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Robustness of topological corner modes against disorder with application to acoustic networks
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We study the two-dimensional extension of the Su-Schrieffer-Heeger model in its higher-order topological
insulator phase, which is known to host corner states. Using the separability of the model into a product
of one-dimensional Su-Schrieffer-Heeger chains, we analytically describe the eigenmodes, and specifically
the zero-energy level, which includes states localized in corners. We then consider networks with disordered
hopping coefficients that preserve the chiral (sublattice) symmetry of the model. We show that the corner mode
and its localization properties are robust against disorder if the hopping coefficients have a vanishing flux on
appropriately defined superplaquettes. We then show how this model with disorder can be realized using an
acoustic network of air channels, and confirm the presence and robustness of corner modes.
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I. INTRODUCTION

Topological insulators have attracted considerable atten-
tion in recent years, with a wealth of new topological states
of matter that have been discovered [1–5]. Moreover, these
concepts have been applied in photonics or acoustics as pow-
erful tools to control wave propagation [6–8]. The hallmark
of topological insulators is the presence of boundary states,
with robust propagation properties. Two main classes of topo-
logical insulators can be distinguished. In strong topological
systems, boundary states are immune to disorder and hence
display robust unidirectional propagation [1,2,9]. On the con-
trary, in weak topological systems, which rely on translation
invariance [3,10,11], it is expected that boundary states will
lose their propagation properties upon introducing disorder,
for instance through Anderson localization.

More recently, a new type of topological insulators was
introduced: higher-order topological insulators [5,12–15].
While a d-dimensional topological insulator hosts d −
1-dimensional boundary states, an nth-order topological
insulator has (d − n)-dimensional boundary states. For in-
stance, two-dimensional systems can host topologically pro-
tected localized states at their corners, as was observed in
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kagome [16–18] or square lattices [19–23]. However, higher-
order topological insulators fall into the category of weak
topological insulators, and hence one should expect the topo-
logical protection to be broken when adding disorder.

In this work, we analyze a two-dimensional extension
of the well-known Su-Schrieffer-Heeger (SSH) model on
a square lattice. This model has been studied in various
works [24–26]; in particular, it was shown to be a higher-
order topological insulator hosting localized states at the
corners [27–30], which coexist with extended bulk ones as
bound states embedded in the continuum [23,31,32]. How-
ever, the robustness of these corner modes against disorder has
not been thoroughly studied so far, in particular when disorder
breaks translation invariance. As a weak topological insulator
and because the corner mode is embedded in the continuum,
one would expect disorder to hybridize the corner mode with
bulk modes, thereby suppressing its localization properties.
We point out that this situation contrasts with that of corner
modes in quadrupole topological insulators [14,19–22], where
the corner modes lie inside the gap, and is therefore expected
to be more robust, as was recently shown in [33–35].

On the contrary, we show that a corner mode of the two-
dimensional (2D) SSH model is robust to a large class of
disorder. It is robustly localized if it has support on the same
sublattice as in the periodic case. This is guaranteed if the
disorder satisfies a simple condition: appropriately defined
superplaquettes must have a vanishing flux. We then study
an acoustic realization of the 2D SSH model with disorder
hosting corner modes, by extending the setup of Ref. [36] that
uses networks of air channels to disordered configurations.
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FIG. 1. Schematic representation of the two-dimensional SSH model. (a) General structure. (b) Zoom on a unit cell with indices for unequal
hopping coefficients. (c) Dispersion relation.

Note that most acoustic realizations of higher-order topolog-
ical insulators are based on coupled resonators and rely on a
tight-binding approximation. This usually restricts the range
of validity of the discrete model (such as 2D SSH) to a narrow
band of frequency. On the contrary, our approach allows for a
broadband correspondence.

The paper is organized as follows. In Sec. II, we present the
2D SSH model without disorder (clean network). We discuss
analytic solutions and energy-level degeneracy in finite rect-
angular networks. In Sec. III, we study the effect of disorder.
We derive a general expression of the corner mode in disor-
der with vanishing fluxes, and then compare the localization
properties of the zero-energy mode for several disorder types
and strengths. In Sec. IV, we present the acoustic setup and
confirm the presence of robust corner modes.

II. MODEL AND SEPARABILITY

The 2D SSH system is a natural generalization of the SSH
model [24] and consists of a square lattice with staggered
hopping coefficients [see Fig. 1(a)]: intracell coefficients s
different from intercell ones t . A solution � with a given
energy ε solves the eigenvalue problem H0 · � = ε� with the
Hamiltonian

H0 =
∑
m,n

s|m, n; α〉〈m, n; β| + t |m, n; α〉〈m, n − 1; β|

+ s|m, n; β〉〈m, n; δ| + t |m, n; β〉〈m − 1, n; δ|
+ s|m, n; δ〉〈m, n; γ | + t |m, n; δ〉〈m, n + 1; γ |
+ s|m, n; γ 〉〈m, n; α| + t |m, n; γ 〉〈m + 1, n; α|+ H.c.,

(1)

where (m, n) are the lattice indices and α, β, γ , δ, are the
intracell indices [see Fig. 1(b)]. In Sec. IV, we will present
a simple acoustic realization of this model based on a net-
work of air channels. Anticipating this realization, we impose
the following restrictions on the hopping coefficients: they
are real with s > 0, t > 0, and t + s = 1. Notice, however,
that negative coefficients can be obtained using coupled
resonators [19,22]. In the following, a solution will be rep-

resented either by the vector � = ∑
m,n

∑
μ φm,n

μ |m, n; μ〉
containing all field values or by a set of 4-vectors �m,n =
(φm,n

α , φm,n
β , φm,n

γ , φm,n
δ )T gathering the field values of all sites

within a unit cell and depending on the cell indices (m, n).
We start by analyzing Bloch wave solutions of an infinite

network, �m,n = φ̄eimqx+inqy , with q = (qx, qy). The corre-
sponding Bloch Hamiltonian then reads

h(q) =

⎛
⎜⎜⎝

0 s + te−iqy s + te−iqx 0
s + teiqy 0 0 s + te−iqx

s + teiqx 0 0 s + te−iqy

0 s + teiqx s + teiqy 0

⎞
⎟⎟⎠.

(2)

The eigenvalue problem of the Bloch Hamiltonian gives us the
dispersion relation of the network, shown in Fig. 1(c). In fact,
this dispersion relation can be cast under a rather simple form,

ε = ±|s + teiqx | ± |s + teiqy |, (3)

with the four combinations for the ±’s giving us the four
branches [see Fig. 1(c)]. We see that the dispersion relation
takes the specific form of a separable system [23,29,32], that
is, ε(q) = εx(qx ) + εy(qy). Moreover, this property extends to
the full Hamiltonian of finite (or semi-infinite) networks if the
edges of the network are horizontal or vertical, in which case
they do not break separability.

A. Finite networks: Eigenmodes

To study the properties of corner modes, we need to in-
troduce the edges of the sample in our description, and hence
we will now consider finite-size networks with open boundary
conditions. There are basically two ways to cut a rectangular
2D SSH network. The first way is to take an integer num-
ber of unit cells, i.e., Nx horizontally and Ny vertically, as
shown in Fig. 2(a). We call this a canonical network. In this
case, there are two different topological phases: if s > t , the
network is trivial, without edge waves or corner modes; on
the contrary, if s < t , the network is topological and there
are edge waves on the four edges and corner modes in the
four corners [24,26]. An alternative is to add an extra vertical
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FIG. 2. (a), (b) Representation of finite two-dimensional SSH networks for Nx = 5 and Ny = 3. (c), (d) Spectrum of the networks showing
bulk waves (blue), edge waves (red), and corner modes (yellow). (a), (c) Canonical network. (b), (d) Asymmetrized network.

and/or horizontal SSH chain at the edge of the network. As
we show in Fig. 2(b), we will consider a network with an extra
chain on the upper edge and the right edge, which we call an
asymmetrized network. This amounts to adding an extra site
at the end of the corresponding horizontal and vertical SSH
chains. Such chains host a unique edge state (see Appendix A
for details) and, as a result, the network of Fig. 2(b) with
s < t has edge waves only on the left and lower edges, and
a unique corner mode at the lower-left corner. This property
of having a unique corner mode is rather convenient to single
it out from the rest of the midband and, for that reason, we will
mostly investigate this type of network. Nonetheless, our main
conclusions remain valid for both types of networks. In the
following, unless otherwise specified, we will assume s < t .

In rectangular finite networks, we can classify all eigen-
modes using separability and the knowledge of the 1D SSH
chain. Indeed, a complete set of solutions can subsequently
be obtained by looking at vectors under the form of a tensor
product:

�m,n =

⎛
⎜⎜⎜⎜⎝

φm,n
α

φm,n
β

φm,n
γ

φm,n
δ

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

ψm
A ϕn

A

ψm
A ϕn

B

ψm
B ϕn

A

ψm
B ϕn

B

⎞
⎟⎟⎟⎟⎠

.= ψm ⊗ ϕn. (4)

The vector � is a solution of the 2D SSH model (1) if both
factors ψ = ∑

m

∑
μ ψm

μ |m; μ〉 and ϕ = ∑
n

∑
μ ϕn

μ|n; μ〉 are
solutions of a 1D SSH chain: εxψ = H0x · ψ and εyϕ = H0y ·
ϕ, with

H0x =
Nx∑

m=1

s|m, B〉〈m, A| + t |m, B〉〈m + 1, A| + H.c.,

H0y =
Ny∑

n=1

s|n, B〉〈n, A| + t |n, B〉〈n + 1, A| + H.c., (5)

and

ε = εx + εy. (6)

In other words, the 2D Hamiltonian H0 can be written as
H0 = H0x ⊗ I2Ny+1 + I2Nx+1 ⊗ H0y, with IN the N × N identity
matrix.1 Therefore, every rectangular network (possibly infi-
nite in some direction) of 2D SSH can be fully characterized
by looking at the two corresponding 1D chains. In Ap-
pendix A, we recall the main properties of SSH chains.

Using separability, the topological structure of the 2D SSH
model is directly inherited from that of the SSH chain, and in

1This is for the configuration of Fig. 2(b). The same is true for
Fig. 2(a), with H = H0x ⊗ I2Ny + I2Nx ⊗ H0y, and, correspondingly,
without the last term t |Nx/y, B〉〈Nx/y + 1, A| in Eq. (5).
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particular its higher-order topological insulator character. The
product state � = ψ ⊗ ϕ belongs to one of three classes:

(i) If both ψ and ϕ are (1D) bulk waves, then � is a bulk
propagating wave with the Bloch wave vector q = qxex +
qyey.

(ii) If ψ is a bulk wave and ϕ is an edge state (εy = 0), then
� is an edge wave localized on a horizontal edge. Similarly, if
ψ is an edge state and ϕ is bulk wave, then � is an edge wave
localized on a vertical edge.

(iii) If both ψ and ϕ are edge modes (εx = 0 and εy = 0),
then � is a corner mode.

In Figs. 2(c) and 2(d), we show the full spectrum for both
configurations, i.e., canonical and asymmetrized networks,
respectively.

B. Finite networks: Level degeneracy

We now discuss the degeneracy of energy levels, and in
particular for edge waves and the zero-energy level. We fo-
cus on asymmetrized network [Fig. 2(b)], where this can be
done explicitly. The main ingredient is that a one-dimensional
asymmetrized SSH chain with N cells has energy levels given
by a simple expression,

ε j = ±
∣∣∣s + t exp

(
i

jπ

N + 1

)∣∣∣, (7)

with j = 1, . . . , N , plus a unique zero mode ε0 = 0 (see
Appendix A). Using separability, the 2D network has energy
levels of the form ε = ε jx + ε jy (bulk waves), ε = ε jx + 0 or
ε = 0 + ε jy (edge waves), and ε = 0 + 0 (corner mode), with
jx = 1, . . . , Nx and jy = 1, . . . , Ny.

Let us start by discussing edge waves. Using Eq. (7), we
see that degenerate energies for edge waves can only hap-
pen if ε jx = ε jy for some jx and jy, which corresponds to
a left edge wave having the same energy as a down edge
wave. If Nx = Ny, this is satisfied by swapping the roles of
x and y to obtain the same eigenvalue, meaning in that case
every edge eigenvalue is doubly degenerate. If Nx �= Ny, we
see that ε jx = ε jy only if ei jxπ/(Nx+1) = ei jyπ/(Ny+1) [one can
use Eq. (A2)]. Hence, we must find jx ∈ {1, 2, . . . , Nx} and
jy ∈ {1, 2, . . . , Ny} such that

jx(Ny + 1) = jy(Nx + 1). (8)

We now introduce the greatest common divisor Nd =
gcd(Nx + 1, Ny + 1) so that Nx + 1 = Nd nx and Ny + 1 =
Nd ny, with nx and ny co-prime. The above equality becomes
jxny = jynx, and hence we have the following pairs of solu-
tions ( jx, jy):

(nx, ny), (9a)

(2nx, 2ny), (9b)

...

[(Nd − 1)nx, (Nd − 1)ny], (9c)

and one cannot go further since one would have jx = Nd nx =
Nx + 1 > Nx. We then conclude that we have Nd − 1 pairs of
doubly degenerate edge modes of positive energy and Nd − 1
pairs of doubly degenerate edge modes of negative energy.

With a similar line of thought, we can obtain the degen-
eracy of the zero-energy level. There is always at least one
zero mode: the corner mode of Eq. (10), corresponding to
ε = 0 + 0. But we can also have bulk waves with zero en-
ergy ε = ε jx + ε jy , if εx = −εy. Using chiral symmetry of the
spectrum, this leads to the same condition as above. Hence,
one can directly conclude that there are 2(Nd − 1) bulk modes
of zero energy (Nd − 1 with εx > 0 and Nd − 1 with εx < 0).
Including the corner state, this leaves us with 2Nd − 1 zero-
energy modes. This result is well illustrated in Figs. 2(c)
and 2(d). For the canonical network, there is no degeneracy,
as we see in Fig. 2(c). For the asymmetrized network, Nd = 2,
and we observe three modes at zero energy: the corner mode
and two bulk waves, as shown in Fig. 2(d).

C. Finite networks: Corner modes

A key aspect of the SSH model and its 2D generalization
is that it is chiral symmetric because it consists of two sub-
lattices with hopping only between each other. One sublattice
is made of the (α, δ) sites and the other of (β, γ ) sites. This
bipartite structure leads to a chiral symmetry operator � such
that � · H0 + H0 · � = 0 (see Appendix B 6). The main conse-
quences of chiral symmetry are twofold. First, eigenvectors of
the Hamiltonian come in pairs of chiral partners with opposite
energies. Second, zero-energy modes vanish on one of the
two sublattices. Remarkably, corner modes have vanishing
amplitudes on three sites per unit cell, while chirality imposes
only two amplitudes to vanish (as we explain in Appendix B 6,
this can be seen as the result of horizontal and vertical partial
chiral symmetries). For an asymmetrized network [Fig. 2(b)],
there is a unique corner mode (noted �0), which has an ex-
plicit expression as a product state, as in Eq. (4):

�m,n
0 = A

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠(

− s

t

)m+n
, (10)

where A is a normalization constant, fixed by requiring
||�0|| = 1. Equation (10) shows that the corner mode has
support only on α sites. As we shall see when introduc-
ing disorder, this specific sublattice structure of the corner
mode is key to its robustness. Moreover, in an asymmetrized
network, Eq. (10) automatically satisfies the open boundary
conditions.2

This corner mode is shown in Fig. 3 for different values
of the hopping coefficients. When s < t , the upper and right
boundaries can be sent to infinity and Eq. (10) gives a lo-
calized (exact) solution, i.e., a bound state in the continuum.
From this result, we also conclude that on a canonical network
[Fig. 2(a)] with s < t (topological phase), Eq. (10) is an ap-
proximate solution, with three other solutions of similar form

2This can be seen by adding nearest-neighbor ghost sites around
the network, such that the boundary condition is equivalent to the
field amplitudes vanishing on these ghost sites. For an asymmetrized
network as in Fig. 2(b), these ghost sites are all β, γ , or δ and hence
the constructed corner state of Eq. (10) vanishes on them.
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FIG. 3. (a)–(c) Modulus of the components of the corner mode for an asymmetrized network [Figs. 2(b) and 2(d)] and different values of
the hopping coefficients. (a) s = 0.35 and t = 0.65. (b) s = 0.25 and t = 0.75. (c) s = 0.15 and t = 0.85.

in the three other corners. Finite-size effects lift the degener-
acy due to evanescent coupling, and the eigenmodes are then
given by linear combinations of the four corner modes with
appropriate symmetries, as studied, e.g., in [29]. However,
because the evanescent coupling is exponentially suppressed
for large networks, corner modes for different corners can be
treated independently. Therefore, we expect that all our results
obtained in asymmetrized networks will hold for canonical
networks, modulo appropriate changes of the role of intracell
indices.

III. EFFECT OF DISORDER ON CORNER MODES

The 2D SSH model has been shown in several
works [27,31] to be a higher-order topological insulator.
However, the robustness of the corner mode is particularly
nontrivial since its energy lies inside the middle band, at ε =
0. Therefore, upon introducing disorder, we could expect the
corner mode to hybridize with the bulk waves of the midband,
and lose its localization property as soon as separability is
broken [23,32]. As we shall see, this is not the case and the
corner mode stays robust under a much milder condition: it
must have support on the same sublattice as in the clean case.

Our analysis is focused on the properties of the corner
mode when disorder is added on the hopping coefficients. This
type of disorder, also referred to as off-diagonal disorder, does
not break the chiral symmetry of the network, in contrast, for
example, to on-site energy disorder. In several works [23,31–
35], it was shown that chiral symmetry is a necessary condi-
tion to have robust corner modes, which is why we focus on
chiral-preserving disorders.

We consider a finite asymmetrized network as in Fig. 2(b).
An advantage of such a network is that there is always at least
one zero-energy state even in the presence of disorder. This
can be seen by noticing that the first sublattice (α, δ) contains
one additional site with respect to the second sublattice (β, γ ),
and a general property of chiral systems is that if one sub-
lattice contains more sites than the other, there are as many
zero-energy solutions that vanish on the minority sublattice
than the difference in the number of sites [37]. Therefore,
upon introducing disorder, chirality guarantees that at least
one zero-energy state is present in asymmetrized networks.

In a clean network, one such zero-energy solution is given
by the corner mode of Eq. (10) as a product of two one-
dimensional SSH edge states. However, in square shaped net-

works (Nx = Ny), the zero-energy level is highly degenerate,
as we saw in Sec. II B. To single out the corner mode, several
strategies have been proposed, such as introducing diagonal
disorder [31] or dissipation in the bulk [32]. A simpler alterna-
tive is to break the symmetry between x and y by considering
rectangular networks. From now on, we will assume Nx =
Ny + 1, in which case we know from Sec. II B that there is al-
ways a unique zero-energy solution. To investigate the robust-
ness of the localization properties of the corner mode against
disorder, we follow the unique zero-energy mode and identify
under what conditions it is well localized in the corner.

Using the notations of Fig. 1(b), the disordered Hamilto-
nian reads

H =
∑
m,n

|m, n; α〉(s(1)
m,n〈m, n; β| + t (1)

m,n−1〈m, n − 1; β|)
+ |m, n; β〉(s(4)

m,n〈m, n; δ| + t (4)
m−1,n〈m − 1, n; δ|)

+ |m, n; δ〉(s(3)
m,n〈m, n; γ | + t (3)

m,n〈m, n + 1; γ |)
+ |m, n; γ 〉(s(2)

m,n〈m, n; α| + t (2)
m,n〈m + 1, n; α|) + H.c.

(11)

In the following, we will consider and compare three types of
disorder: general unconstrained disorder, separable disorder,
and zero-flux disorder.

To discuss this, we build a disordered Hamiltonian W ,
with coefficients s and t randomly and independently picked
between 0 and 1. We then look at interpolated Hamiltonians
between the clean Hamiltonian H0 of Eq. (1) and the fully
disordered one W . Here, we investigate a family of disordered
Hamiltonians with unconstrained disorder of the form

H (
) = (1 − 
)H0 + 
W, (12)

with 
 ∈ [0, 1]. The constructed Hamiltonian is of the form
of Eq. (11) with random hopping coefficients uniformly dis-
tributed over an interval of size 
 and of mean values 〈s〉 =
(1 − 
)s0 + 
/2 and 〈t〉 = (1 − 
)t0 + 
/2, as represented
in Fig. 4. Doing so, the hopping coefficients of H stay between
0 and 1, in order to be compatible with the acoustic realization
to be presented below. Notice, also, that the constructed dis-
order preserves chiral symmetry, that is, for any 
, we have
� · H + H · � = 0. Equation (12) gives us the Hamiltonian in
an unconstrained disorder. As detailed in Appendix B 5, the
two other disorder types are built similarly.
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FIG. 4. Probability distribution of the hopping coefficients for
increasing disorder strength 
. The shades indicate the range of the
uniform distributions and the solid lines show the mean values.

A. Unconstrained disorder

We first want to understand how the corner mode interacts
with the midband in a general disorder. Chiral symmetry
guarantees that its frequency is robust since, as we saw ear-
lier, there is a zero mode for any disorder. However, when
turning disorder on, this zero mode might lose its localization
properties by hybridizing with bulk waves. To characterize
how localized the zero mode is, we introduce the inverse
participation ratio (IPR) [38]. The IPR of a mode � is defined
as

I (�) =
∑
m,n

∑
μ=α,β,γ ,δ

∣∣φm,n
μ

∣∣4
, (13)

where the mode must be normalized, i.e.,
∑ |φm,n

μ |2 = 1. It
is easy to see that the IPR is always between 0 and 1. When

the mode is spread in the bulk, it has a low IPR, and on the
contrary, if the mode has a few nonzero components, its IPR
is higher. We will also consider a variant of the IPR, where we
add a weight to penalize sites far from the lower-left corner.
Explicitly, we define

Ic(�) =
∑
m,n

∑
μ=α,β,γ ,δ

∣∣2φm,n
μ

∣∣4

(m + n)4
, (14)

where the factor 2 is here so that the weight is unity for the
most lower-left corner (m, n) = (1, 1). This weighted IPR will
allow us to discriminate whether the mode is localized near
the corner or in bulk (due to disorder), in which case Ic starts
to be lower than I .

We now analyze the change of IPR of the zero mode in dis-
ordered networks when continuously increasing the strength
of disorder. The results are shown in Fig. 5. Because we
consider a reasonably small network, the energy spacing near
ε = 0 is still appreciable and, hence, the zero mode interacts
essentially with the first pair of modes with nonzero energy.
When increasing the disorder strength 
, the eigenvalues
move and repulse each other. This is the usual avoided-
crossing phenomenon; see Fig. 5(a). This applies in particular
to the zero mode [red in Fig. 5(a)] and the pair of modes with
the smallest nonzero energies [we call the one with positive
ε “next mode” and show it in yellow in Fig. 5(a)]. What is
remarkable is that this avoided crossing in accompanied by
a sudden drop of the IPR, as shown in Fig. 5(b). Far from
the avoided crossing, the zero mode is localized in the corner
and the next mode is a bulk wave, as in Figs. 5(c) and 5(d).
Near the crossing, the two modes are swapped: the zero mode
spreads in the bulk, while the next mode is localized in the

FIG. 5. Finite network with Nx = 8, Ny = 7, s0 = 0.15, and t0 = 0.85. (a) Spectrum of H (
) with a given disorder realization of W and
varying the disorder level 
. (b) IPR of the zero mode (red line) and the next mode (yellow line), which refers to the mode with the lowest
positive nonzero energy. (c)–(f) Modulus of the components of (c), (e) the zero mode and (d), (f) the next mode, for two values of disorder:
(c), (d) 
 = 0.1 and (e), (f) 
 = 0.145. The two values are shown by an arrow in (b).
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corner, as in Figs. 5(e) and 5(f). By interacting with midband
modes, the corner mode acquired a nonzero energy, despite
the fact that the disorder preserves chiral symmetry. In fact,
by having a nonzero energy, chiral invariance implies that
there is now a pair of corner modes with opposite energy
(chiral partners), but with nonzero components on the full
lattice, and not only the (α, δ) sublattice. This explains why
the corresponding IPR is not as high as that of the zero mode
far from the crossing. When the size of the system is larger, the
zero mode interacts with more bulk waves, and hence loses its
localization properties more rapidly with increasing disorder.

B. Separable disorder

In general, disorder breaks the separability of the
Hamiltonian, and eigenvectors can no longer be found as
product states as in Eq. (4). However, there is a particular
disorder structure that maintains the decomposition and hence
allows for a simple construction of solutions from that of 1D
chains. To see this, we reverse the logic and consider two
disordered 1D chains:

Hx =
Nx∑

m=1

sx
m|m, B〉〈m, A| + t x

m|m, B〉〈m + 1, A| + H.c. (15)

and

Hy =
Ny∑

n=1

sy
n|n, B〉〈n, A| + t y

n |n, B〉〈n + 1, A| + H.c. (16)

Now, the tensor product Hx ⊗ I2Ny+1 + I2Nx+1 ⊗ Hy gives the
2D Hamiltonian of Eq. (11) if the hopping coefficients are of
the form

s(1)
m,n = sy

n and t (1)
m,n = t y

n , (17a)

s(2)
m,n = sx

m and t (2)
m,n = t x

m, (17b)

s(3)
m,n = sy

n and t (3)
m,n = t y

n , (17c)

s(4)
m,n = sx

m and t (4)
m,n = t x

m, (17d)

which we refer to as “separable disorder.” The above form
can be stated in simple geometric terms: hopping coefficients
corresponding to horizontal (vertical) links must only depend
on the horizontal coordinate m (vertical coordinate n).

In this type of disorder, the zero mode is still given by a
product state similar to Eq. (10),

�m,n
0 = A

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ m∏

j=1

(
− sx

j

t x
j

) n∏
j′=1

(
− sy

j′

t y
j′

)
, (18)

where A is a normalization constant. Therefore, its localiza-
tion properties are directly inherited from that of edge states
in the corresponding horizontal and vertical SSH chains. Lo-
calization at zero energy in chiral one-dimensional lattices is
relatively well studied [37,39,40], and many aspects can be
understood from the fact that ln |ψm| is a biased random walk.
For our purpose, we underline the two main consequences
for the corner mode of Eq. (18) written as a product state.
First, as in the clean case, it vanishes on all β, γ , and δ sites.
Second, the field amplitude decreases for increasing m (n)

if 〈ln |sx
j/t x

j |〉 < 0 (〈ln |sy
j/t y

j |〉 < 0) as in the one-dimensional
case [40]. Note that the average is taken over the different
cells, not the disorder realization, but the two become equiva-
lent in the limit of large networks.

C. Zero-flux disorder

The strong robustness of the corner mode against disor-
der extends far beyond separability and find its origin in its
peculiar sublattice structure, namely, having support only on
α sites. To see this, we look for a solution that vanishes on
all (β, γ , δ) sites. Projecting H of Eq. (11) with 〈m, n; α|,
we see that we must have ε = 0, and hence we are left with
only two nontrivial equations (see Appendix (B2) for more
details):

0 = s(1)
m,nφ

m,n
α + t (1)

m,nφ
m,n+1
α , (19a)

0 = s(2)
m,nφ

m,n
α + t (2)

m,nφ
m+1,n
α . (19b)

To ease the discussion, we refer to the α site of the cell
(m, n) as αm,n [see Fig. 6(b)]. Equation (19a) gives us the
field amplitude on αm,n+1 if we know the amplitude on αm,n.
Similarly, Eq. (19b) allows us to go from αm,n → αm+1,n.
Using the two equations, we can now relate the amplitude on
αm+1,n+1 to the one on αm,n in two different ways: either going
from αm,n → αm+1,n → αm+1,n+1 or from αm,n → αm,n+1 →
αm+1,n+1. Having a nontrivial solution of Eqs. (19) requires
the two obtained relations to be compatible, which is true if
the hopping coefficients satisfy

Fm,n = ln

(
s(1)

m,n

t (1)
m,n

s(2)
m,n+1

t (2)
m,n+1

t (1)
m+1,n

s(1)
m+1,n

t (2)
m,n

s(2)
m,n

)
= 0. (20)

Fm,n represents the flux around a superplaquette made of
neighboring α sites, as illustrated in Fig. 6(a). As we showed,
to have a a corner mode with the same sublattice structure
as in the clean case (10), it is necessary that all the fluxes
Fm,n be trivial. It turns out that this condition of zero fluxes
is also sufficient to have a solution with support on α sites
only. Indeed, assuming Eq. (20) holds, we build the product
state

�m,n
0 = A

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ ∏

C(α0,0→αm,n )

(
− s(ν)

m′,n′

t (ν)
m′,n′

)
. (21)

In this equation, C(α0,0 → αm,n) is a path in the network going
from α0,0 to αm,n through neighboring α sites, as shown in
Fig. 6(b). Each step from a site αm′,n′ to a neighbor αm′+1,n′

or αm′,n′+1 is associated with the corresponding ratio of hop-
ping coefficients, s(ν)

m′,n′/t (ν)
m′,n′ , with ν = 1, 2, that enters in the

product of Eq. (21). Now, the zero-flux condition of Eq. (20)
tells us that the result is independent of the chosen path. This
construction is illustrated in Fig. 6. It is then straightforward
to see that it provides a zero-energy solution of the 2D SSH
equations (11), reducing to Eqs. (19), by choosing an appro-
priate path: ending by αm,n → αm,n+1 for Eq. (19a) and by
αm,n → αm+1,n for Eq. (19b).

Just like in the clean case, Eq. (21) always satisfies the
boundary conditions in an asymmetrized network (while it
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α0,0

αm,n

(b)

t(1)
m,n

s(1)
m,n

(a)

α

α′ α′′

α′′′

α

α′ α′′

α′′′
Fm,n

s
(1)
m,n

t
(1)
m,n

FIG. 6. (a) Construction of superplaquettes and the associated flux. A superplaquette is obtained by taking four neighboring α sites and
deleting links connecting (β, γ , δ) with each other. The α sites (where the field amplitude is nonzero) are marked by black squares and
β, γ , and δ (field amplitude is zero) are marked by circles. (b) Representation of two paths (blue and yellow lines) from α0,0 to αm,n through
neighboring α sites (marked by black squares). (a), (b) Note that the hopping coefficients are disordered, and the red and black lines indicate
the one labeled by s or t .

only gives an approximate solution for a canonical net-
work in the topological phase; see footnote 2). However,
the localization of the mode of Eq. (21) depends on
the average behavior of ln |s/t |. If 〈ln |s/t |〉 is negative,
the amplitude of Eq. (21) decreases on average for in-
creasing (m, n), and hence the mode is localized on the
lower-left corner. On the contrary, if 〈ln |s/t |〉 is positive,
Eq. (21) is localized on the upper-right corner. However,
for 〈ln |s/t |〉 < 0 but large disorder strengths, the lower-left
values of ln |s/t | might be positive in some realizations. In
that case, the amplitude of Eq. (21) first increases before
decreasing, and the zero mode leaks further away from the
corner. In the extreme case of 〈ln |s/t |〉 = 0 with disorder,
the zero mode of Eq. (21) is anomalously localized, de-
creasing like O(e−λ

√
m−λ′√n) [37], but not specifically in the

corner.In Appendix B 3, we explain how this anomalous lo-
calization can be understood from random walks, as in the
one-dimensional case.

The corner-mode construction developed above turns out
to be rather general. For instance, the same zero-flux condi-
tion in a similarly constructed superplaquette has been found
in [41] as a condition to preserve a corner mode in the pres-
ence of disorder. Furthermore, our construction also applies to
other lattice configurations, such as kagome lattices that dis-
play corner modes [17,18] (this is outlined in Appendix B 4).

D. Comparing the three types of disorder

We now compare three types of disorder: separable, with
vanishing fluxes Fm,n [Eq. (20)], and unconstrained (but still

chiral). In Figs. 7(a)–7(c), we show the IPR of the zero mode
(in red) and compare it to the IPR of all other modes (in
blue). For all disorder types, the IPR of all modes but the
zero mode tends to increase with disorder strength 
, due
to wave localization. Moreover, in an unconstrained disorder,
we see that the zero-mode IPR quickly drops until it becomes
comparable to all other modes, meaning that it is no longer
localized as a corner mode but rather due to wave local-
ization [37,39,42]. On the contrary, for separable disorders
and disorders obeying the constraint of Eq. (20), the zero
mode stays well localized until high values of the disorder
strength. This is a manifestation of the robustness of the
corner mode against this type of disorder. At higher disorder
strengths, the mode is still localized, but around a point that
can move away from the corner, as explained in Sec. III C.
This is confirmed by the decrease of Ic compared to I in
Figs. 7(a)–7(c). In Figs. 7(d)–7(f), we show the evolution of
eigenvalues near zero with the disorder strength 
. When the
disorder is separable, eigenvalues cross without interacting.
This is because the corresponding modes do not interact due
to the conservation of the transverse wave number. When the
disorder is not separable but satisfies Eq. (20), eigenvalues
repulse each other as in a general disorder, but crossing can
occur at ε = 0. This suggests that bulk waves see a general
disorder, but no longer interact with the corner mode. We
also point out that the results shown in Fig. 7 are obtained
for a single disorder realization per disorder type, and no
average has been performed. Although the exact curves vary
for different realizations, the distinct behaviors between the
three types of disorder remain.
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FIG. 7. Spectrum and IPR for different types of disorder in finite networks with Nx = 8, Ny = 7, s0 = 0.15, and t0 = 0.85. (a)–(c) IPR
of the zero mode (I in red and Ic in black) and all the other modes (blue). (d)–(f) Eigenvalues near 0 as a function of the disorder strength.
(g)–(i) Example of networks for all types of disorder, with the color scale showing the hopping coefficient values. We took 
 = 0.3. (a), (d),
(g) Separable disorder. (b), (e), (h) Zero-flux disorder defined by Eq. (20). (c), (f), (i) Unconstrained disorder.

To further emphasize the robustness in zero-flux disorders,
we show the zero mode in Figs. 8(a)–8(c), with the corre-
sponding disordered network shown in Figs. 8(d)–8(f). We
see that it is well localized in the corner even at high disorder
intensities, although the site of maximum amplitude is away
from the corner at very high disorder strengths [see Fig. 8(c)].

E. Topological defect modes

Interestingly, all the results obtained above also apply to
defectlike localized modes at the crossing between four net-
works with different topology. To see this, we can start again
from the general zero-energy solution of Eq. (21) to build
a defectlike localized solution in the middle of the network
by choosing the appropriate average behavior of the hopping
coefficients. To do so, we divide the network into four quad-
rants, and arrange 〈ln |s/t |〉 for vertical and horizontal links
to change sign in each quadrant such that the amplitude of
Eq. (21) decreases on average when moving away from the
center, i.e., when |m| and |n| increase. The general construc-
tion is illustrated in Fig. 9(a) and an explicit example of such

a network is shown in Fig. 9(c), which possesses the defect
mode at ε = 0 shown in Fig. 9(b).

IV. ACOUSTIC REALIZATION

In this section, we propose an acoustic realization of the
2D SSH model with disorder. For this, we consider a network
of narrow air channels of equal length L but varying cross
sections [see Figs. 10(c)–10(f)]. The typical transverse length
�⊥ of the channels is assumed much smaller that its length
L (�⊥ � L) so that inside each channel the propagation is
monomodal [43–45]. In [36], it was shown that by using cross
sections alternating between two values w and w′, the system
is described by an effective Hamiltonian that coincides with
the 2D SSH model with hopping coefficients,

s = w

w + w′ and t = w′

w + w′ . (22)

Here, we show how this can be extended to a disordered 2D
SSH model by using varying cross sections for the channels.
To see this, let us consider a node on the network, labeled
a = (m, n, μ) with μ ∈ {α, β, γ , δ}. The acoustic flux must
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FIG. 8. (a)–(c) Modulus of the components of the zero mode for a disordered network with zero fluxes, with Nx = 8, Ny = 7, s0 = 0.15, and
t0 = 0.85. (d)–(f) Representation of the corresponding networks with the color scale showing the hopping coefficient values. (a), (d) 
 = 0.3.
(b), (e) 
 = 0.6. (c), (f) 
 = 0.9.

be conserved at that node, implying

∑
〈b,a〉

wabub = 0, (23)

where ub is the acoustic velocity arriving at node a from
the channel connecting to a neighboring node b and wab the
section of that channel. Hence, the notation 〈b, a〉 means that
the sum runs over all b which are nearest neighbors to a.
Moreover, pressure is continuous at node a and may be related
to a neighboring node b by integrating the (1D) Helmholtz
equation inside the channel. This leads to

cos(kL)pa + i sin(kL)ub = pb, (24)

where pa and pb denote the acoustic pressure at nodes a and
b, and k is the wave number. Summing over nearest neighbors

b and applying the debit continuity given by Eq. (23) gives

εpa

∑
〈c,a〉

wac = 2
∑
〈b,a〉

wab pb, (25)

where ε = 2 cos(kL) and the factor 2 is here to recover the
same model as in the preceding sections. In order to recast
Eq. (25) as a Hermitian eigenvalue problem for ε, and apply
the results of the preceding sections, we define the field � as
rescaled pressure values,

φa = pa

√∑
〈c,a〉

wac. (26)

FIG. 9. (a) Schematic construction of a defectlike mode in a network with zero fluxes [Eq. (20)]. The hopping coefficients can be
disordered, and the red and black indicate the one labeled by s or t . Gray areas show the interfaces between the four quadrants. The defect
mode is localized at the crossing (site α0,0) if 〈ln |s/t |〉 < 0. (b) Modulus of the components of a localized mode with ε = 0 in a network as in
(a) with zero-flux disorder, Nx = 8, Ny = 7, s0 = 0.15, and t0 = 0.85. (c) Network displaying the defect mode of (b). Quadrants are delimited
by the gray shading.
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FIG. 10. (a), (b) Representation of 2D SSH asymmetrized networks with the color scale showing the hopping coefficients values. (a) Clean
network. (b) Disordered network. (c)–(f) Corner mode in the two-dimensional acoustic realizations of the networks of (a) and (b). We used
Nx = 4, Ny = 3, and cross sections are such that s0 = 0.15 and t0 = 0.85. (c), (d) w/L = 0.015 and w′/L = 0.085. (e), (f) w/L = 0.075 and
w′/L = 0.425. (c) The corner mode has ε0 = −0.054 and Pα = 0.99. (d) The corner mode has ε0 = −0.068 and Pα = 0.99. (e) The corner
mode has ε0 = −0.274 and Pα = 0.96. (f) The corner mode has ε0 = −0.337 and Pα = 0.99.

Equation (25) then rewrites as ε� = H · �, with the matrix
elements of the (Hermitian) Hamiltonian

Hab = 2wab√∑
〈c,a〉 wac

∑
〈c′,b〉 wbc′

, (27)

for a and b nearest neighbors (and 0 otherwise). For a finite
network, the open boundary conditions of the 2D SSH model
are obtain by adding extra channels with open ends. At the

open ends, the acoustic pressure is at equilibrium with the
exterior, and hence must vanish.3 This means that the open
ends act as ghost sites where the field amplitudes vanish,
reproducing the open boundary conditions (see footnote 2).
Hence, we have shown that the acoustic network in the limit

3We neglect radiative losses at the open ends, which vanish in the
limit of small cross sections.
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�⊥ � L is exactly described by the 2D SSH Hamiltonian of
Eq. (11). This guarantees that acoustic networks in that limit
possess the same properties such as edge waves, chiral sym-
metry, and corner modes and their robustness against disorder
as previously studied.

We computed the spectrum of the Helmholtz
equation in a two-dimensional asymmetrized acoustic
network using a finite-element method (solving the
2D Helmholtz equation, 
p + k2 p = 0, with rigid-wall
Neumann boundary conditions). For commodity, we work
in units where the length of each channel is unity (L = 1).
In Figs. 10(c)–10(f), we show the obtained corner mode. We
start with a clean network with thin channels with transverse
lengths w/L = 0.015 and w′/L = 0.085 in Fig. 10(c) and
the corresponding disordered network with zero fluxes in
Fig. 10(d) (disorder construction is detailed in Appendix B 5).
As predicted by the discrete model of the previous section,
the corner mode is well localized and robust to this type of
disorder. We notice that two-dimensional effects introduce
a small breaking of the chiral symmetry, which manifests
itself as a nonzero effective energy of the corner mode, with
ε0 = −0.054 for the clean case [Fig. 10(c)] and ε0 = −0.068
for the disordered case [Fig. 10(d)]. We also verify that
the mode has support mostly on α sites. This is quantified
using the sublattice polarization Pα = ∑

m,n |pm,n
α |2 (with

normalization
∑

μ,m,n |pm,n
μ |2 = 1), which is above 0.99 for

both clean and disordered networks. We also compute the
corner mode for a network with transverse length that is
five times larger. We show the results both in the clean case
[Fig. 10(e)] and the disordered case [Fig. 10(f)]. Although
two-dimensional effects are more significant, with an effective
energy ε0 = −0.274 for the clean case [Fig. 10(e)] and
ε0 = −0.337 for the disordered case [Fig. 10(f)], the corner
mode stays well localized on the α sites, with Pα > 0.95.
Lastly, to make closer contact with the previous sections,
we show the corresponding discrete networks in Figs. 10(a)
and 10(b).

V. CONCLUSION

In this work, we study a two-dimensional extension of the
SSH model. This model has been shown to be a higher-order
topological insulator [27–30], hosting localized modes at cor-
ners in its topological phase. In this model, the corner modes
have the peculiar property of coexisting with bulk waves as
bound states embedded in the continuum (BIC). We study the
robustness of these corner modes to the introduction of disor-
der that preserves the chiral symmetry of the model. We show
that while localization is rapidly lost in a general disorder,
the corner modes are preserved up to high disorder strengths
if the disorder satisfies the constraint of having zero fluxes
through appropriately defined superplaquettes (see Fig. 6). We
also show that this condition can be seen at the level of the
mode itself. We show that it is equivalent to the corner having
support on a single site per unit cell, as in the clean case, while
the chiral symmetry would only guarantee support of two sites
per cell [see Eq. (21)].

This robustness goes against the intuition about BICs,
where they are expected to lose their localization properties by
hybridizing with bulk waves as soon as separability is broken.

This was already noticed in periodic networks where separa-
bility was broken by extra couplings between next-to-nearest
neighbor sites [23,32]. In these works, it was, however, shown
that robustness requires the presence of a crystalline symme-
try (C4v) on top of the chiral symmetry. Our results strengthen
this conclusion and extend it to disordered networks, where
the crystalline symmetry requirement is replaced by the con-
dition of vanishing fluxes on superplaquettes. It should also
be noticed that this condition of vanishing fluxes is rather
mild, as can be seen, for instance, by counting the number
of independent parameters compared to a general disorder.

In the last section, we show how this model can be realized
in an acoustic network made of air channels arranged in a
square lattice. By varying the cross sections of each channel,
the disordered model is realized, with or without the zero-
flux constraint. In the latter case, we confirm the presence of
well-localized corner modes by finite-element simulations of
the full network (see Fig. 10). These results open the door to
further refined manipulations of sound waves using higher-
order topological insulators by having localized modes even
in the absence of a full band gap.
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APPENDIX A: FEW RESULTS FOR THE 1D SSH CHAIN

In this Appendix, we recall a few basic properties of the
SSH model (see, e.g., [46] for more details). The model is
illustrated in Fig. 11 and we assume the same constraint on
the hopping coefficient as in the 2D case: s > 0, t > 0, and

A BA B A B A B

s1 t1 s2 sN−1 tN−1 sN

A

tN
(b)

A BA B A B A B

s1 t1 s2 sN−1 tN−1 sN
(a)

-1 0 1
-1

0

1

-1 0 1
-1

0

1

FIG. 11. (a), (b) Representation of a finite one-dimensional SSH
chain. We also show the labels used for the disordered chain and
used in Eq. (17). (c), (d) Energy eigenvalues of a 1D chain (N = 20)
as a function of t − s. (a), (c) Canonical chain. (b), (d) Asymmetrized
chain.
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s + t = 1. We first consider an infinite network, where the
eigenmodes can be given in terms of Bloch waves �m =
eimq� [with � = (φA, φB)T ] obeying ε� = h(q) · �, with the
Bloch Hamiltonian

h(q) =
(

0 s + te−iq

s + teiq 0

)
. (A1)

The eigenvalues of h(q) gives us the dispersion relation

ε2 = |s + teiq|2 = s2 + t2 + 2st cos(q), (A2)

where we see the two bands of the model: ε ∈ [|t − s|, 1] and
ε ∈ [−1,−|t − s|]. In one dimension, it is also rather easy to
obtain the density of states as ρ1D(ε) = 1/(2π∂qε), and hence

ρ1D(ε) = |ε|
π

√
(1 − ε2)(ε2 − 
2)

, (A3)

for (t − s)2 < ε2 < 1 and zero elsewhere. In Appendix B 1,
we show how to extend this result to the 2D case.

Now, as discussed at the beginning of Sec. II A in 2D, there
are two ways to obtain a finite SSH chain: either taking an
integer number N of unit cells, as in Fig. 11(a), or adding
an extra site at the end, as in Fig. 11(b). We first look for
bulk wave solutions. They can be conveniently written as a
superposition of the left- and right-moving Bloch waves, that
is,

�m = λ1eimq

(
ε

s + teiq

)
+ λ2e−imq

(
ε

s + te−iq

)
, (A4)

where ε and q are related by the dispersion relation (A2).
Since changing q into −q leads to the same global solution,
we can restrict ourselves to q > 0. Using the fact that the chain
is finite gives us two boundary conditions (which amount to
adding an extra site on the left/right where the amplitude is
zero). The one on the left gives λ1 + λ2 = 0, and the one on
the right gives the quantization conditions

sin (Nq) + s

t
sin [(N + 1)q] = 0 (A5)

for a canonical chain [Fig. 11(a)], and

sin [(N + 1)q] = 0 (A6)

for an asymmetrized chain [Fig. 11(b)]. Interestingly, for the
latter, the quantization condition, given by Eq. (A6), has a
simple set of solutions:

qj = jπ

N + 1
, (A7)

with j = 1, . . . , N , and the corresponding energy eigenvalues
ε = ±|s + teiq j |, while for a canonical chain, Eq. (A5) has
no closed-form solution.4 Similarly, edge states are easier to

4We believe that this corrects a typographical error in [26], where
the condition of Eq. (A7) was incorrectly used for a 2D SSH ribbon
with the corresponding transverse chain having a canonical structure
[as in Fig. 11(a)]. Separability together with Eqs. (A5) and (A6) show
that this is the case only if one adds an extra chain on one side,
similarly to Fig. 2(b).

-2 -1 0 1 2
0

1

2

FIG. 12. Density of states ρ computed numerically (blue) and
analytically from Eq. (B1) (black) for 
 = 0.7, Nx = Ny = 50. We
notice the small nonzero density inside each gap: these are the edge
waves, not included in the expression (B1).

obtain for an asymmetrized chain [Fig. 11(b)]. Indeed, looking
at a zero-energy solution, we see that

�m = λ0

(
1
0

)
(−s/t )m, (A8)

with λ0 a normalization constant, satisfies both boundary con-
ditions: it vanishes on all B sites, and hence on the ghost
ones at both ends of the chain. If s < t , it is localized on
the left edge, and if s > t , it is localized on the right edge.
Moreover, when s < t , we see that this is also the solution of
the semi-infinite chain obtained by sending the right boundary
to infinity. When adding disorder [see Fig. 11(b)], this expres-
sion becomes

�m = λ0

(
1
0

) m∏
j=1

(−s j/t j ). (A9)

For a clean canonical chain, Eq. (A8) only gives an approx-
imate solution of an edge mode for s < t , with a second one
on the other side and vanishing on A sites. Eigenmodes are
obtained as symmetric and antisymmetric combinations of
the two edge modes, and have nonzero exponentially small
energies ±ε0 due to evanescent coupling [46].

APPENDIX B: FEW RESULTS FOR 2D SSH NETWORKS

1. Eigenstate density

In this section, we show that the separability of the 2D
SSH model allows us to explicitly derive various useful quan-
tities. For instance, in an infinite network, the density of
states ρ(ε) can be obtained from its one-dimensional coun-
terpart of Eq. (A3). For this, we write the density of states
as ρ(ε) = ∑ ∫

δ[ε − ε(q)]dqxdqy/(4π2). Using the fact that
ε(q) = εx(qx ) + εy(qy) and the change of variables from qx/y

to εx/y, which involves the 1D state density of Eq. (A3), we
obtain

ρ(ε) =
∫ 1

−1
ρ1D

(ε

2
+ ξ

)
ρ1D

(ε

2
− ξ

)
dξ . (B1)

In Fig. 12, we compare this expression with a direct numerical
computation of the density of states. We see that the density of
states becomes very large near the middle of each band, which
correspond to logarithmic singularities. To understand this,
the first step is to notice that ρ1D has a square-root singularity
near each band edge, which is integrable. Hence, the integrant
in Eq. (B1) is singular if both ε/2 + ξ and ε/2 − ξ are at
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a singular point of ρ1D. Moreover, because the singularities
of ρ1D are one sided, these two points must correspond to
different sides. This happens for (ε/2 + ξ, ε/2 − ξ ) equal
to (−1,−
), (−
,
), (
, 1), or (−1, 1), which leads to
(ε, |ξ |) being [−(1 + 
), (1 − 
)/2], (0,
), [1 + 
, (1 −

)/2], or (0, 1), so indeed when ε is at the center of a band.
Because the singularity of the integrant is O(1/ξ ), we can
anticipate a logarithmic divergence of the density of states.
Let us show this, for instance, near ε = 0. Using the parity
of ρ and denoting the vicinity of a point by V , we write the
integral representation (B1) as

ρ(ε) ∼ 2
∫
V (
)∪V (1)

ρ1D

(ε

2
+ ξ

)
ρ1D

(ε

2
− ξ

)
dξ,

∼ |
|
π2(1 − 
2)

∫
V (0)

dζ√
ζ 2 − ε2/4

+ 1

π2(1 − 
2)

∫
V (0)

dζ√
ζ 2 − ε2/4

, (B2)

and hence,

ρ(ε) ∼ − 1 + |
|
π2(1 − 
2)

ln
∣∣∣ε
2

∣∣∣. (B3)

2. Corner-mode equation

In the core of this work, we derived an explicit corner-mode
solution by assuming that the corner mode has support only
on the α sites. This leads to Eq. (19). Here, we give extra
details on how this equation is obtained. We start by writ-
ing the eigenvalue equation ε� = H · � with the disordered
Hamiltonian of Eq. (11) in components:

εφm,n
α = s(1)

m,nφ
m,n
β + s(2)

m,nφ
m,n
γ

+ t (1)
m,n−1φ

m,n−1
β + t (2)

m−1,nφ
m−1,n
γ , (B4a)

εφm,n
β = s(1)

m,nφ
m,n
α + s(4)

m,nφ
m,n
δ

+ t (1)
m,nφ

m,n+1
α + t (4)

m−1,nφ
m−1,n
δ , (B4b)

εφm,n
γ = s(2)

m,nφ
m,n
α + s(3)

m,nφ
m,n
δ

+ t (2)
m,nφ

m+1,n
α + t (3)

m,n−1φ
m,n−1
δ , (B4c)

εφm,n
δ = s(3)

m,nφ
m,n
γ + s(4)

m,nφ
m,n
β

+ t (3)
m,nφ

m,n+1
γ + t (4)

m,nφ
m+1,n
β . (B4d)

We now assume that the corner mode has support only on
the α sites, i.e., φm,n

β = φm,n
γ = φm,n

δ = 0. The previous set of
equation becomes

εφm,n
α = 0, (B5a)

0 = s(1)
m,nφ

m,n
α + t (1)

m,nφ
m,n+1
α , (B5b)

0 = s(2)
m,nφ

m,n
α + t (2)

m,nφ
m+1,n
α , (B5c)

0 = 0. (B5d)

This implies that the corner mode must have zero energy
and satisfy Eq. (19).

3. Connection between the corner mode and biased random
walks

In the one-dimensional SSH model with disordered hop-
ping coefficients, it is known that the chiral symmetric point
(ε = 0) is governed by a random walk dynamics. This leads to
the identification of several exotic properties, such as anoma-
lous localization [37] or density-of-state singularities [39,47].
In disordered 2D SSH networks with zero flux [Eq. (20)], the
product state structure of the zero mode found in Eq. (21)
suggests that its properties can also be derived from random
walk dynamics. More precisely, the governing equation of the
zero mode in disorders with zero flux, namely, Eq. (19), can
be recast as two independent random walks. To see this, let us
solve Eq. (19) with separation of the variable, writing φm,n

α =
φm

x × φn
y . We then consider the logarithm of the amplitude to

obtain the two equations,

ln
∣∣φn+1

y

∣∣ = ln
∣∣φn

y

∣∣ + ln

∣∣∣∣ s(2)
m,n

t (2)
m,n

∣∣∣∣, (B6a)

ln
∣∣φm+1

x

∣∣ = ln
∣∣φm

x

∣∣ + ln

∣∣∣∣ s(4)
m,n

t (4)
m,n

∣∣∣∣. (B6b)

Technically, Eq. (B6a) [Eq. (B6b)] depends on the value of
m [n] along which one integrates. However, the condition of
zero flux of Eq. (20) ensures that the result is consistent since
the sum ln |φm

x | + ln |φn
y | is independent of these choices.

This connection to random walks allows us to easily ob-
tain the zero-mode behavior, as discussed in Sec. III C, after
Eq. (21): if ln |s/t | has a nonzero value, the random walks drift
in a preferred direction (ballistic regime), meaning that the
field amplitude grows or decays exponentially; if 〈ln |s/t |〉 =
0, then there is no preferred direction, but the random walks
diverge as ∝ √

n (diffusive regime), leading to an anomalous
localization of the field, ∝ e−λ

√
m−λ′√n. As a last remark, we

point out that these properties inherited from random walks
are valid under the constraint of zero fluxes of Eq. (20).
Unconstrained but chiral disorders have dramatically different
properties; see, e.g., [42,48] for the studies in the regime
〈ln |s/t |〉 = 0.

4. Corner modes in disordered kagome lattices

Here we explain how the general construction of the corner
mode (21) with the robustness condition, i.e., vanishing fluxes
as in (20), can be applied to other situations. We already
mentioned the relation to corner modes in Lieb lattices [41].
Corner modes have also drawn significant interest in kagome
lattices [17,18]. Although kagome lattices are not chiral, cor-
ner modes have a nontrivial sublattice structure, with two
sites with vanishing amplitudes out of the three per unit cell.
By removing the links that are irrelevant to the corner mode
because they connect sites with zero amplitude, we see that
the same structure as in the 2D SSH model appears, hence
the same construction of the corner mode and its robustness
condition [zero fluxes (20)]. This is illustrated in Fig. 13 to
compare with Fig. 6(a).

We also notice that a similar general construction was
obtained in periodic networks [where the fluxes of Eq. (20)
are always trivial] in [49].
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s

t
Fm,n

s/t

FIG. 13. Superplaquettes and corresponding flux in a kagome
lattice, to compare with Fig. 6(a). On the left, open circles mark the
sites of the lattice where the corner mode (located on the lower-left
side) has zero amplitude. We also point out that the hopping coeffi-
cients for each link are a priori different (although we emphasize the
s and t types with red and black).

5. Constructing different types of disorder

In this Appendix, we explain how to obtain the different
types of disorder, by modifying Eq. (12).

Separable disorders. To obtain a separable disorder, we
pick random hopping coefficients between 0 and 1 for two 1D
chains, and obtain a disordered matrix Wsep using Eq. (17). We
then build the Hamiltonian H (
) by interpolation between the
clean network and that disorder, as in Eq. (12).

Zero-flux disorders. To obtain the disorder with zero fluxes,
we start from a general disorder [Eq. (12)] and compute the
flux Fm,n: if it is larger than unity, we rescale s(2)

m,n+1; if it

is smaller than unity, we rescale s(1)
m+1,n. Doing so, the cor-

responding hopping coefficients are lowered and hence stay
between 0 and 1. We also rescale s rather than t because
lowering the former changes the statistical spread less.5 This
procedure leads to a continuous family of Hamiltonians H (
)
with a comparable disorder strength as the others for a given
value of 
.

Acoustic disorders with zero fluxes. In the acoustic realiza-
tion of Sec. IV, it is trickier to infer the disorder structure from
that of the cross-section values. For instance, having the cross
sections depending only on one coordinate (horizontal or ver-
tical) is not enough to obtain the separable disorder described
in Eq. (17) because of the denominator of (27) involving
neighboring cross sections. We can, however, obtain disorders
with zero fluxes, as in (20). To do so, we start by randomly
taking the cross-section values around a staggered mean and
of spread 
, as in Eq. (12). We then compute the fluxes Fm,n,
and rescale the appropriate cross-section values to obtain a
vanishing flux. By doing so with one superplaquette after
another, however, we also affect previously trivialized fluxes
[again due to the denominator of (27)]. Hence, we proceed
iteratively: scanning through each superplaquette to trivialize
the corresponding flux, and then restarting the procedure until
all fluxes are zero. In practice, after a few tries (about 10), the
procedure stops and all fluxes are zero to numerical precision.

5Notice, also, that these rescalings are consistent by scanning the
superplaquettes in ascending order so that preceding fluxes are unaf-
fected when changing a given hopping coefficient.

6. Chiral and partial chiral symmetries

Just like its one-dimensional counterpart, the 2D SSH
model is chiral symmetric. This means that there is a unitary
operator � that acts inside each cell (i.e., commutes with
translations) such that �2 = 1 and

� · H · � = −H. (B7)

In the 2D SSH model, we see that this is satisfied by defining

� ·

⎛
⎜⎜⎝

φm,n
α

φm,n
β

φm,n
γ

φm,n
δ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−φm,n
α

φm,n
β

φm,n
γ

−φm,n
δ

⎞
⎟⎟⎠. (B8)

Hence, � leaves the β and γ sites (first sublattice) invariant
and flips the sign on the α and δ sites (second sublattice). As a
consequence, the spectrum is symmetric about 0: eigenvectors
come in pairs (�,� · �) associated with eigenvalues (ε,−ε).
Moreover, because it has a vanishing energy, a corner mode
�0 is chiral invariant, i.e., � · �0 = ±�0.

In other words, �0 is guaranteed to vanish on one of the
two sublattices. In the absence of disorder, the separability
of the Hamiltonian into a product of 1D SSH chains leads
to additional hidden chiral properties. Indeed, when writing
the Hamiltonian as H0 = H0x ⊗ I2Ny+1 + I2Nx+1 ⊗ H0y, each
component H0x and H0y possesses its own chiral symmetry.
Therefore, we define what we call “partial chiral operators”
as the chiral operators associated with the corresponding 1D
horizontal and vertical chains,

�x ·

⎛
⎜⎜⎝

φm,n
α

φm,n
β

φm,n
γ

φm,n
δ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

φm,n
α

−φm,n
β

φm,n
γ

−φm,n
δ

⎞
⎟⎟⎠ (B9)

and

�y ·

⎛
⎜⎜⎝

φm,n
α

φm,n
β

φm,n
γ

φm,n
δ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−φm,n
α

−φm,n
β

φm,n
γ

φm,n
δ

⎞
⎟⎟⎠. (B10)

We see that � = �x · �y, which is why they are referred to
as partial. H0 is invariant under neither of these partial chiral
operators. However, H0x (H0y) is chiral under �x (�y), while it
commutes with �y (�x). As a consequence, each bulk eigen-
vector of H , written as a product � = ψ ⊗ ϕ, is associated
with three other bulk eigenvectors: �x · ψ ⊗ ϕ, ψ ⊗ �y · ϕ,
and � · � = �x · ψ ⊗ �y · ϕ.6 Similarly, edge waves are in-
variant under one of the partial chiral operators and paired
with another edge wave using the other partial chiral operator.

Lastly, the corner mode is invariant under both partial chi-
ral operators, i.e., �x · �0 = ±�0 and �y · �0 = ±�0. This
last point is crucial to the present discussion, as it implies that
the corner mode vanishes on three sites per cell, while chiral
symmetry itself only guarantees it to vanish on two sites per
cell. As we saw in Sec. III C, this peculiar sublattice structure
is at the origin of the robustness against disorder.

6Notice that by construction, �x and �y act separately on a tensor
product: �x · (ψ⊗ϕ)=(�x · ψ )⊗ϕ and �y · (ψ⊗ϕ)=ψ ⊗ (�y · ϕ).
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