from simulations

The obtained data of χu and −E for p = 0.0, 0.4, 0.6, and
0.9 are depicted in Figs. 2, 3, 4, and 5. Both data of L = 128
and L = 256 are put in these figures in order to demonstrate
that the outcomes of L = 256 are (most likely) sufficient
for size convergence. The insets shown in these figures are
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(a)

(b)

FIG. 2. χu (a) and negative (internal) energy density −E (b) as
functions of β for p = 0.0. The shown errors are the corresponding
mean errors.

the ratios between the L = 128 and the L = 256 results
of χu.

Interestingly, with a detailed investigation, we find that the
main systematic impact on the determination of W is from
χu. Moreover, the influence due to finite lattice for χu is less
and less severe with p (see the insets of Figs. 2, 3, 4, and
5). Although the observables used to calculate the desired
physical quantities do receive finite-size effects, we argue later
that z, E0, and W determined on L = 256 lattices, at least for
the majority of the considered values of p, are free of such
effects.

The approach to the calculations of W used here involves
both χu and E . In particular, the coefficients a, z, and b
appearing in Eqs. (11) and (13) determine the Wilson ratio W .
In other words, both the fitting results of χu and E are required
for our estimation of W . For all the used p in this study, we
have simulated both L = 128 and L = 256 lattices. Hence, we
carry out the needed fits using only either the L = 128 or the
L = 256 data (of χu and E ). With such a strategy one can
understand the systematic impact due to the finite-size lattices
used in the simulations.

(a)

(b)

FIG. 3. χu (a) and negative (internal) energy density −E (b) as
functions of β for p = 0.4. The shown errors are the corresponding
mean errors.

C. The results associated with the clean model

For the clean model p = 0, it is well known that z = 1.
Hence, z is fixed to 1 in our analysis for p = 0. As a result,
the following ansatz,

χu = a0 + aT + a1T 2, (15)

is considered to fit the χu data of p = 0. Apart from that, the
formula used to fit the data of E for p = 0 is Eq. (11) with
z = 1 as well.

By investigating the relevant data of L = 128 and L = 256,
the finite-size effect begins to appear when β > 16.0. There-
fore, the data of L = 256 with β � 24.0 are used for the fits.
We have additionally carried out fits using the L = 256 data of
β � 20.0 and have found that these new results lead to a value
of W which agrees quantitatively with that obtained using the
L = 256 data of β � 24.0. For data with a fixed range of β, in
addition to taking care of the finite-size effect, the following
procedures are adopted to calculate the corresponding W .

First, a bootstrap resampling (with respect to β) is con-
ducted simultaneously for both χu and E . Second, fits for
these obtained resampled data are performed. Finally, W is de-
termined using the outcomes of these fits. In these mentioned
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(a)

(b)

FIG. 4. χu (a) and negative (internal) energy density −E (b) as
functions of β for p = 0.6. The shown errors are the corresponding
mean errors.

fits, Gaussian noises are considered as well. The above-
described steps are carried out 20 000 times and only those
outcomes with both χ2/DOF (DOF stands for degrees of
freedom) of the two fits (for χu and E ) being smaller than
3.0 are included as the candidate results of W . The resulting
W and its associated uncertainty quoted for this set of data
with that given fixed range of β are the mean and the standard
deviation of these candidate results.

We have conducted several calculations using various
ranges of β (the minimum β used for these analyses satisfies
β � 4.0), and each of these calculations comes with its own
results (mean and uncertainty) for W . Moreover, to estimate
the means and errors of the desired quantities appropriately,
the weighted bootstrap resampling method is applied to all
the mentioned results of W . Specifically, for every randomly
generated data set (Wj , σWj ) obtained using the bootstrap pro-
cedure (σWj is the standard deviation associated with Wj), the
resulting mean is given by

∑
i

1
σ 2

Wi

Wi∑
i

1
σ 2

Wi

. (16)

(a)

(b)

FIG. 5. χu (a) and negative (internal) energy density −E (b) as
functions of β for p = 0.9. The shown errors are the corresponding
mean errors.

The reason for the use of the above equation (called the
weighted mean in this study) is as follows. Notice that data
with large standard deviations are less accurately determined
than those with small standard deviations. As a result, those
large standard deviation data should contribute less weight to
the determination of the associated mean.

After carrying out 20 000 weighted bootstrap resampling
steps, the resulting W is estimated to be W = 0.1238(3). The
obtained W = 0.1238(3) agrees very well with the theoreti-
cal prediction W = 0.1243. This confirms the validity of the
procedures introduced above for the calculation of W .

The ground-state energy density for the clean model is
calculated by the same procedure and is given as E0 =
−1.022 523(1).

D. The results of the disordered model with various
randomness strengths p

Since each generated configuration is used for all simula-
tions of the considered β, for a given set of p > 0 and L, the
data themselves are correlated. Hence, to accurately estimate
the associated errors for the coefficients in the fitting ansatzes,
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one should employ the correlated least χ2 method for the anal-
ysis. However, the stability of the correlated least χ2 method
varies and depends on the quality of the data used for the fits.
Moreover, biased outcomes may be reached if the associated
covariance matrix for a given data set contains eigenvalues
which have very small magnitude. Using the rule of thumb
that the considered ansatz to fit correlated data should contain
as few (to be determined) parameters as possible, we adopt the
following approach to calculate E0, z, and W for p > 0.

First, the bootstrap resampling method is performed for the
raw data resulting from the generated disordered configura-
tions. Second, these resampled data are used to calculate the
disordered average of χu and E , which are then considered
for the relevant fits. Here the data employed for the fits of χu

and E have different minimum values of β. Indeed, as can be
seen from Figs. 3, 4, and 5, for all the considered p > 0 the
associated E reaches its ground-state value E0 quickly, while
this is not the case for χu. As a result, it is more appropriate to
use different minimum values of β for the fits of χu and E .

After carrying out the fit of χu, the obtained result of z
is employed as an input for the fit of E . When both fits of
χu and E are done, the resulting results are then put back to
calculate the associated correlated χ2/DOF. Here a cutoff for
the eigenvalues of the associated covariance matrix is imposed
in order to avoid biased results. These introduced steps are
performed many times, and only those results which have
correlated χ2/DOF smaller than 3.0 for both the fits of χu and
E are considered for later calculations. Finally, for each of the
considered p, the above procedures have been applied to many
data sets consisting of various ranges of β, i.e., the minimum
of the used β varies, but the result corresponding to the largest
β is always included in the analysis. For instance, for the fits
of χu (E ) associated with p = 0.9, while the largest β used
is always βmax = 100, the minimum β considered in the anal-
yses consists of βmin = 20, 30, 40, 50, 60 (12, 14, 16, 18, 20).
Each of these sets (The whole set is denoted by S) has its own
results (mean and standard deviation) of E0, z, and W as well
as the number of successful calculations.

For a considered p, the final quoted results of E0, z, and
W in this study are estimated by a bootstrap resampling pro-
cedure using the following formula to calculate the mean of
every resampled data from S:

∑
i NiOi/σ

2
Oi∑

i Ni/σ
2
Oi

, (17)

where {Oi}, {σOi}, and {Ni} stand for the randomly picked
outcomes in S, the associated standard deviations, and the
related numbers of (successful calculated) results of these
chosen outcomes, respectively. Finally, such a resampling
step is conducted several thousand times, and the numerical
values presented here for these considered physical quantities
are the resulting means and standard deviations (estimated
conservatively) of this procedure. In conclusion, the analysis
procedures for p > 0 can be summarized as follows.

(i) Calculate the disorder average of χu and E after carry-
ing out a resampling of the original generated configurations.

(ii) Fit χu to the expression bβ1−2/z using the conventional
χ2 method.

FIG. 6. −E0 as functions of p. The results are obtained from
the analysis using the correlated χ 2 described in the main text.
The solid squares and solid circles are for L = 256 and L = 128,
respectively. For some values of p, the L = 128 results contain those
corresponding to gc, the lower and upper bounds of gc.

(iii) The obtained z is employed as an input for the (con-
ventional χ2) fit of E (the fitting ansatz for E is E0 +
aβ−1−2/z).

(iv) After the fits of χu and E are done, the obtained results
are used to calculate the associated correlated χ2/DOF.

(v) The repetition of above steps are applied to many data
sets consisting of various ranges of β.

(vi) Obtain the means and the standard deviations from the
results of every data set where both the correlated χ2/DOF of
χu and E are smaller than 3.0, and denote this collection as S.

(vii) Perform a resampling for the elements in S using
Eq. (17).

The uncertainties of E0 calculated by the described steps
are much smaller than those of the original E0 contained in
S. Hence, for the data in S we have also calculated their
associated weighted errors. The dominant one of these two
estimations, namely, the standard deviations and the weighted
errors, are the final values quoted here.

The −E0, z, and W as functions of p calculated by
the procedures introduced above are shown in Figs. 6, 7,
and 8, respectively. The related results for the clean model
are shown in these figures as well for comparison. The −E0

as a function of p shows a monotonic behavior in magnitude,
which is similar to that of the correlation length exponents
ν obtained in Ref. [29]. Regarding the z values presented in
Figure 7, one observes that the magnitude of z increases with
p until p reaches a specific pc < 0.4. For p � 0.4, all the
calculated values of z lie between (around) 1.3 and (around)
1.4. If one takes into account the systematic errors due to
the uncertainties of gc(p), then the z values for p � 0.4 are
fairly close to each other. The solid and dashed lines in Fig. 7
represent the mean and standard deviation for all the values of
z associated with p � 0.4 (including both those of L = 128
and L = 256). These guided lines justify the claim made
above. This phenomenon is consistent with the one shown
in Ref. [35], where the calculated z values corresponding to
various parameters take a universal value. We would like to
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FIG. 7. z as functions of p. The results are obtained from the
analysis using the correlated χ 2 described in the main text. The solid
squares and solid circles are for L = 256 and L = 128, respectively.
For some values of p, the L = 128 results contains those correspond-
ing to gc, the lower and upper bounds of gc. The solid and dashed
lines in the figure represent the mean and standard deviation for all
the z values such that their associated p satisfy p � 0.4 (including
both those of L = 128 and L = 256).

point out that when conducting the determination of z from
χu, the obtained results are somehow a little bit sensitive
to the considered fitting range of χu. This is the motivation
for the use of the resampling procedures described above. In
conclusion, our analysis indicates that it is subtle to calculate
the quantity z and a careful strategy is needed.

In Fig. 8 we demonstrate both the L = 128 and L = 256
results of W as functions of p obtained from the analysis

FIG. 8. W as functions of p. The results are obtained from the
analysis using the correlated χ 2 described in the main text. The solid
squares and solid circles are for L = 256 and L = 128, respectively.
For some values of p, the L = 128 results contain those correspond-
ing to gc, the lower and upper bounds of gc. The solid and dashed
lines in the figure represent the mean and standard deviation for
all the W values such that their corresponding p satisfy p < 0.7
(including both those of L = 128 and L = 256).

outlined previously. Intriguingly, similar to the scenario of z,
for those W corresponding to p < 0.7, their values are more
or less close to each other. The solid and dashed lines in the
figure again stand for the mean and standard deviation for all
the W with their associated p satisfying p < 0.7 (including
both those of L = 128 and L = 256). Considering the impact
resulting from the errors of gc(p), the scenario that W takes
the same value (or at least values close to each other) for all
the values of p such that p < 0.7 is probable. Interestingly, the
correlation length exponent ν is beginning to fulfill the Harris
criterion when p > 0.8 and this is where the magnitude of
W increases sharply. This observation implies that there may
exist a relation between W and the fulfillment of the Harris
criterion.

Based on the outcomes presented in Figs. 6, 7, and 8, it is
clear that for all the considered values of p the associated E0

values receive negligible finite-size effect. Moreover, although
small deviations are observed, the agreement between the L =
128 and the L = 256 results of z is very good for p � 0.4.
This implies that the finite-size effects for those z values of
p � 0.4 are most likely absent. A similar scenario applies to
W as well. In other words, it is beyond reasonable doubt that
the numerical values of W obtained on L = 256 lattices for all
the considered p are the bulk ones.

Finally, the scenario of W implies the existence of a thresh-
old of randomness, pW . In particular, the randomness with
strength smaller than this threshold effectively has no impact
on χu and CV . Apart from that, the enhancement of W for p �
0.7 indicates that, beyond the mentioned threshold, the corre-
lations between spins are getting stronger and stronger with p.
This phenomenon is surprising since spin correlations should
diminish with the strength of randomness. Indeed, as can be
seen from Figs. 4 and 5, the values of χu of p = 0.9 are larger
than those associated with p = 0.6, implying stronger spin
correlations for p = 0.9, which is a counterintuitive outcome.

IV. DISCUSSIONS AND CONCLUSIONS

In this study, we calculate the Wilson ratio W of a 2D
spin-1/2 antiferromagnetic Heisenberg model with a specific
quenched disorder, using the first-principles nonperturbative
quantum Monte Carlo simulations. The employed disorder
distribution has a tunable parameter p which can be consid-
ered as a measure of randomness. The W of the clean case and
that of p = 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 are determined
with high precision. The critical dynamic exponents z and the
ground-state energy densities E0 are obtained as well.

Remarkably, for the considered system with the employed
quenched disorder, the p dependencies of W and z seem to be
complementary to each other. The obtained z values are likely
to take a universal value for p � 0.4. Although this finding
agrees with the outcomes determined in Ref. [35], we find it is
probable that a threshold pz exists and only beyond pz will the
described scenario of z (as a function of p) emerge. Besides
z, the calculated W values for 0 < p < 0.7 also have a trend
of staying close to the result W ∼ 0.1243 of the clean model
(p = 0). Moreover, the value of W begins to increase sharply
when p is approaching p = 0.9, where the Harris criterion is
fulfilled. Considering the fact that under what conditions the
Harris criterion is valid is still not known [35–46], the results
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FIG. 9. −E0 as functions of p. The results are obtained from the
analysis using the conventional uncorrelated χ2. The solid squares
and solid circles are for L = 256 and L = 128, respectively. For some
values of p, the L = 128 results contain those corresponding to gc,
the lower and upper bounds of gc.

presented here may shed some light on setting up some useful
guidelines to decide whether the Harris criterion is valid for a
given disorder distribution.

In addition to the subtlety of calculating z described pre-
viously, the determination of W is extremely nontrivial as
well. Indeed, the estimation of W here is based on Eq. (14),
which contains two constants, a and b. Since a is a sublead-
ing coefficient in the associated ansatz, it is sensitive to the
range of β used for the fits. Careful strategy and resampling
procedures are conducted in this study in order to calculate W
accurately.

If the correlations among the data of various values of β

are ignored, then the same resampling steps as well as the
criterion of χ2/DOF < 3 (here the χ2 is the conventional
uncorrelated χ2, not the correlated χ2 described in the main
text) introduced in previous sections will lead to Figs. 9,
10, and 11. Remarkably, while the outcomes of z shown in
Fig. 10 are slightly different from those in Fig. 7, the E0

and W values presented in Figs. 9 and 11 agree very well
with the ones demonstrated in Figs. 6 and 8. In particular,
the trend claimed from the analysis associated with the cor-
related χ2 regarding the p dependencies of z and W , namely
being complementary to each other, is valid as well for the
outcomes obtained using the conventional uncorrelated χ2

(i.e., Figs. 10 and 11). This observation seems to reconfirm the
conclusions resulting from investigating some lattice quantum
chromodynamics data outlined in Refs. [47,48]. Specifically,
using the method of uncorrelated χ2 to fit correlated data
may lead to accurate outcomes for some cases, although the
associated χ2/DOF values cannot truly reflect the quality of
the fit.

Interestingly, from the L = 256 results shown in Fig. 11,
one may conclude that the values of W increase slightly from
p = 0.4 to p = 0.6. This observation would then lead to a
(possible) scenario of pW = 0.4. Such a scheme of threshold
for W is intriguing since it implies that both pW and pz take the
same value. Although one cannot definitely rule out the sce-

FIG. 10. z as functions of p. The results are obtained from the
analysis using the conventional uncorrelated χ 2. The solid squares
and solid circles are for L = 256 and L = 128, respectively. For some
values of p, the L = 128 results contain those corresponding to gc,
the lower and upper bounds of gc. The solid and dashed lines in the
figure represent the mean and standard deviation for all the values of
z such that their associated p values satisfy p � 0.4 (including both
those of L = 128 and L = 256).

nario of pW = pz (which we call the second scenario), we find
it is less favored compared to the one proposed earlier in this
study (named the first scenario). This is because the results
demonstrated in Fig. 8 (which is obtained by considering the
correlation among data), the statistics reached here, and the
potential uncertainties due to the errors of gc(p) indicate that
the first scenario seems to be more probable. Nevertheless, it

FIG. 11. W as functions of p. The results are obtained from the
analysis using the conventional uncorrelated χ 2. The solid squares
and solid circles are for L = 256 and L = 128, respectively. For some
values of p, the L = 128 results contain those corresponding to gc,
the lower and upper bounds of gc. The solid and dashed lines in the
figure represent the mean and standard deviation for all the values of
W such that their corresponding p values satisfy p < 0.7 (including
both those of L = 128 and L = 256).
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will be extremely interesting to understand the existence of
thresholds for z and W , as shown in this investigation, from a
theoretical perspective.

To summarize, the outcomes resulting from the investi-
gations carried out here, especially the obtained numerical
results of E0, z, and W , are not only important accomplish-

ments but also can be considered as benchmarks for future
related studies.
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