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Entanglement properties of disordered quantum spin chains
with long-range antiferromagnetic interactions
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Entanglement measures are useful tools in characterizing otherwise unknown quantum phases and indicating
transitions between them. Here we examine the concurrence and entanglement entropy in quantum spin chains
with random long-range couplings, spatially decaying with a power-law exponent α. Using the strong disorder
renormalization group (SDRG) technique, we find by analytical solution of the master equation a strong disorder
fixed point, characterized by a fixed point distribution of the couplings with a finite dynamical exponent, which
describes the system consistently in the regime α > 1

2 . A numerical implementation of the SDRG method yields
a power-law spatial decay of the average concurrence, which is also confirmed by exact numerical diagonal-
ization. However, we find that the lowest-order SDRG approach is not sufficient to obtain the typical value
of the concurrence. We therefore implement a correction scheme which allows us to obtain the leading-order
corrections to the random singlet state. This approach yields a power-law spatial decay of the typical value
of the concurrence, which we derive both by a numerical implementation of the corrections and by analytics.
Next, using numerical SDRG, the entanglement entropy (EE) is found to be logarithmically enhanced for all
α, corresponding to a critical behavior with an effective central charge c = ln(2), independent of α. This is
confirmed by an analytical derivation. Using numerical exact diagonalization (ED), we confirm the logarithmic
enhancement of the EE and a weak dependence on α. For a wide range of partition size l , the EE fits a critical
behavior with a central charge close to c = 1, which is the same as for the clean Haldane-Shastry model with a
power-law-decaying interaction with α = 2. Only for small l � L, in a range which increases with the number
of spins N , we find deviations which are rather consistent with the strong disorder fixed point central charge
c = ln(2). Furthermore, we find using ED that the concurrence shows power-law decay, albeit with smaller
power exponents than obtained by SDRG. We also present results obtained with DMRG and find agreement
with ED for sufficiently small α < 2, whereas for larger α DMRG tends to underestimate the entanglement
entropy and finds a faster decaying concurrence.
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I. INTRODUCTION

Long-range interactions in disordered quantum many-body
systems arise in a variety of physical contexts. For example,
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randomly placed magnetic impurities in doped semiconduc-
tors are known to interact with each other via exchange
couplings that depend on their separation distance [1,2].
While in insulating regimes these interactions typically de-
cay exponentially, J (r) ∝ exp(−r/ξ ), in the metallic regime
they are mediated via the Ruderman-Kittel-Kasuya-Yosida
(RKKY) mechanism, and therefore decay with a power law
J (r) ∝ r−d , where d is the dimension of the host system.
Power-law random long-range interactions have also been
found to occur in quantum glasses, where tunneling ions form
local two-level systems which are interacting by dipole-dipole
and elastic interactions [3]. More recently, tunable long-range
Heisenberg interactions have been demonstrated in quantum
simulators based on trapped ions [4].
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There have been many theoretical studies of quantum spin
chains with random short-range interactions. For example, it
is known that bond disorder drives spin- 1

2 Heisenberg chains
with short-ranged antiferromagnetic interactions into an
infinite randomness fixed point (IRFP) [5–7], characterized
by a critical ground state, i.e., a product state of singlets which
are formed at random distances. The entanglement entropy of
such critical spin chains scales logarithmically, with a central
charge c of the corresponding conformal field theory [8].
As the IRFP is a critical point, the entanglement entropy is
logarithmically enhanced. The corresponding central charge
c̃ is, however, smaller by a factor ln(2) than the central charge
of the corresponding clean spin chain. This has been derived
using the strong disorder renormalization group (SDRG)
method [9,10].

More recently, the SDRG has also been applied to dis-
ordered quantum spin systems with long-range interactions,
where it has been shown to lead to a self-consistent description
of its thermodynamic properties in terms of a novel strong
disorder fixed point [11,12]. However, quantum information
theoretical measures, such as the entanglement entropy and
the concurrence, have not yet been studied in such systems.
Here, we analyze these quantities for disordered quantum
spin- 1

2 chains with long-range power-law couplings, decaying
with a power-law exponent α, using the SDRG, exact diag-
onalization (ED), and density matrix renormalization group
(DMRG). There have been indications that such system un-
dergoes a phase transition at a critical decay exponent αc from
a localized regime for α > αc, to a delocalized regime for
α < αc [11], similar to the delocalization transition of dis-
ordered fermions with long-range hoppings [13,14]. Thus, a
logarithmic enhancement of the average entanglement entropy
is expected at some value of α. The spin- 1

2 Haldane-Shastry
model, a Heisenberg model with power-law long-range inter-
actions, is known to be critical for α = 2 with a conformal
charge c = 1 [15,16]. It was suggested in Ref. [9] that dis-
ordered spin chains are critical when the clean spin chain
is critical with a central charge c̃, smaller by a factor ln(2)
than the central charge of the clean critical spin chain. One
might therefore expect a logarithmic enhancement of the en-
tanglement entropy at α = 2 with c̃ = ln(2) in the presence of
disorder. This motivates us to examine the entanglement prop-
erties of disordered quantum spin systems with long-range
power-law couplings as a function of the power exponent α.

Here, we focus on the bond disordered XX-spin chain with
long-range couplings, defined by the Hamiltonian

H =
∑
i< j

Ji j
(
Sx

i Sx
j + Sy

i Sy
j

)
, (1)

describing N interacting S = 1
2 spins that are randomly placed

at positions ri on a lattice of length L and lattice spacing
a, with density n0 = N/L = 1/l0, where l0 is the average
distance between them. The couplings between all pairs of
sites i, j are taken to be antiferromagnetic and long ranged,
decaying with a power law

Ji j = J0|(ri − r j )/a|−α. (2)

The random placement of the spins on the lattice sites, exclud-
ing double occupation, results in an initial (bare) distribution
of the separation distance l between pairs of spins p0(l ), yield-

FIG. 1. Decimation of the strongest-coupled pair i, j (thick line)
generates effective couplings between other spins l, m (dotted line).

ing an initial distribution of couplings J , P0(J ). For example,
for N = 2 it is given exactly by p0(l ) = (1 − l/L)2/(L − 1),
where we set a = 1, which yields an initial distribution of
couplings J ,

P0(J ) = 2

(L − 2)αJ0

[(J0

J

)1+1/α

− 1

L

(J0

J

)1+2/α
]
, (3)

for couplings restricted to the interval J0[(L − 1)/a]−α < J <

J0. It is important to note that in the case of long-range
interactions, this model does not simply map onto an effec-
tive fermionic tight-binding model with long-range hoppings
because the phase factors arising in the Jordan-Wigner trans-
formation are nontrivial.

II. STRONG DISORDER RENORMALIZATION GROUP

Here we describe how to apply the SDRG to this model,
with the aim to evaluate the concurrence and the entanglement
entropy [17].

Choosing the pair with the largest coupling (i, j), which
forms a singlet (see Fig. 1), we take the expectation value
of the Hamiltonian in that particular singlet state within
second-order perturbation in couplings with all other
spins, as has been done for spin chains with competing
interactions beyond nearest-neighbor interactions in [18] and
[19–21]. For long-range interactions this yields the long-range
renormalization rule for the couplings between spins (l, m) in
the XX model [11,12]

(
Jx

lm

)′ = Jx
lm −

(
Jx

li − Jx
l j

)(
Jx

im − Jx
jm

)
Jx

i j

. (4)

For the Heisenberg model, this rule differs by a numerical
prefactor 1

2 [11,12]. Previously, it was found that in
long-range coupled disordered quantum spin chains there
is a strong disorder fixed point [12]. This was realized by
inspecting the evolution of the width of the distribution
of couplings J with the RG flow. In the short-range case,
i.e., at the infinite randomness fixed point (IRFP), this
distribution gets wider at every RG step, with width
W = [〈ln(J/�0)2〉 − 〈ln(J/�0)〉2]1/2 = ln(�0/�) = ��,

increasing monotonically as the RG scale � is lowered. In
contrast, for long-range couplings with finite α the width W
saturates and converges to W = �, with � = 2α in the XX
limit [12]. The convergence to a finite dynamical exponent
� characterizes the new strong disorder fixed point (SDFP).
For large number of spins N, and in the limit of a small RG
scale �, the resulting distribution function of renormalized
couplings J at RG scale � was found to converge to [7]

P(J,�) = 1

���

(
�

J

)1−1/��

. (5)
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FIG. 2. Definition of couplings between removed spins i, j and
other spins l, m (dotted lines).

At the IRFP, �� increases monotonically as �� = ln �0/�,
when �, the largest energy at this renormalization step,
is lowered. Here, �0 is the initially largest energy in the
spin chain.

At the SDFP, however, �� is found to converge to an
asymptotic finite value �� → 2α [12], yielding a narrower
distribution with finite width �. We note that this distribution
is less divergent as J → 0 than the initial distribution (10).
In order to check whether Eq. (5) is indeed a fixed point
distribution of the RG with RG rule (4), we first present
an analytical derivation. The master equation governing the
renormalization process is a differential equation for the dis-
tribution function P(J,�), given by

−∂P(J,�)

∂�
= P(�,�)

∫ ( 5∏
i=1

dJiP(Ji,�)

)

× δ

(
J − J5 + (J1 − J2)(J3 − J4)

�

)
. (6)

The numbering of the couplings is defined in Fig. 2. In order to
proceed, let us note that the renormalization correction to the
bare coupling J5, given by δJ = (J1 − J2)(J3 − J4)/�, is al-
ways smaller than J5, δJ < J5, as can be checked numerically
[12]. Performing first the integral over J5, we can expand the
distribution function of J5 = J + δJ in δJ , finding to all orders
in δJ

− ∂P(J,�)

∂�

= P(�,�)
∞∑

n=0

1

n!

〈(
(J1 − J2)(J3 − J4)

�

)n〉
∂n

J P(J,�),

where 〈. . .〉 denotes the averaging with the distribution func-
tions P(Ji,�) for i = 1, 2, 3, 4. Thus, we find

− ∂

∂�
P(J,�) = P(�,�)

(
1 +

∞∑
n=2

An

n!
�n∂n

J

)
P(J,�), (7)

where

An =
〈(

(J1 − J2)(J3 − J4)

�2

)n〉
. (8)

We see that the strong disorder scaling ansatz (5) is a solution
of Eq. (7) for � → 0 with μ = 1/� = const, when neglecting
all renormalization corrections given by the terms n � 2. To

FIG. 3. Probability density function (a) p0(x = J/�) [Eq. (10)],
corresponding according to Eq. (9) to the strong disorder scaling
function and (b) p(x = J/�) as defined by Eq. (9), as solution of
Eq. (11), as solved to second order n = 2, on a double-logarithmic
scale for exponent μ in steps of 0.1 as given in the line legend. Inset:
Magnification showing the exponential decay of p(x) to the value μ

as x = J/� → 1.

solve Eq. (7), including the correction terms, we make the
ansatz for the distribution function of renormalized couplings
J at RG scale �:

P(J,�) = 1

�
p(x = J/�), (9)

where we introduced the probability density function (pdf)
p(x) which is to be derived with the condition that p(1) = μ.
Thus,

p0(x) = μxμ−1 (10)

corresponds to the strong disorder scaling distribution func-
tion (5) with μ = const, as plotted in Fig. 3(a). Inserting
the ansatz (9) into Eq. (7) we find the following ordinary
differential equation for p(x):

(1 − μ)p(x) + x
∂

∂x
p(x) =

∞∑
n=2

An

n!
∂n

x p(x), (11)

with the condition p(1) = μ.
Choosing an iterative approach, we can first approxi-

mate the coefficients An, by setting p(x) = p0(x) = μxμ−1 in
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Eq. (9), yielding

An ≈ μ4�2(μ)�2(n + 1)(
n
2 + μ

)2
�2(μ + n + 1)

. (12)

We note that An ∼ 1/n2 for 0 < μ � 1. For n = 2, this sim-
plifies with �(z + 1) = z�(z) to A2 = 4μ2/[(μ + 2)2(μ +
1)4]. We can solve to second order n = 2 the resulting
second-order ordinary differential equation exactly, in terms
of products of Hermite polynomials and hypergeometric func-
tions, as plotted in Fig. 3(b). We see in Fig. 3(b) that p(x)
has the same power law p(x) ∼ xμ−1 dependence for inter-
mediate 0 � x = J/� < 1 as the strong disorder pdf p0(x),
but converges for x → 0 to a constant which depends on μ

approximately as p(x → 0) ≈ 1/μ3/4. We note that for small
0 < μ � 1, An ∼ 4μ2/n2, so that higher-order terms decay
fast with n, and the pdf p(x) obtained for n = 2 is a good
approximation for small μ < 1.

An alternative way to solve the master equation is to make
use of a step which is commonly used to calculate the gen-
erating function of a distribution: we multiply both sides of
Eq. (7) by zJ , where z is a real number, and then integrate
both sides over J . Thereby, one can generate all moments of
the distribution by partial derivatives in z and thus the entire
distribution function. Since we are interested in the fixed
point solution for large systems, we set the lower integration
limit to 0. The upper integration limit is provided by �. We
next insert the ansatz for the distribution of renormalized
couplings Eq. (5), and find a differential equation for the
exponent μ(�) = 1/�� (a detailed derivation is provided in
Appendix A):

∞∑
n=1

−μ′(�)(�t )n

(n − 1)!(μ + n)2

=
∞∑

k=1,k′=0

μ6(�)�2(μ)(2k)!(�t )2k+k′

(k + μ)2�2(μ + 2k + 1)k′!(μ + k′)�
. (13)

Here, �(x) is the standard gamma function. Since we are
searching for the fixed point solution of the master equation,
we keep only the leading order in � of Eq. (13). This yields
for � → 0 the necessary condition

μ′(�) = 0. (14)

Thus, the solution approaches for � → 0 a fixed point with
vanishing slope of the dynamical exponent.

The fixed point value �(� = 0) = 1/μ(� = 0) = �0 is
finite, but cannot be determined by this calculation alone.
To this end, we need to use a scaling argument, as outlined
below. The distribution of lengths l of singlets at renormal-
ization scale � can also be derived from a master equation,
as was done in Refs. [10,22] for the IRFP. However, noting
that the strong disorder fixed point distribution P(J,�) was
obtained above to lowest order in a Taylor expansion in the
difference between the renormalized and the bare coupling
J0(l ) = J0(l/a)−α , it is clear that there is a strong correlation
between the distribution of lengths and bare couplings. There-
fore, we can make to lowest order the ansatz

P(J,�, l ) = P(J,�)δ[J − J0(l/a)−α]

∣∣∣∣dJ0(l/a)−α

dl

∣∣∣∣. (15)

We note that in each RG step, a fraction dn/n(�) of the
remaining spins n(�) at renormalization energy � are taken
away. Since this is due to the formation of a singlet with
coupling J = �, this fraction should be equal to 2P(J =
�,�)d�, leading to the differential equation

dn

d�
= 2P(J = �,�)n(�). (16)

Since at the SDFP P(J = �,�) = μ/�, the density of not yet
decimated singlets at the RG scale � is given by

n(�) = n0

(
�

�0

)2μ

, (17)

where n0 = N/L = 1/l0 is the initial density of spins. Defin-
ing l� as the average distance between spins at RG scale �, we
have n(�) = 1/l�. Thus, it follows from Eq. (17) that the RG

energy scale is related to the length l� via � ∼ l
− 1

2μ

� . As we
discussed above, the strong disorder fixed point distribution is
dominated by the bare couplings, which scale with distance
l as J0 ∼ l−α . In order for the energy-length scaling to be
consistent at all RG scales �, it follows necessarily that

2μ = 1/α. (18)

As we have shown above by solution of the master equation
that the strong disorder fixed point distribution is a solution for
μ < 1, we can conclude that it is expected to give consistent
results for α > 1

2 .

We are now ready to evaluate the distribution of singlet
lengths by integrating over the renormalization energy �:

Ps(l ) = 2
∫ �0

�∗
d� l0n(�)P(J = �, l; �), (19)

where we have used the fact that l0n(�) is the fraction of not
yet decimated spins at �, and the factor 2 comes from the
normalization condition for Ps(l ), and �∗ = J0((L − 1)/a)−α

is the smallest possible energy scale. Thus, for L → ∞ we
find

Ps(l ) =
∫ �0

0

d�

�

(
�

�0

)2μ

δ

(
� − J0

aα

lα

)
J0

aα

lα+1
(20)

= a

l2
.

Here, we used μ = 1/(2α) and the fact that �0 = J0 is the
largest energy scale. So far, we have assumed that l can take
any value within the interval [a, L]. Taking into account that
the distance can in fact only take discrete values li = ia, the
properly normalized probability mass function pi for L/a →
∞ would be pi = 6/(π2i2). However, as the renormalization
of the couplings will become more important as the RG scale
� is lowered, corresponding to intermediate and long length
scales l , let us check the actual distribution in that regime, by
numerical implementation of the SDRG. In Fig. 4 we show
results for N = 200 spins, α = 1.8 and 4.8, and various filling
factors N

L = 0.2, 0.1, 0.04. We find that the prefactor scales
with the inverse density, the average spacing between the spins
l0 = L/N as

P(ls) ≈ L

3N
l−2
s for a � ls � L, (21)
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(a)

(b)

FIG. 4. Probability distribution of singlet lengths P(ls ), where
ls is the real physical distance, on a logarithmic scale, obtained
via SDRG for N = 200 and for various filling factors N/L =
0.2, 0.1, 0.04. The data were obtained from 105 disorder realizations
with fixed α = 1.8 (a) and α = 4.8 (b). Red dashed lines: function

L
3N l−2

s , fitting the intermediate a � ls � L scaling regime.

for both α = 1.8 and 4.8 in the intermediate scaling regime.
We find a dropoff at small ls < l0 = L/N , and a slower decay
for large ls → L. Note that the numerical P(ls) is properly
normalized, when summing over all ls ∈ [a, L − a].

III. CONCURRENCE

The entanglement between any two spins of a chain can be
quantified by the concurrence between them [23]. When the
spins in the chain are in a pure state |ψ〉, such as the random
singlet (RS) state, the concurrence between spins m and n is
given by the correlation function

Cmn = |〈ψ |σ y
mσ y

n |ψ〉|, (22)

which is the absolute value of the overlap between the original
state and the state obtained after spins m and n have been
flipped. As reviewed above, the SDRG procedure yields a
random singlet state (RSS) as an approximation of the ground
state of the system, even when long-range couplings are
present. The RSS is known to become asymptotically exact for
short-range models, characterized by the infinite randomness

fixed point (IRFP) [5]. This RSS is a product state that can be
written in the form

|ψRS〉 =
⊗

{i, j}∈RS

|0i j〉, (23)

where |0i j〉 = (|↑i ↓ j〉 − |↓i ↑ j〉)/
√

2 is the singlet state be-
tween spins enumerated by i and j, and the direct product
extends over all singlets forming the RSS. From Eq. (23) it
becomes apparent that when the system is in the RSS, the
concurrence between the two spins i, j is given by

Ci j =
{

1 if i and j form a singlet in the RSS,

0 otherwise. (24)

Thus, as the RSS disregards any but the strongest couplings,
it fails to account for corrections by residual weak couplings.
In order to include the finite amount of entanglement which
prevails between spins that do not form a singlet in the RSS,
and in turn weakens the entanglement between the spins that
do form a singlet during the SDRG procedure, we need to find
a consistent strategy to include these corrections in the SDRG
scheme.

Before proceeding any further, let us first review the known
results for the scaling behavior of the mean and typical con-
currence at the IRFP, i.e., the fixed point for short-range
coupled random spin chains, which will serve as a baseline
to compare with results obtained in the SDFP.

IV. MEAN AND TYPICAL CONCURRENCE AT THE IRFP

As Fisher noted in Ref. [6], the mean correlation function
between spins at long distances l is dominated by rare events.
Typically, two distant spins enumerated by indices n1 and
n2 = n1 + n will not form a singlet and will therefore be very
weakly correlated. However, in the rare event that they do
form a singlet in the RSS, they will be strongly correlated
and therefore will dominate the mean correlation function, and
thereby the concurrence, at large distances. As a result, the
mean correlation function must be proportional to the ratio of
singlets formed at index distance n, P(n), which is related to
the distribution function of real distances l , P(l ), which we
have reviewed above.

At the IRFP, P(l ) ∼ a/l2, and we see that the mean corre-
lations decay faster when disorder is introduced: in the clean
case they decay more slowly as l−1/2. Hoyos et. al. explicitly
noted that for chains with open boundary conditions C(n) = 0
for even index distance n, which yields the more accurate
result at the IRFP [10],1

C̄(n) ∼ 1

n2
×
{

1 if n is odd,

0 if n is even.
(25)

It was also noted in Ref. [10] that there are additional terms
in C̄(n) that decay faster for large n, the next leading term
decaying as 1/n5/2. While rare events dominate the mean
concurrence, we expect a different behavior for the typical

1In Ref. [10] the spin correlation function instead of the concur-
rence is calculated, explaining the difference by a factor S(S + 1) =
3
4 .
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concurrence which is proportional to the typical value of the
coupling between two spins J at the RG scale �l at which
they are decimated. This value can be calculated using the full
IRFP distribution of J . Thereby, one finds [6,10]

Ctyp(l ) ∼ e−k
√

l , (26)

where it was used that at the IRFP the distance between spins
is related to the RG scale �l by l ∼ ln2(�0/�l ) to obtain the
scaling behavior as an extended exponential, with k being a
nonuniversal constant of order unity [6]. Thus, at the IRFP
the typical value of the concurrence decays exponentially fast
with distance, whereas its mean decays with a power law. In
the next section we introduce a general approach to include
corrections to the RS state, and we will, in particular, investi-
gate how the typical concurrence decays with l at the SDFP.

V. CORRECTIONS TO THE RANDOM SINGLET STATE

To incorporate the effects of the couplings which are ne-
glected in the RS state we define an effective Hamiltonian as
the sum of the Hamiltonion H̃0 with all effective, renormalized
couplings taken into account in the SDRG, and a perturbation
term H̃ ′, which includes all couplings which are neglected in
the SDRG:

H̃ =
∑

{i j}∈RS

J̃i jSi S j

︸ ︷︷ ︸
H̃0

+
∑

{i j}/∈RS

J̃i jSi S j

︸ ︷︷ ︸
H̃ ′

. (27)

Now, we can perform perturbation theory in the term H̃ ′ to
obtain the ground state of the disordered XX chain in first
order of H̃ ′ as

|ψ〉 = |ψRS〉 +
∑

β

〈ψβ |H̃ ′|ψRS〉
ERS − Eβ

|ψβ〉, (28)

where ERS is the ground-state energy of the RS state |ψRS〉,
and the sum runs over all excited states of H̃0, |ψβ〉, as labeled
by the index β, with eigenenergies Eβ . The excited states can
be obtained by combinations of triplet states, as obtained by
excitations of the singlets in the RS state. We note the useful
relation

H̃ ′|ψRS〉 = 1

4

∑
{nl}�={mk}

(Jnm + Jlk − Jnk − Jml )

× (|+nl〉|−mk〉+|−nl〉|+mk〉)
⊗

{i j} �= {nl}
�= {mk}

|0i j〉, (29)

where |±nl〉 ≡ |(S = 1, M = ±1)〉 are two of the triplet states
formed of the spins {l, n} when the spins l and n form a singlet
in the RSS. Thus, the double sum and the direct product run
over all singlet pairs in the RSS, with the exceptions specified
under the summation and direct product signs.2 From this
result, it becomes apparent that the only excited states that

2This notation will be used throughout to simplify the long expres-
sions involved.

FIG. 5. Full lines indicate strongest bare couplings. Some
weaker couplings are indicated by thinner lines. Dashed lines con-
nect spins that form singlets in the random singlet state. Top: spins
{p, q} of Eq. (33) do not form a singlet with each other. Bottom: spins
{pq} of Eq. (33) do form a singlet.

contribute to the sum in Eq. (28) are of the form

|ψβ〉 = |±nl〉|∓mk〉
⊗

{i j} �= {nl}
�= {mk}

|0i j〉, (30)

whose energy difference to the RS state is given by Eβ −
ERS = (Jnl + Jmk )/2. With this in mind, Eq. (28) transforms
into the final form of the ground state with corrections

|ψ〉 = cψ |ψRS〉 − cψ

2

∑
{nl}�={mk}

Jnm + Jlk − Jnk − Jml

Jnl + Jmk

× (|+nl〉|−mk〉 + |−nl〉|+mk〉)
⊗

{i j} �= {nl}
�= {mk}

|0i j〉, (31)

with a normalization constant cψ given by

cψ =
(

1 + 1

2

∑
{nl}�={mk}

(
Jnm + Jlk − Jnk − Jml

Jnl + Jmk

)2
)−1/2

.

(32)
Now, we are all set, and we can use the perturbed ground state,
given by Eq. (31), to derive the concurrence between the spins
with indices p and q. We find the conditional expression

CNS
pq = c2

ψ

∣∣∣∣Jpq + Jrs − Jpr − Jqs

Jps + Jqr

∣∣∣∣if {pq} /∈ RS,

CS
pq = 1 − c2

ψ

2

∑
{mk}�={pq}

(
Jpm + Jqk − Jpk − Jmq

Jpq + Jmk

)2

× if {pq} ∈ RS, (33)

where CNS
pq is the concurrence between spins p and q if they

do not form a singlet in the RS state, and CS
pq is the one, if

they do. The indices r and s in the first line correspond to the
spins that form a singlet in the RS state with spins q and p,
respectively, as shown in Fig. 5.

Equation (33) has all the properties expected for the
concurrence between two spins in a chain with long-range
couplings. It does give a nonzero value for all pairs that do
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not form a singlet in the RS state, and it gives a concurrence
smaller than 1 for spins that do.3

In Fig. 6(a) we show numerical results for the mean con-
currence as a function of index distance n in the disordered
long-range XX chain with N = 800 spins randomly placed
on L = 80 000 sites, as obtained by inserting the numerical
results of the SDRG for the couplings into Eq. (33). First, we
note that, in contrast with the short-range case, there is a finite
concurrence for even values of n. This is expected by looking
at the form of Eq. (33) and recalling that C(n) = 0 for even
n was due to the impossibility of crossing singlets in the RS
state. However, there is still a clear difference between even
values of n (bottom) and odd ones (top), as indicated by the
clear separation of two sets of curves. Both sets of curves have
a weak dependence on α and a regime in which it can be fitted
with a power law

C̄(n) ∼ n−γe,o, (34)

where γe,o are the decay powers for even and odd values of
l , respectively. In fact, by using linear regression fits in the
logarithmic scale we find γe = 1.75 ± 0.04 and γo = 1.95 ±
0.04 for both α = 0.6 and 2.0. Even with the corrections to the
RS state the concurrence for odd values of n is still dominated
by rare events (singlets formed at long distances), as indicated
by the small deviation from ¯C(n) ∼ n−2 decay for all values
of α. On the other hand, for even values of n, the decay is
slower, the power-law regime is smaller, and the amplitudes
have a stronger dependence on α, as expected from Eq. (33).
For both sets of curves, a saturation at large values of n can be
seen, which is a finite-size effect.

The typical value of the concurrence is shown in Fig. 6(b).
A clear power-law behavior of the form

Ctyp(n) = exp[〈ln C(n)〉] ∼ n−γ (α) (35)

is found. Here, the power γ (α) has a strong dependence on
α, unlike the decay powers of the mean value. In fact, we find
γ (α) to be linear in α, with a linear regression fit giving

γ (α) = 1.02 α + 2.02, (36)

which indicates that the typical concurrence decays faster than
the mean concurrence for all values of α. It is also worth
noting that since the typical concurrence decays as a power
law, it decays slower than in the IRFP case, where it has the
extended exponential behavior stated in Eq. (26).

Now, let us see if we can use the corrections to the RS
state, Eq. (33), to find the scaling behavior of the typical
concurrence analytically. The probability mass function as a
function of the index distance n decays to leading order as
1/n2, in accordance with the distribution of lengths, Eq. (21).
Thus, noting that in the random singlet state only spins at odd
index distance are paired we find

P(n) =
[

c2
1

n2
+ O

(
1

n5/2

)]
×
{

1 if n is odd,

0 if n is even.
(37)

Since P(n) must be normalized,
∑N−1

n=1 P(n) = 1, the coeffi-
cient c2 depends on the weight of the faster decaying terms. In

3Note that with the given definition of c, the concurrence for {pq} ∈
RS is always positive.

(c)

FIG. 6. (a) Mean concurrence of disordered XX chains with
power-law, long-ranged couplings, averaged over M = 18 960 re-
alizations, as function of index distance n. Power exponents of
the coupling strengths [Eq. (2)]: α = 0.6, . . . , 2.0, N = 800 spins
placed randomly on one of L = 100N sites. n = |p − q| is the index
distance. Top curves: odd n, bottom curves: even n. (b) Typical
concurrence as a function of index distance n. (c) Fits of linear regime
in the typical concurrence to a power-law decay with power γ . The
fitted exponents γ are plotted as a function of α.
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FIG. 7. Probability distribution of the singlet lengths P(ns ) as
a function of index distance, on a logarithmic scale, obtained via
the SDRG for N = 400 and a filling factor N

L = 0.1. The data were
obtained using 25 000 realizations of the disorder for every α. The
red dashed line corresponds to the function 2

3 n−2
s , which fits the

intermediate ns scaling regime.

Ref. [10], c2 = 2
3 was derived for the IRFP of the short-ranged

disordered AFM spin chain. In Fig. 7 we show histograms of
the index singlet length distribution P(ns) on a logarithmic
scale, obtained using the SDRG for N = 400 with a filling fac-
tor N

L = 0.1. The data were obtained from 25 000 realizations
of the disorder for each α. The red dashed line corresponds to
the function 2

3 n−2
s , showing good agreement for intermediate

and large values of ns, in agreement with Eq. (37) with c2 = 2
3 .

We also observe deviations due to a faster decaying term at
small n, in agreement with Eq. (37). The saturation at large
values of n has been checked to be a finite-size effect.

Now, we can calculate the mean value of the concurrence
as function of index distance n via

C̄(n) = 〈Cpq〉n=|p−q| = P(n)CS
pq + [1 − P(n)]CNS

pq , (38)

and the typical value of the concurrence via

Ctyp(n) = exp
[
P(n) ln CS

pq + (1 − P(n)
]

ln CNS
pq . (39)

We note that in the random singlet state without correc-
tions, Eq. (38) gives with Eq. (37)

CRSS (n) =
[

c2
1

n2
+ O

(
1

n5/2

)]
×
{

1 if n is odd,

0 if n is even,
(40)

when properly normalized, so that
∑∞

n=1 CRSS(n) = 1, since
each spin can form a singlet with only one other spin, in which
case the concurrence is exactly equal to one, giving c2 = 2

3 .
Now, we can find the scaling of CNS

pq including the cor-
rections to the RSS by noting that the distance l = |rp − rq|
is always larger than the distance between the spins which
formed singlets in the RS state (see Fig. 5 top) l1 = |rp − rs|,
n2 = |rq − rr |. Thus, we can Taylor expand Eq. (33) in l1/l
and l2/l . Thereby we find

CNS
pq = c2

ψ

l1l2
Jl1 + Jl2

∂2
l Jl

= c2
ψα(α + 1)

l1l2
l−α
1 + l−α

2

l−α−2. (41)

Noting that at the SDRG Jl = J0(l )−α can be related to the
index distance n by assuming that l scales with n as dic-
tated by the density of spins n0 = 1/l0, we can substitute
l ∼ nl0. As the bonding lengths l1 and l2 can take any value
between 1 and l , we can average over all possible values and
find as function of index distance CNS

pq = kNSn−α−2, with a
constant kNS .

Similarly, we can do an expansion CS
pq in the distance

between the spins of the singlet states in Fig. 5 bottom l =
|lp − lq| and l2 = |lk − lm| to find

CS
pq = 1 + c2

ψ

α

4(α + 1)
l1−α. (42)

Thus, we can insert Eqs. (41) and (42) into Eqs. (38) and (39)
to get the scaling of the mean and typical concurrence with
index distance n,

C̄(n) = P(n)

(
1 + c2

ψ

α

4(α + 1)
(nl0)1−α

)
+ [1 − P(n)]kNSn−α−2, (43)

and the typical value of the concurrence by

Ctyp(n) = [kNS (nl0)−α−2]1−P(n)

×
(

1 + c2α

4(α + 1)
(nl0)1−α

)P(n)

∼ n−α−2, (44)

where we used that P(n) � 1. For the typical value we
thus find very good agreement of the power γ = 2 + α with
the result obtained with numerical SDRG for system size
[Eq. (36)] γ (α) = 1.02 α + 2.02. The mean value shows
a more complicated behavior with different index distance
regimes dominated by either P(n) or the power-law decay in
Eq. (43).

When plotting the concurrence as function of physical dis-
tance l , we expect for small concentrations of spins N/L � 1
no even-odd effect. As we have numerically derived above
P(l ) = c′

2l−2 + O(l−5/2) [Eq. (21)] where it was found that
c′

2 = 1
3 . Thus, we get the average concurrence as function of

real distance l ,

C̄(l ) = P(l )

(
1 + c2

ψ

α

4(α + 1)
l1−α

)
+ [1 − P(l )]kNSl−α−2, (45)

and the typical value of the concurrence as function of the
physical distance l is

Ctyp(l ) = (kNSl−α−2)1−P(l )

(
1 + c2α

4(α + 1)
l1−α

)P(l )

∼ l−α−2. (46)

For comparison we show in Fig. 8 the results of numerical
exact diagonalization for spin chains with N = 20 distributed
randomly of length L = 200, as plotted as function of the
physical distance l and averaged over M = 2000 samples. We
find that the average concurrence decays with a power which
increases slightly with increasing interaction power α but re-
mains for all α smaller than the power 2, obtained in SDRG.
Also, there is no even-odd effect, as expected when plotting
the concurrence as function of the physical distance l . The
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FIG. 8. Results from exact numerical exact diagonalization.
(a) Mean concurrence of disordered XX chains with power-law, long-
ranged couplings, averaged over M = 2000 number of realizations
as function of the physical distance l for various power exponents α,
N = L/10 = 20 spins placed randomly on one of L sites. (b) Typical
concurrence as a function of the physical distance l . Inset: fits of
linear regime in the typical concurrence to a power-law decay with
power γ . The fitted exponents γ are plotted as a function of α.

typical concurrence is found to decay with a power law, with
exponent γ = 0.21α + 1.09, as obtained by a fit of all results
for α = 0.8, 1.0, 1.2, 1.6, 2.0, 2.8, linearly increasing with α

as found from SDRG, but with a smaller slope. Note that the
finite-size effects seen in SDRG (Fig. 6) are expected to be
more dominant in the smaller size used in ED as presented
in Fig. 8, which may explain the slower decay with smaller
exponents observed with ED.

VI. ENTANGLEMENT ENTROPY

The entanglement between two segments of a spin chain A
and B can be quantified by the von Neumann entropy of the
reduced density matrix

S = −Tr(ρA ln ρA) = −Tr(ρB ln ρB), (47)

where ρA = TrB(|ψ〉〈ψ |) and ρB = TrA(|ψ〉〈ψ |) is obtained
by partially tracing the complete density matrix of the system
over all degrees of freedom of subchain B or A, respectively.

This entanglement entropy can be used to characterize
quantum phase transitions. For clean chains, it has been shown

that at criticality, the entropy of a subchain A of length l scales
as [24]

S(l ) = b

2

c + c

6
ln(l/a) + k, (48)

where c and c correspond to the central charges of the corre-
sponding 1 + 1 conformal field theory. In the limit of infinite
chains with finite partitions of length l , as well as for peri-
odic chains with large length L � l , b = 2 since there are
two boundaries of the partition, while b = 1 for semi-infinite
chains, when the partition of length l is placed on one side
of the chain. k is a nonuniversal constant [25]. This scaling
behavior with a logarithmic dependence on the segment length
l is in contrast to the area law expected for noncritical chains,
where it does not depend on the length l of the subchain for the
one-dimensional case. The simple area law is recovered away
from criticality, where it is found that the entropy saturates at
large l [24,25].

In Ref. [9], it was shown that Eq. (48) also holds for
the average entanglement entropy of antiferromagnetic spin
chains with random short-ranged interactions. In particular,
using SDRG, they found that in the disordered transverse
Ising model, the effective central charges were given by
c̃ = c̃ = ln(2)/2, whereas in the Heisenberg and XX models
c̃ = c̃ = ln(2). Both cases correspond to a factor of ln(2)
reduction of the central charge and the entanglement entropy
of their corresponding pure systems [24], in accordance with
a generalized c theorem, which states that if two critical points
are connected by a relevant RG flow, as here induced by the
relevant disorder, the final critical point has a lower conformal
charge than the initial one [9].

Equation (48) applies specifically to infinite systems. In
Ref. [8], Calabrese and Cardy derived a formula valid for
finite systems of length L,

Sb(l ) = b
c

6
ln
( L

πa
sin(π l/L)

)
+ k′, (49)

where k′ is a nonuniversal constant, and c = c has been
assumed [8]. For periodic boundary conditions, there is an
additional factor b = 2 since the subsystem is then bounded
by two boundaries, doubling the average number of singlets
crossing one of the boundaries, while b = 1 for open bound-
ary conditions, when there are two partitions.

Refael and Moore’s method to calculate the average entan-
glement entropy in the presence of disorder is based on the
assumption that the system has been drawn to the IRFP, and
the random singlet state (RSS) is a correct representation of its
ground state. Since the RSS corresponds to a product state of
maximally entangled spin pairs, they note that the total entan-
glement entropy can be calculated by counting the number of
singlets that cross the boundary between subsystems A and B
and then multiplying this number with the entropy of a singlet
S0 = ln(2) [9,10]. A schematic representation of this method
is shown in Fig. 9 for a specific realization. In this example,
when the boundary between A and B is defined by line a,
we obtain an entanglement entropy of 3S0 since three singlets
cross over the boundary line. But if the boundary is defined by
line b, the entanglement entropy is reduced to 1S0. Thus, for
the random singlet state |ψ0〉 one finds S = M ln(2), where
M is the number of singlets which cross the partition between
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FIG. 9. Single realization of the random singlet state, illustrating
the entanglement entropy calculation for two different boundaries a,
b (red lines) between subsystems.

subsystems A and B. The average entanglement entropy of a
random singlet state can therefore be related to the probability
to find a singlet of a certain length ns, in the spin chain of
length N [9,10], P(n). As Refael notes in Ref. [9], however,
one needs to take into account the correlation with the RG
history. He found that the average distance between RG steps,
where a decimated singlet may cross the same partition, is
exactly equal to 〈m〉 = 3 for the disordered nearest-neighbor
antiferromagnetic (AFM) spin chain, resulting in a correlation
factor 1/〈m〉.

Another way to derive this was outlined by Hoyos et al.
in Refs. [9,10]. The ratio of the number of singlets crossing
the partition is the probability that a spin on one side of the
partition is entangled with another one on the other side of
the partition. Thus, we can relate the entanglement entropy
(EE) directly to the probability to have a singlet of length l ,
P(l ), which we derived in the previous chapter. Moreover, as
we consider partial filling of the lattice sites with spins with
density n0 = N/L < 1, we need to distinguish the EE as a
function of the index distances n = |i − j| between the spins
from the one plotted as function of their physical distance
l = ri − r j , where ri is the position of spin i. As a function
of index distance n we obtain for open boundary conditions
and two partitions, where one has the length l , the average
entanglement entropy,

〈Sn〉 = ln(2)
N∑

ns=1

∑
i

Pi(ns)|C.C., (50)

where the crossing condition (C.C.) ensures that only singlets
are counted where spin i is on the left side of the partition
(which contains n spins), while spin i + ns is on the right
side of the partition. We first count the number of possible
positions to place a singlet with index distance ns across the
partition boundary, starting with the smallest distance ns = 1,
and adding successively singlets of larger index length. For
ns < n there are, in principle, ns such possibilities, if the
respective spins did not yet form a singlet with another spin,
each with the probability to form a singlet of length ns, P(ns).

In order to account for the correlation with existing sin-
glets, Ref. [10] multiplied the probability P(ns) with a factor
1
2 . This can be argued to be due to the fact that for every spin
which may form a singlet with length ns across the boundary
there is a second possibility to form a singlet, which is not
crossing the boundary. Thereby, one arrives for the chain with
open boundary condition (OBC) with a partition with n spins

and one partition boundary at the following expression:

〈Sn〉/ ln(2) = 1

2

n∑
ns=1

nsP(ns) + 1

2
n

N−n∑
ns=n+1

P(ns)

+ 1

2

N∑
ns=N−n+1

(N − ns)P(ns). (51)

This expression is equivalent to the one given in Ref. [10]
(with the difference that they considered an embedded par-
tition with two boundaries). By evaluating Eq. (51) using the
result (40) P(n) = c2/n2 + O(1/n5/2) for odd n, 0 for even n
we find in the limit of N � 1

〈Sn〉 ≈ 1
4 c2 ln(2) ln(n) + k + O(1/n1/2). (52)

We thus recover by comparison with Eq. (48) the conformal
charge given by c̃ = c̃ = (6/4)c2 ln(2). Using c2 = 2

3 , as de-
rived in Ref. [10] and confirmed numerically above, we thus
find c̃ = ln(2) in agreement with [9,10].

In an attempt to take into account the correlation with the
location of other singlets in the RSS state more rigorously,
we could argue that we need to multiply each term with
the probability that the two spins did not yet form a singlet
of other length with another spin, that is

∏
n′

s �=ns
[1 − P(n′

s)].
Thereby, one finds for a random singlet state, using Eq. (40).

〈Sn〉/ ln(2) =
n∑

ns=1

nsP(ns)
∏
n′

s

[1 − P(n′
s)]

+ n
N−n∑

ns=n+1

P(ns)
∏
n′

s

[1 − P(n′
s)]

+
N∑

ns=N−n+1

(N − ns)P(ns)
∏
n′

s

[1 − P(n′
s)]. (53)

By evaluating Eq. (53) we find in the limit of N � 1

〈Sn〉 ≈ 1
6 c2 ln(2) ln(n) + k + O(1/n1/2). (54)

We thus recover Eq. (48) with the conformal charge given
by c̃ = c̃ = c2 ln(2) < 1. Here, for pure P(n) = c2/n2 for odd
n, P(n) = 0 for even n, we have c2 = 8/π2 = 0.81. If there
are faster decaying correction terms O(1/n5/2), Eq. (40), as
is confirmed by our numerical results we get c = c2 ln(2) =
2/3 ln(2), smaller by a factor 2

3 than found previously.
We can also derive the EE as function of the physical

distance l . For small filling N � L, the even-odd effect as
function of the physical distance l is negligible and we get
for intermediate range a � ls � L, Eq. (21), as confirmed
numerically. We thus recover Eq. (48) with the central charge
given by c̃ = c̃ = c′ ln(2) < 1. Here, using Eq. (21) we get
c′ = 1.

Let us next implement the SDRG numerically. Figure 10
shows results, numerically calculating the mean block en-
tanglement entropy using Refael and Moore’s prescription
illustrated in Fig. 9, which is plotted as function of the index
distance size n of the partition, that counts how many spins
are inside a partition. The XX chain with open boundary
conditions has N = 500 spins with long-range power-law in-
teractions [Eq. (2)]. As mentioned above, such a prescription
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FIG. 10. Average block entanglement entropy as obtained with
the numerical SDRG for the long-ranged XX chain with N = 500
spins, open boundary conditions, and various values of α as function
of index distance n. The average was evaluated over 2 × 104 real-
izations for each α, The blue line is Eq. (49) with a central charge
c = ln(2), b = 1, and k′ = 0.18.

implies that the RSS is a good approximation of the actual
ground state of the chain.

The result for the average entanglement entropy as function
of index distance n is shown in Fig. 10 for various values of α

with open boundary conditions. The blue line is Eq. (49) with
a central charge c = ln(2), b = 1, and k′ = 0.18. We thereby
find that the EE is in good agreement with Eq. (49), and we
observe only a weak dependence on α, decaying by only a few
percent as α is changed from α = 6 to 0.8.

In Fig. 11 we plot the average block entanglement entropy
as function of the physical distance l for the long-ranged
XX chain with N = 500 spins, open boundary conditions for
various values of α, and for a filling factor N

L = 0.1. The

FIG. 11. Average block entanglement entropy, obtained from the
numerical SDRG for the long-ranged XX chain of length L = 5000,
open boundary conditions for various values of α, and for a filling
factor N

L = 0.1 as function of the physical distance l . The average
was evaluated over 2 × 104 realizations for each α. The blue line
corresponds to the Cardy law (49) with a central charge c = ln(2),
b = 1, and k′ = 0.05.

(a)

(b)

FIG. 12. Average block entanglement entropy as a function of
the partition length l (physical distance), obtained from numerical
SDRG for the long-ranged XX chain with open boundary conditions
for N = 200 spins. Various filling factors N

L = 0.2, 0.1, 0.04 were
considered for both α = 1.8 (a) and α = 4.8 (b). The average was
evaluated over M = 100 000 realizations for each α. The full lines
correspond to the Cardy law (49) with a central charge c̃ = ln(2),
b = 1.

average was evaluated over 20 000 realizations for each α.
The blue dashed line corresponds to the Cardy law (49) with
b = 1, k′ = 0.05, and a central charge c = ln(2), in very good
agreement with the analytical result c = ln(2). In Fig. 12 the
average block entanglement entropy as function of partition
length l is shown, as obtained with numerical SDRG for the
long-ranged XX chain with N = 200 spins, and for various
filling factors N

L = 0.2, 0.1, 0.04, with open boundary condi-
tions and for two values of α. The average was evaluated over
M = 100 000 realizations for each α. The dashed lines corre-
spond to the Cardy law (49) with a central charge c̃ = ln(2),
b = 1, in good agreement with the analytical result.

As both analytical and numerical results based on SDRG
could be artifacts of the assumption that the ground state
remains a random singlet state, let us next calculate the en-
tanglement entropy using the numerical exact diagonalization
method. In Figs. 13 and 14 we show the results for the
average block entanglement entropy, obtained by numeri-
cal exact diagonalization for the long-ranged XX chain for
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FIG. 13. Average block entanglement entropy, obtained from nu-
merical exact diagonalization for the long-ranged XX chain with
a filling factor N

L = 0.1 for sizes L = 140, 160, 180, 200, open
boundary conditions for various values of α = 0.8, 1.0, 2.0, 2.8 as
a function of the partition length l (physical distance). The average
was evaluated over M = 2000 realizations for each α. The full lines
correspond to the Cardy law (49) with a central charge c̃ = 1.4 ln(2),
b = 1, and k′ = 0.13.

a filling factor N
L = 0.1 with open boundary conditions, in

Fig. 13 for L = 140, 160, 180, 200 and various values of α,
and in Fig. 14 for various sizes L = 140, 160, 180, 200, for
α = 0.6, 2, as averaged over M = 500 random samples as a
function of the real subsystem size l . Here, 〈. . . 〉ens denotes
the ensemble average. The dashed lines correspond to Cardy’s
law, Eq. (49), with a central charge c̃ = 1.4 ln(2), b = 1,
and k′ = 0.13, which confirms the weak dependence on α.
The central charge is found by exact diagonalization to be
larger than the one for the short-ranged disordered AFM spin
chain, and by 1.4 larger than obtained with the numerical
implementation of the SDRG above. In Fig. 15 we show
the same results for average block entanglement entropy as
obtained from numerical exact diagonalization for α = 2.0
as a function of the partition length l (physical distance), for
1 < l < L/4, where the critical entanglement entropy (48) is
plotted as the black line corresponding to the approximation
of the Cardy law (49) for l � L with a central charge c̃ = 1,
b = 1. The yellow line is Eq. (48) with c̃ = ln(2), corre-
sponding to the result corresponding to the strong disorder
fixed point (SDFP). We see that while for a wide range of
l , the central charge seems to fit to the one of a clean crit-
ical spin chain c = 1, at small l there are strong deviations
tending rather to the SDFP result with c̃ = ln(2). The range
of l where these deviations, tending toward the SDFP, are
observed increases with increasing number of spins N .

As the averaging may diminish the dependence on α, we
also consider in Fig. 16, the full distribution of the entangle-
ment entropy for (a) α = 0.1, (b) α = 0.8, and (c) α = 2.8,
where 500 random samples have been taken, and the system
size N = 22 is used, and S0

vN = ln(2). We note that also the
distribution shows only a weak dependence on α. It is re-
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FIG. 14. Average block entanglement entropy as obtained by
numerical exact diagonalization for the long-ranged XX chain with
a filling factor N

L = 0.1 for sizes L = 140, 160, 180, 200, for two
values of (a) α = 0.6 and (b) α = 2.0 as a function of the parti-
tion length l (physical distance). The average was evaluated over
M = 2000 realizations for each α. The yellow line corresponds to
the Cardy law (49) with a central charge c̃ = 1.4 ln(2), b = 1, and
k′ = 0.13.

markable that the distribution is peaked at integer multiples
of ln(2), which means that even when averaged over many
ensembles, an integer number of singlets crossing the partition
is most likely.

VII. ENTANGLEMENT MEASURES OBTAINED BY
DENSITY MATRIX RENORMALIZATION GROUP

In this section we apply the density matrix renormalization
group (DMRG) to the same XX model in which N spins
are randomly distributed on a finite lattice with length L and
interact with each other with long-range interactions. We also
allow for an external Zeeman magnetic field B giving the
Hamiltonian

Hxx =
∑
i, j<i

Ji j (α, η0)
(
Sx

i Sx
j + Sy

i Sy
j

)−B
∑

i

Si, (55)

where the coupling function is long range

Ji j (α, ξ ) = |ri − r j |−αη
|ri−r j |
0 , (56)
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FIG. 15. Same as Fig. 14(b) plotted only for 1 < l < L/4. The
black line is the critical entanglement entropy (48), corresponding to
the Cardy law (49) for l � L with a central charge c̃ = 1, b = 1, the
yellow line is Eq. (48) with c̃ = ln(2).

and we introduced an exponential cutoff factor η0 =
exp(−1/ξ ) with correlation length ξ , in addition. Here, the
position ri is randomly distributed on the chain of length L
with lattice spacing a.

A. DMRG applied to spin chains with power-law interactions

To find the ground states (GS) of Eq. (55) for different ran-
dom realizations, we use the density matrix renormalization
group (DMRG) method [26–28] and the noise algorithm [29]
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α = 2.8

FIG. 16. Distributions of the entanglement entropy for (a) α =
0.1, (b) α = 0.8, and (c) α = 2.8, where 500 random samples and
the system size N = 22 are used, and S0

vN = ln(2).

to avoid converging to a local minimum in DMRG calcula-
tions. As shown in Ref. [30], DMRG can be regarded as a
method for optimizing variational wave functions known as
matrix product states (MPS) [30,31]:

|ψ〉 =
∑
{pi}

∑
{αi}

Ap1
α1

Ap2
α1α2

. . . ApN
αN−1

|p1, . . . , pN 〉 (57)

which is a representative one-dimensional tensor network
state [32]. In MPS representation, one can rewrite quantum
operators in a similar tensor network, so-called the matrix
product operator (MPO):

Ô=
∑
{pi p′

i}

∑
{αi}

O
p1 p′

1
α1 O

p2 p′
2

α1α2 . . . OpN p′
N

αN−1 |p1, . . . 〉〈p′
1, . . . |. (58)

Here, {αi} are the virtual indices which are traced out, and
their dimensions are called the bond dimension of MPO. The
success of DMRG for one-dimensional systems is due to the
existence of an exact MPO representation with finite bond
dimensions for a Hamiltonian with short-range or exponen-
tially decaying interactions. For example, the Hamiltonian in
Eq. (55) with α = 0 and η0 < 1 can be exactly written in MPO
representation with the following tensor:

Opp′
αβ =

⎡
⎢⎢⎢⎢⎣

(I)pp′
0 0 0 0

(Sx )pp′
η0(I)pp′

0 0 0
(Sy)pp′

0 η0(I)pp′
0 0

(Sz )pp′
0 0 η0(I)pp′

0
B(Sz )pp′

(Sx )pp′
(Sy)pp′

ζ (Sz )pp′
(I)pp′

⎤
⎥⎥⎥⎥⎦

αβ

,

(59)

where I is the 2 × 2 identity matrix. It becomes the nearest-
neighbor XX model in the limit of ξ → 0. Unfortunately, an
exact MPO expression of a Hamiltonian with the power-law
decaying interaction is not allowed with finite bond dimension
regardless of its exponent α. However, one can decompose
the power-law functions into several exponential functions as
follows:

|r j − ri|−α �
m∑

l=1

λlη
|r j−ri|
l , (60)

where m depends on the distance |r j − ri| and α. Finding
proper {λl} and {ηl} is not a trivial problem, but Pirvu et al.
in Ref. [33] have found a systematic and elegant way to
find them. Employing the fitting procedure in Ref. [33], we
have decomposed the power-law function in Eq. (56) into
17 different exponential functions, and they are in excellent
agreement with the original power-law function in the range
of α ∈ [0.2, 2.8] on a lattice with L = 800 (α ∈ [0.2, 2.0] on
L = 1200). Considering the random distances between neigh-
boring spins, one can find the following MPO tensor encoding
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both the long-range interaction and randomness:

Opi p′
i

αβ =

⎡
⎢⎢⎢⎢⎣

(I2)pi p′
i 0 0 0 0

(��i ⊗ Sx )pi p′
i (��i ⊗ I2)pi p′

i 0 0 0
(��i ⊗ Sy)pi p′

i 0 (��i ⊗ I2)pi p′
i 0 0

(��i ⊗ Sz )pi p′
i 0 0 (��i ⊗ I2)pi p′

i 0
B(Sz )pi p′

i (�λT ⊗ Sx )pi p′
i (�λT ⊗ Sy)pi p′

i ζ (�λT ⊗ Sz )pi p′
i (I2)pi p′

i

⎤
⎥⎥⎥⎥⎦

αβ

, (61)

where T denotes the transpose, �λ = [λ1, λ2, . . . , λm]T and �i

is a diagonal matrix with diagonal elements

��i = [(η0η1)ri , (η0η2)ri , . . . , (η0ηm)ri ]T , (62)

and ri = |ri+1 − ri|. Performing DMRG with MPO tensor in
Eq. (61), one can find the ground state of Eq. (55) for a given
α, ξ and random sample.

B. Results

Now, let us discuss the results obtained that way with
DMRG for a chain with open boundary condition and filling
factor N/L = 1

10 .
Concurrence. First, let us begin with the concurrence re-

sults presented in Fig. 17. The left panel shows the averaged
concurrence as a function of the index distance (nnm = |n −
m|) between two spins at sites m and n. The averaged concur-
rence C̄(n) shows for some range a power-law decay, followed
by an exponential decay at larger distance n. We observe that
for larger α the onset of the exponential decay occurs already
at smaller lengths n. Near α = 1 we find a power-law decay
for all n. This is consistent with the appearance of a delocal-
ized critical state. We extract the power of the concurrence
function at α = 1 and obtain γ = 1.56, i.e., 〈Cn〉 ∼ n−1.56,
which is different from the result obtained at the IRFP where
〈Cn〉 ∼ n−2, as reviewed above. The distribution of concur-
rence at a given index distance nnm = 10 with α = 1 and 2.8 is
shown on the right in Fig. 17, where the horizontal axis is on a
log scale. As expected, the concurrence is widely distributed.
It follows a log-normal distribution, its center is shifted to
smaller values as α is increased, and its width increases with
increasing α.

Entanglement entropy. Let us next consider the entan-
glement entropy (47), which one can obtain directly with
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FIG. 17. (Left) Concurrence averaged over 1000 random sam-
ples as a function of index distance nnm = |n − m|. (Right) Dis-
tribution of the concurrence at nnm = 10. Filling factor is fixed to
N/L = 0.1

DMRG from the entanglement spectrum. In Fig. 18, an ex-
emplary result is presented for a given random sample. We
see a distinct structure of entanglement of the ground states
at α = 0.8 and 2. Here, the horizontal axis n is the length of
the subsystem. At α = 2, the entanglement entropy fluctuates
randomly between 0 and 2S0

vN[= ln(2)] throughout the entire
chain, which is an indication that the ground state is close
to a random singlet state, a product of local singlets, whose
length is, however, narrowly distributed and thus localized.
On the other hand, at α = 0.8, the SvN is nonzero everywhere,
which implies that the ground state has a finite degree of
entanglement throughout the system. This is consistent with a
delocalization transition to extended states below α < αc ≈ 1.
The averaged entanglement entropy [〈SvN〉ens] over 1000 ran-
dom samples with N = 80 is presented in Fig. 19(a) as a
function of the subsystem size n. For 1.2 < α � 2.8 we find
that the average entropy is independent of subsystems size
n, which corresponds to area law scaling. At smaller α the
entanglement entropy increases and we find good agreement
near α = 1 with Cardy’s formula (49) for a finite system with
open boundary conditions. Fitting curves to Cardy’s law
[Eq. (49)] are displayed in Fig. 19 as black solid line. The
red line in Fig. 19 is obtained by plotting Eq. (51), which we
derived in the previous section. Thereby we find that the ex-
tracted central charge is cfit = 0.93, with a constant k = 0.39.
After the entanglement entropy reaches a maximum at α ≈ 1,
it decreases again with decreasing α , as seen for α = 0.6, 0.8
in Fig. 19(a). We find that the αc with maximum entanglement
entropy depends on the system size N . In analyzing its sys-
tem0size dependence (Fig. 19), we find the critical exponent
to be αc = 1.0097 in the thermodynamic limit 1/N → 0. This
is in very good agreement with the SDRG result in Ref. [12],
where a delocalization transition has been argued to occur

FIG. 18. Entanglement entropy as a function of the subsystem
size n for a given random sample, where S0

vN = ln(2).
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FIG. 19. (a) Entanglement entropy averaged over 1000 random
samples as a function of the subsystem size n. Here, 〈. . . 〉ens denotes
the ensemble average. The red and black solid lines are fitting curves
to Eqs. (52) and (49), respectively. (b) Finite-size scaling of αc at
which the ground state is most entangled for a given N . The density
of spins is fixed at N/L = 0.1.

at αc as estimated to be 1.066 ± 0.002 from a crossover in
energy level statistics.

Figure 20 presents the distribution of the entanglement
entropy obtained from M = 1000 random samples. There are
peaks at integer multiples of S0

vN = ln(2), both with (red lines)
and without magnetic field (black lines). Note that the effect of
the magnetic field on the GS depends strongly on α. The dis-
tributions of EE are for α < 1 [Fig. 20(a)], hardly influenced
by a weak field, which indicates that spins are correlated, and
there are no free spins. At α = 1 [Fig. 20(b)], the distribution
without magnetic field is almost identical to the one at smaller
α, α = 0.8, and without magnetic field. However, at α = 1 it
is affected by the weak magnetic field, such that peaks at S0

vN
and 2S0

vN are lowered while the one at 0 is enhanced by the
field. This indicates the emergence of uncorrelated spins with
no entanglement entropy. This enhancement of the probability
at SvN = 0, corresponding to a larger density of uncorrelated
spins, is found to increase further with larger α as seen in
Fig. 20(c).

Thus, these results obtained with DMRG imply that the
entanglement entropy decreases as α is increased beyond a
critical value αc ≈ 1 and approaches a constant value inde-
pendent of the subsystem size, corresponding to an area law
as expected in a localized, noncritical regime.
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FIG. 20. Distributions of the entanglement entropy for (a) α =
0.8, (b) α = 1.0, and (c) α = 2.0, where 1000 random samples and
the system size N = L/10 = 80 are used, and S0

vN = ln(2).

While we cannot extend the DMRG to sufficiently large α

to detect further increase with α, we can check if we can see
the increase of the entanglement entropy when the interaction
is cut off exponentially, and whether the IRFP with critical
entanglement entropy is recovered. In Fig. 21 the averaged
entanglement entropy as a function of the correlation length
is shown for α = 1 as obtained with DMRG. Indeed, while
initially a decrease with decreasing correlation length ξ is
observed at a ξ of the order of twice the lattice spacing, we
observe an increase of the EE again, which is an indication
that the IRFP is reached in the short-range limit.

1 2 3 4 5 6 7 8 9
ξ

0.56

0.58

0.6

0.62

0.64

S vN
en

s

FIG. 21. Averaged entanglement entropy at l = 40 as a function
of the correlation length in units of the lattice spacing. The red solid
line denotes the exact EE SvN = ln(2)

6 log2 40 � 0.6148 at IRFP [9].
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FIG. 22. Averaged susceptibility of the ground state as a function
of α for (a) various system sizes N with fixed density N = L/10 and
fixed magnetic field B = 0.0001J . (b) For various magnetic fields B
for N = 80. (c) The derivative of the logarithm of the averaged mag-
netic susceptibility with respect to α, where �(α) = log[〈χ (α)〉ens].

Susceptibility. As we have observed above, an increase of
the sensitivity to a magnetic field for powers α exceeding
αc when considering the distribution of the entanglement en-
tropy, let us consider next the magnetic susceptibility of the
ground state in a weak magnetic field B directly, as defined
by 〈χ (α)〉ens = 〈�M(α)/�B〉ens, with the magnetization M =
(1/N )

∑N
i=1〈Sz

i 〉.
Figure 22(a) shows the result for that susceptibility as func-

tion of α for different system sizes N at a weak magnetic field
B = 0.0001J , showing a monotonous increase with increasing
α. We note that it converges to a single curve as the sys-
tem size is increased, for N > 50 it hardly changes anymore
reaching the thermodynamic limit. Remarkably within a small
interval of α there is a jump in the susceptibility at a value
αjump which converges for large N > 50 to a value αjump →
0.98, which is close to the critical exponent αc where we found
maximal entanglement above, which was interpreted as an

indication of a delocalization transition. This suggests that for
larger α > αjump spins are more weakly coupled, explaining
the significant increase of magnetic susceptibility χ . We also
investigate the magnetic field dependence of susceptibility for
the largest system size N = 80 as shown in Fig. 22(b). We
find that the position of the jump αjump(B) depends on mag-
netic field, decreasing substantially at the highest magnetic
field considered, while the jump becomes smoother. This is
confirmed in Fig. 22(c), where the derivative of χ with respect
to α is shown for several values of the magnetic field. In the
next section, we compare DMRG results with the result of nu-
merical exact diagonalization and conclude there that DMRG
tends to underestimate entanglement, a difficiency of DMRG
which becomes more severe the larger α. Therefore, while the
results presented in this section seem to confirm a delocaliza-
tion transition at αc ≈ 1, it will need further improvements of
DMRG to make definite conclusions, as outlined below.

VIII. COMPARISON BETWEEN EXACT
DIAGONALIZATION AND DMRG

We have seen in the previous section that the tensor net-
work extension of the DMRG yields results for entanglement
measures which are, at least for α > 1, not in good agreement
with the results obtained with either the strong disorder renor-
malization group method or the exact diagonalzation (ED)
presented above. Therefore, in this section we compare the
DMRG results for the ground-state properties directly with
the ED results. We consider a small chain with N = 12 spins,
distributed randomly in a chain of length L = 120. We have
used ED and DMRG to calculate the ground-state wave func-
tion, entanglement entropy, and spin-spin correlations among
all pairs. Results are illustrated in Fig. 23 for open boundary
condition. Calculations with matrix product state (MPS) opti-
mization have been performed using the ITENSOR C++ library
[34]. We run enough sweeps for the entropy to converge to at
least 10−10, and a large number of states, up to 1000, were
kept so that the truncation error is less than 10−12. Regarding
the implementation of long-range interaction, as the system is
small, we used the AutoMPO method available in ITENSORand
input all of the terms connecting sites i and j, so here we did
not consider further approximation like fitting interactions to
a sum of exponentials as done in the previous section [33] or
more recent SVD compression approaches [35]. The ED re-
sults were obtained with the standard ARPACK diagonalization
routine as implemented in SCIPY [36].

For small power exponent α = 1 both methods are in
agreement for all random realizations, both in the entangle-
ment entropy and the spin-spin correlations measurement, as
seen in Fig. 23 where each row corresponds to a specific
sample. When increasing α, however, one can see that the
results of DMRG gradually deviate from ED. Particularly,
focusing on the entanglement entropy, it is clear that DMRG
converges to a state with lower entanglement. As seen from
the amplitudes of the many-body wave function in the lower
Fig. 23 (black) this is accompanied by a breaking of the
particle-hole symmetry. In fact, it is well known that the
matrix product state ansatz of DMRG tends to prefer states of
lower entanglement, when states are close in energy. Indeed,
although the states obtained with ED shown in the lower
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FIG. 23. Comparison between ED and DMRG for N = 12 spins
distributed randomly over length L = 120 with open boundary con-
dition: From the M = 1000 realizations, we show the entanglement
entropy, the spin-spin correlation, and the ground-state wave function
of three samples. In the lower figure the vertical red line is plotted at
the particle-hole point, as a guide to the eyes.

Fig. 23 (yellow) are found to have the same energy, the ED
ground state is particle-hole symmetric and more strongly
entangled. Thus, this is evidence that the DMRG omits some
of the singlets formed at long distances, which therefore tends
to underestimate the entanglement while changing the energy
only by an amount smaller than the numerical accuracy. It has

been reported that extensions of tree-tensor networks (TTN)
can capture entanglement properties in disordered systems
better [37].

IX. CONCLUSIONS

We find that the strong disorder fixed point, characterized
by a fixed point distribution of the couplings with a finite
dynamical exponent, describes disordered quantum systems
of long-range coupled antiferromagnetic spin chains consis-
tently. However, the lowest-order SDRG, with its RS state,
is found not to be sufficient to obtain the typical value of
the concurrence. We therefore proposed and implemented a
correction scheme to the RS state, allowing us to obtain the
leading-order corrections. These corrections yield a power-
law distance scaling of the typical value of the concurrence,
which we demonstrate both by a numerical implementation
of these corrections and by an analytical derivation. They are
found to be in agreement with each other.

The entanglement entropy (EE) is calculated using SDRG
numerically and analytically and found to be logarithmically
enhanced for all α, whereas the effective charge is found not
to depend on α and to be c = ln(2), in agreement with an
analytical derivation. However, the analytical derivation uses
assumptions on the correlation between singlets, and in a first
attempt to include these correlations, we arrived at a smaller
central charge. Therefore, a more rigorous derivation is called
for, which we leave for future research.

While we confirm with numerical exact diagonalization
(ED) the logarithmic enhancement of EE and a weak depen-
dence on α, in a wide range of distances l it fits a critical
behavior with a central charge close to c = 1, reminiscent of
the clean Haldane-Shastry model with power-law decaying
interaction with α = 2. Indeed, the concurrence, derived with
numerical ED, is also found to decay with a power law, whose
exponent is smaller than the one found by SDRG, γ = 2, and
closer to the one known for the Haldane-Shastry model, γ = 1
[15,38]. However, at small distances l � L we find strong de-
viations, which may indicate that the central charge converges
to the SDRG value c = ln(2) < 1 for large sizes. Therefore, in
future research the exact diagonalization should be extended
to larger systems to check for which ranges of α disorder is
relevant so that the system converges to the SDRG fixed point.

We also present results obtained with DMRG and find
agreement with ED for sufficiently small α < 2, while for
larger α, DMRG is found to underestimate the entanglement
entropy and finds a faster decaying concurrence. As it is
known from previous studies that DMRG underestimates
entanglement, extensions like the tree-tensor network have
been suggested, which also might allow a study of larger
system sizes. We note that it has been previously suggested
that a delocalization occur at a critical value of αc [11]. As we
find a logarithmic length dependence for all α, as expected at
a critical point, we cannot discern the delocalization transition
at a specific αc in the entanglement properties within this
approach.
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APPENDIX A: SOLUTION OF THE MASTER EQUATION
AT THE FIXED POINT

In this Appendix we show how to derive the solution of the
master equation at the fixed point. We denote μ = 1

�(�) . First,

we multiply by
∫

zJdJ the two sides of Eq. (7), and then plug
in the ansatz for P(J,�), Eq. (9):∫ �

0
dJ zJ�μJμ−1

[
μ2(�) − �μ′μ − �μ′μ ln

( J

�

)]

= μ6�−5μ−1
∫ �

0
dJ5Jμ−1

5 zJ5

∫ �

0
dJ3dJ4(J3J4)μ−1

×
[∫ �

0
dJ1Jμ−1

1 J
J1 (J4−J3 )

�

1

∫ �

0
dJ2Jμ−1

2 J
J1 (J3−J4 )

�

2

]
. (A1)

The left-hand side of Eq. (A1) can be integrated and ex-
pressed in terms of hypergeometric functions. One can also
integrate over J5, J1 and J2 on the left-hand side, yielding

M(μ,μ + 1,� ln(z))
(

μ

�
− μ′

μ

)

+ μ′

μ
2F2(μ,μ,μ + 1, μ + 1,� ln(z))

= μ6�−3μ−1( − ln(z))−3μγ (μ,−� ln(z))

×
∫ �

0
dJ3dJ4(J3J4)μ−1 × [(J4 − J3)−2μγ (μ, (J3 − J4)

× ln(z))γ (μ, (J4 − J3) ln(z))]. (A2)

Here γ , 2F2, and M are, respectively, the lower incomplete
gamma function, the generalized hypergeometric function,
and the confluent hypergeometric function, defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ (s, x) = ∫ x
0 t s−1e−t dt,

M(μ,μ + 1, x) =
∞∑

n=0

μxn

n!(μ+n) ,

2F2(μ,μ,μ + 1, μ + 1, x) =
∞∑

n=0

μ2xn

n!(μ+n)2 .

(A3)

Using the identity γ (a,−z) = −(za/a)M(a, a + 1, z) and
Eqs. (A3), one can rewrite Eq. (A1) as

M(μ,μ + 1,� ln(z))
(

μ

�
− μ′

μ

)

+ μ′

μ
2F2(μ,μ,μ + 1, μ + 1,� ln(z))

= μ6�−3μ−1(− ln(z))−μγ (μ,−� ln(z))

×
∞∑

k=0

B(μ, 2k + 1)( ln(z))2k

(2k)!(k + μ)

×
[∫ �

0
dJ3dJ4(J3J4)μ−1(J4 − J3)2k

]
(A4)

with B(μ, 2k + 1) being the standard beta function.
Finally, we evaluate the last double integral∫ �

0

∫ �

0
dJ3dJ4(J3J4)μ−1(J4 − J3)2k

= �2μ�2k

k + μ

�(μ)�(2k + 1)

�(μ + 2k + 1)
, (A5)

allowing us to get the integrated form of the constraint equa-
tion

M(μ,μ + 1,� ln(z))
(

μ

�
− μ′

μ

)

+ μ′

μ
2F2(μ,μ,μ + 1, μ + 1,� ln(z))

= μ5

�
M(μ,μ + 1,� ln(z))

×
∞∑

k=0

�2(μ)�(2k + 1)(� ln(z))2k

(k + μ)2�2(μ + 2k + 1)
, (A6)

which can be rewritten using Eq. (A3) in the form

−μ′(�)
∞∑

n=1

(�t )n

(n − 1)!(μ + n)2
= μ6(�)

�

×
∞∑

k=1,k′=0

�2(μ)(2k)!(�t )2k+k′

(k + μ)2�2(μ + 2k + 1)k′!(μ + k′)
. (A7)

Here, we defined t = ln(z).

APPENDIX B: BENCHMARK MODEL RESULTS

1. Haldane-Shastry model

Among the spin models in one dimension, the Haldane-
Shastry chain [15] is interesting for several reasons. It is
an antiferromagnet with 1/r2 exchange interactions, and it
possesses a Yangian symmetry which makes it integrable,
therefore, exactly solvable. This model is defined by

H = J
π2

N

∑
j<i

SiS j

d (zi, z j )2
, (B1)

where d (zi, z j ) is the distance between two arbitrary sites on
a ring, as given by

d (zi, z j ) =| zi − z j |= 2

∣∣∣∣ sin

(
π (i − j)

N

)∣∣∣∣. (B2)

The Haldane-Shastry (HS) spin chain is known to be critical
and indeed connected to the Wess-Zumino-Witten (WZW)
conformal field theories in the long-wavelength limit. More
precisely, the critical theory of the model in Eq. (B1) is the
WZW model SU(2)k at level k = 1, with a central charge
c = 1. In this section we show, as a benchmark, the result
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FIG. 24. Entanglement entropy obtained via exact diagonaliza-
tion for the Haldane-Shastry model with N = 22 sites with periodic
boundary conditions. The solid line corresponds to the Cardy law
(49) with a central charge c̃ = 1.0, b = 2, and k′ = 0.74.

of our implementation of exact diagonalization for the clean
Haldane-Shastry model, for N = 22 spins, recovering the c =
1 analytical result, as shown in Fig. 24.

2. Random Heisenberg XX model

In this section, we implement the exact diagonalization
procedure for the random short-ranged AFM XX Heisenberg
model, defined by its Hamiltonian

H =
N−1∑
i=1

Ji
(
Sx

i Sx
i + Sy

i Sy
i+1

)
, (B3)

where {Ji}N−1
i=1 are uncorrelated positive random variables,

drawn from a distribution P(J ). In Ref. [9], it was shown
with the SDRG method that, given an interval of length l em-
bedded in the infinite line, the average entanglement entropy
of this interval, with the rest of the chain scales for large l
as Eq. (49) with b = 2, corresponding to the entanglement
entropy of a critical system (48), with an effective central
charge c̃ = c × ln(2), where c = 1 is the central charge of the
pure XX Heisenberg model. Figure 25 shows ED results for a
sample with N = 22 spins with open boundary conditions for
the entanglement entropy averaged over 200 random samples
as function of partition size n. A strong even-odd effect is
seen. The yellow line is the Cardy law (49) with c̃ = 0.8 ln(2),
b = 1, and k′ = 0.68, which is in good agreement with the
result obtained for a RS state (52), when c2 = 0.8. The pink
line is Eq. (49) with c̃ = 2 ln(2), b = 1, and k′ = 0.37.

Figure 26 shows the result of exact diagonalization for this
model, considering a system of N = 22 spins with periodic
boundary conditions. ED reproduces the results obtained an-
alytically in Ref. [9], and derived in this paper, Eq. (52) for
b = 2, when c2 = 1.

1 6 11 15 21

n

0.50

0.55
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S̄
v
N

c̄ = 0.8 ln 2, k = 0.65

c̄ = 2.0 ln 2, k = 0.37

FIG. 25. ED results for a sample with N = 22 spins with open
boundary conditions for the entanglement entropy averaged over 200
random samples as function of partition size n. The yellow line is the
Cardy law (49) with c̃ = 0.8 ln(2), b = 1, and k′ = 0.68. The pink
line is Eq. (49) with c̃ = 2 ln(2), b = 1, and k′ = 0.37.

APPENDIX C: ENTANGLEMENT ENTROPY WITH
CORRECTIONS TO THE RANDOM SINGLET STATE

Having the RS state with corrections |ψ〉 [Eq. (31)] we
can write the density matrix to calculate the entanglement
entropy beyond the RSS using directly the definition of the
von Neumann entropy equation (47). Given that the RS state
with corrections |ψ〉 is not a product state, there are no simple
combinatorical arguments, such as the counting of crossing
singlets, since the entropy of a superposition state is not the
sum of the individual entropies. Moreover, a closed formula
using the definition (47) is not feasible due to the depen-
dence of the sums on the specific realization of the RSS,
which makes taking the partial trace inconceivable without
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N

c̄ = 1.0 ln 2, k = 0.7

FIG. 26. The ED results for the random nearest-neighbor model
with N = 22 sites on periodic chain. Data were averaged over 1000
random samples. The solid line corresponds to the Cardy law (49)
with a central charge c̃ = 1.0 ln(2), b = 2, and k′ = 0.7.
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considering every single possible scenario, i.e., there are as
many outcomes for the partial trace as there are possible
random singlet states on the chain (∼N).

A possible solution to this problem is to start by taking
into account in Eq. (31) the term with the largest coefficient
in the sum corresponding to the corrections to two singlet
states, only. Once this is achieved, one possibly can then close
the argument recursively to take into account all corrections.
Keeping only the largest coefficient in Eq. (31) we get

|ψ〉 ≈ c|ψRS〉 + cδJ (|+nl〉|−mk〉
+ |−nl〉|+mk〉)

⊗
{i j}�={nl}�={mk}

|0i j〉, (C1)

where

δJ = Jnm + Jlk − Jnk − Jml

Jnl + Jmk
(C2)

is the maximum coefficient appearing in Eq. (31), and the
coefficient cψ needs to be redefined as

cψ = 1√
1 + 2δJ2

, (C3)

in order to keep the approximated state properly normalized.
Now, let us consider a situation where the RSS state is such
that k singlets cross the partition boundary, giving the EE

S(k) = k ln(2). (C4)

With the corrected state (C1) we find, after a lengthy but
straightforward calculation, that it is possible to arrive at a
conditional closed form for the entanglement entropy that de-
pends where the two converted singlet pairs {nl} and {mk} are
located, relative to the partition boundary. There are three dis-
tinguishing cases that give rise to different expressions for the
entanglement entropy as a function of the number of crossing
singlets and triplets k. [Here we set c = cψ in Eq. (C3), which
in the limit of no corrections (δJ → 0, c → 1) simplifies to
Eq. (C4)].

Case 1. Each of the two converted singlets {nl} and {mk}
are at opposite sides of the cut and none of them cross the
boundary:

S(k) = −c2 ln

(
c2

2k

)
− (1 − c2) ln

(
1 − c2

2k+1

)
. (C5)

Case 2. Both converted singlets cross the boundary be-
tween subsystems, for k � 2:

S(k) = − c2

2
ln

(
c2

2k

)
− c2

4
(2 δJ + 1)2 ln

(
c2

2k
(2 δJ + 1)2

)

− c2

4
(2 δJ − 1)2 ln

(
c2

2k
(2 δJ − 1)2

)
. (C6)

Case 3. Any other relationship between the converted pairs
and the boundary, e.g., both pairs are part of the same subsys-
tem or only one of them crosses the boundary. In this case, the
approximated state brings no correction to the entropy, giving
the same value obtained at the IRFP [9] [Eq. (C4)]. Moreover,
as seen in Fig. 27(a) for the specific instance k = 3, case 1

FIG. 27. (a) Entanglement entropy as function of c2 for the
three instances that occur after approximating the corrected state
to Eq. (C1). We note that for 0 < c2 � 0.5, perturbation theory is
no longer valid and a different behavior in this regime might occur.
(b) Average block entanglement entropy calculated with the approxi-
mated state in Eq. (C1) for a chain with N = 800 spins. The power α

is varied from 0.60 to 2.00. Calabrese and Cardy’s formula [Eq. (49)]
is plotted along for reference as a black continuous line.

[Eq. (C5), dashed line] gives a higher entropy than the one at
the IRFP [Eq. (C4), continuous line]. This is expected since
the corrected state is a superposition of states that differ only
in spin pairs {nl} and {mk}, which live on opposite sides of the
subsystem boundary, and therefore results in an enhancement
of the quantum correlations between subchains. On the other
hand, case 2 [Eq. (C6), dashed-dotted line] gives a lower en-
tropy than that of Eq. (C4), also for all values of c �= 1. Again,
this is expected due to the fact that the extra correction terms
are destroying the RSS, which in this case is the maximally
entangled state, given that both pairs cross the boundary. It is
worth noting that in order to plot the entropy in Eqs. (C6) and
(C3) was inverted in order to obtain δJ (c2), and the positive
root was chosen. However, since Eq. (C6) is an even function
of δJ , this choice becomes trivial.

We observe that, even though the plot is only shown for
the specific case of k = 3 crossing singlets, the above state-
ments remain true for all values of k, as can be inspected
via Eqs. (C5) and (C6). As seen in Figs. 27(b) and 27(c) for
a chain of length N = 800, the approximation in Eq. (C1)
that gives rise to Eqs. (C5), (C6), and (C4) does not give
a significant dependence on the power α, and the entropy
remains close to Cardy’s result. By looking at the difference of
the entropy calculated with corrections and the one calculated
solely with the RSS, we find that they are about two orders of
magnitude smaller than the respective entropy values, which
is not surprising since the corrections to only two singlets are
taken into account so far.

Therefore, we can conclude that cases 1 and 2, the two
cases in which corrections appear, are not frequent enough
throughout realizations to notably affect the average entropy.

In conclusion, even though the corrected state in Eq. (31)
is useful to calculate the typical concurrence, it does not
give a sizable correction to the average entanglement entropy
governed by the RSS. Next, we would have to find a way to
include the corrections to the EE from all singlet-triplet exci-
tations by taking recursively weaker and weaker corrections
into account, which we leave for future research.
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