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Comment on “Chern-Simons theory and atypical Hall conductivity in the Varma phase”
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In a recent paper [Phys. Rev. B 97, 075135 (2018)], Menezes et al. analyze the topological behavior of
an effective bosonic model defined on the Lieb lattice in the presence of an electromagnetic field. In this
context, the authors claim to have found an atypical quantum Hall effect for the quasiparticles. However, some
inconsistencies related to the treatment of the propagator jeopardize the main result in this system.
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In an interesting paper, Menezes et al. [1] analyzed the
topological response of an effective bosonic theory defined
on the Lieb lattice which is minimally coupled to an external
U (1) gauge field in (2 + 1) dimensions. To this purpose, the
authors consider a tight-binding Hamiltonian with three dif-
ferent species of (pseudo-) gapped fermions (see Eqs. (1)–(3)
in Ref. [1]), similar to the one proposed in Ref. [2]. Such
pseudogap behavior arises from the so-called Varma phase
[3] which breaks time-reversal symmetry spontaneously (pre-
serving the translational symmetry of the lattice) and whose
realization would be possible in the copper oxygen planes of
high-temperature cuprate superconductors [3,4].

As a first result, in Sec. II in Ref. [1], the authors showed
that the dynamics of the charge carriers on that Lieb lattice
in the low-energy regime present a relativisticlike behavior,
correctly described by Duffin-Kemmer-Petiau-like Hamilto-
nian (DKP). Disregarding irrelevant constants, this effective
Hamiltonian is expressed in a simplified version as (see
Eq. (4) in Ref. [1]),

HDKP� = E�, (1)

HDKP = [β0, β1]k1 + [β0, β2]k2 + mβ0, (2)

where � is the three-component spinor (see Fig. 1 in Ref. [1]),

�(k) =
⎛
⎝

b(k)

a(k)

c(k)

⎞
⎠, (3)

k = (k1, k2) is the momentum or wave vector and β iare two
3 × 3 anti-Hermitian matrices which, together with another
3 × 3 Hermitian matrix β0, satisfy the so-called DKP algebra,

βμβνβσ + βσ βνβμ = βμηνσ + βσ ηνμ, (4)

with the metric tensor ημν = diag(1,−1,−1). This is the
basis on which [1] develops.
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In simple terms, the DKP equation is a first-order wave
equation that defines spin 0 (scalar sector) and spin 1 (vecto-
rial sector) fields and particles with a rich algebraic structure
not capable of being expressed in the traditional Klein-Gordon
and Proca theories [5]. Related to this, the authors in Ref. [1]
state that the charge carriers on the Lieb lattice are described
by relativistic pseudospin-0 quasiparticles in two spatial di-
mensions, i.e., these would exist in the scalar sector of the
theory. We rebut this statement via the following argument.
In (3 + 1) spacetime dimensions, the algebra (4) generates
a set of 126-independent matrices whose irreducible rep-
resentations are a trivial representation, a five-dimensional
representation for the scalar sector, and a ten-dimensional rep-
resentation for the vectorial sector [5,6]. Whatever the sector,
it is clear that the DKP spinor will have an excess of compo-
nents. In this case, the theory needs to be complemented by
a constraint equation that allows to eliminate the redundant
components, which is given by

β iβ0β0ki� = m(1 − β0β0)�, i = 1–3. (5)

With this constraint equation, we can express the three
(four) components of the spinor by the other two (six) com-
ponents and their space derivatives in the scalar (vector)
sector—for more details, see Ref. [5]. Thereby we can exclude
the redundant components and reexpress our system of equa-
tions to another that depends only on physical components
(one for the scalar sector and four for the vectorial sector)
of the DKP theory. If we performed this same analysis in
(2 + 1) dimensions, we will see that the algebra (4) now
generates a set of 35-independent matrices whose irreducible
representations are a trivial representation, a four-dimensional
representation, and two different three-dimensional represen-
tations. Note that only the three-dimensional representations
adapt to the structure of the Hamiltonian (2), reducing � to
a three-component spinor, similar to (3). As the Lieb lattice
has three bands at low energy, and we have three com-
ponents to the spinor in (3), these components come from
the three-component pseudospin 1 quasiparticles. The con-
straint equation (5) (modified to two space dimensions, i =
1, 2) eliminates the redundant pseudospin 0 quasiparticles.
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Therefore, (3) describes pseudospin-1 quasiparticles. It is im-
portant to highlight that constraint equation also allows one to
demonstrate the equivalence between the Hamiltonian form
(2) and the DKP equation of motion, which is not a trivial
matter [5,7]. In fact, a DKP quantum field theory is possible
only if this equivalence is established as can be verified in
Refs. [8–11].

Section III in Ref. [1] represents the crucial point of this
Comment. In that section, the authors analyzed the topological
response generated by one-loop radiative corrections to the
two-point function of the gauge and DKP fields in (2 + 1)
dimensions. As it is known from usual QED2+1, such a topo-
logical term—called the Chern-Simons term—comes from
the first order in the external momentum contribution of the
vacuum polarization diagram [12]. In Physics of Condensed
Matter [13] (perhaps its most notable application), this emer-
gent Chern-Simons theory naturally leads to the transverse
conductivity observed from the Hall effect. In this context, the
authors claim to have found an atypical quantum Hall effect
for the DKP quasiparticles (Eq. (15) in Ref. [1]), given by

σ xy = sgn(m)
q2

4h
. (6)

The above expression is their main result and represents a
truly atypical result (one should expect to obtain an integer
quantum Hall effect), which is relevant in itself because it is
obtained from an Abelian Chern-Simons theory whose origin
is a non-Dirac system (namely, DKP system). Unfortunately,
we found some inconsistencies related to the treatment of
the DKP propagator, in fact, the expression (13) in Ref. [1]
is incorrect [8–10], therefore, the final result (6) is invalid.
Below, we justify our statement.

We start considering that the interaction of the elec-
tromagnetic field with the long-wavelength (low-frequency)
excitations of charge carriers on the Lieb lattice can be de-
scribed by relativistic quantum electrodynamics for integer
spin particles [8,11]. The action (8) in Ref. [1] is built upon
the motion equation,

(ih̄/∂ − q /A − m)� = 0, (7)

where m is the mass-gap parameter, q is the coupling parame-
ter, and Aμ is the vector gauge potential,

/∂ = βμ ∂

∂xμ
, /A = βμAμ.

The resulting polarization tensor in the momentum represen-
tation is given by

i�μν (p) = +q2

h̄

∫
d3k

(2π )3
Tr[βμG� (k − p)βνG� (k)], (8)

where

G� (k) = i
1

βμkμ − m
(9)

is the DKP-free (Feynman) propagator. The tensor polariza-
tion (8) is equivalent to Eq. (12) in Ref. [1], by changing
μ ↔ ν. The vacuum polarization diagram we have considered
is the one shown in Fig. 1, which allowed us the built i�μν (p)
following the same Feynman rules of the usual QED2+1,
except for the plus sign (+) in front, which is reminiscent

FIG. 1. Vacuum polarization diagram for the Hamiltonian given
by Eq. (1).

of the bosonic nature of the DKP theory [8]. The standard
procedure to calculate i�μν (p) says that we must first evaluate
the trace of β matrices, which implies that G� (k) in (9) must
be rewritten in such a way that these matrices appear in the
numerator. Nevertheless, this process in DKP theory is more
complicated (as compared with Dirac theory) due mainly to its
algebra and because the β matrices are singulars (det[β] = 0).
As β−1 does not exist, it implies that some common identities
are not valid anymore, for instance, (βμ pμ)(βν pν )−1 = I.
Because of the omission of this fact, the propagator in Ref. [1]
was incorrectly constructed (see Eq. (13) in Ref. [1]). The
correct form for the DKP propagator is also performed in
Refs. [14–16] and is expressed as follows:

G� (k) = i
1

βμkμ − m
= i

m

[
/k(/k + m)

k2 − m2
− 1

]
. (10)

It is straightforward to see that the propagator in (10) is
strictly defined for massive particles as required for the DKP
theory. In fact, Eq. (2) with m = 0 represents a different rela-
tivistic equation, the so-called Harish-Chandra equation [17],
whose analysis we will leave aside here. So, we go to focus
on the propagator in (10), alternatively rewritten as

G� (k) = G1(k) + G2(k)

= i
(/k + m)

k2 − m2
+ i

m

(/k2 − k2)

k2 − m2
. (11)

Note that the first term on the right G1(k) coincides ex-
actly with the propagator proposed by Menezes et al. (see
Eq. (13) in Ref. [1]), which is used to determine the value
of the Hall conductivity by considering the contribution
from antisymmetric part of the polarization tensor i�μν ∼∫

d3k Tr[βμG1β
νG1] and the second term G2(k) is absent.

The point of this Comment is to demonstrate that, when
G2(k) is inserted into (8), the term ∼ ∫

d3k Tr[βμG1β
νG2 +

βμG2β
νG1 + βμG2β

νG2] contributes a non-negligible value
to the value of the Hall conductivity found in Ref. [1].

For this purpose, we rewrite the polarization tensor accord-
ing to decomposition (11),

i�μν (p) = i�μν
(1,1) + i�μν

(1,2) + i�μν
(2,1) + i�μν

(2,2), (12)

where i�μν
(i, j) are functions of momentum p, conveniently

defined as

i�μν
(1,1) = q2

h̄

∫
d3k

(2π )3
Tr[βμG1(k − p)βνG1(k)],

i�μν
(1,2) = q2

h̄

∫
d3k

(2π )3
Tr[βμG1(k − p)βνG2(k)],

207101-2



COMMENTS PHYSICAL REVIEW B 102, 207101 (2020)

i�μν
(2,1) = q2

h̄

∫
d3k

(2π )3
Tr[βμG2(k − p)βνG1(k)],

i�μν
(2,2) = q2

h̄

∫
d3k

(2π )3
Tr[βμG2(k − p)βνG2(k)].

As previously mentioned, the result obtained in Ref. [1]
can be reproduced by computing simply the antisymmetric
part of i�μν

(1,1), so, in that sense, it is convenient to divide
Eq. (12) into two contributions: i�μν

(1,1) and i�μν
(1,2) + i�μν

(2,1) +
i�μν

(2,2). As we are only interested in the topological part
of each contribution, we focus our attention on the terms
∼εμνα pα , which come from combining an odd number of β

matrices,

Tr[βρβσβθ ] = iερσθ , (13)

2Tr[βρβαβσβωβθ ] = igραεσωθ + igασ εωθρ + igσωεθρα

+ igωθερασ + igρωεασθ + igαθ ερσω.

(14)

Thus, following the standard methods for QED calculations
[8], we will compute the antisymmetric part of each contribu-
tion separately.

(1) Computing i�μν
AS(1,1).

To determinate the contribution from this first term (which
is used in Ref. [1] to get its main result), we start applying the
trace property (13). After a few calculations, we obtain

i�μν
AS(1,1) = − imq2

h̄

∫ 1

0
dx

∫
d3k

(2π )3

pα

[k2 − �2]2
εμνα,

where we have used the Feynman parametrization procedure,

1

[(k − p)2 − m2][k2 − m2]
=

∫ 1

0
dx

1

[k2 − �2]2
, (15)

together with the changes k → k + xp and � = m2 −
p2x(1 − x) . These integrals are the massive one-loop Feyn-
man integrals, widely studied in QED, and whose result we
will use directly. Thereby we get

i�μν
AS(1,1) = m

|m| pαεμνα q2

4h

∫ 1

0
dx

1√
1 − x(1 − x)p2/m2

,

= sgn(m)
1

4

q2

h
εμνα pα, (16)

where in the last line we have considered the Chern-Simons
regime (m � p). This is the result obtained by Menezes et al.
in their paper as expected.

(2) Computing i�μν
AS(1,2) + i�μν

AS(2,1) + i�μν
AS(2,2).

In this case, both (13) and (14) are required. A quick
inspection allows us to demonstrate that i�μν

AS(2,2) = 0, i.e.,
this term does not have a antisymmetric part. On the other
hand, the sum of the cross terms provides

i�μν
AS(1,2) + i�μν

AS(2,1) = − iq2

2mh̄

∫ 1

0
dx

∫
d3k

(2π )3

× 1

[(k − px)2 − �2]2
Tr[p],

where we use the parametrization (15) with � = m2 −
p2x(1 − x) and

Tr[p] = 2εναω pαkμkω − 2εμαω pαkνkω + 2εμναkα (pk)

− εναω pα pμkω + εμαω pα pνkω − εμνα pα (pk)

− εμναkα p2.

At this point, a regularization scheme is required. We use
the Pauli-Villars regularization, which allows us to make the
change k → k + px, to then exclude the linear terms in k
associated with odd integrals, and replace kμkν by gμνk2/3
in the numerator. Thereby we obtain

i�μν

AS(1,2) + i�μν
AS(2,1) = sgn(m)

3

4

q2

h
εμνα pα

×
∫ 1

0
dx

3 − 2x(1 − x)(p2/m2)

3
√

1 − x(1 − x)(p2/m2)
.

In the Chern-Simons regime (m � p),

i�μν
AS(1,2)(p) + i�μν

AS(2,1)(p) = sgn(m)
3

4

q2

h
εμνα pα. (17)

The above expression represents the main result of this Com-
ment. Note that it is three times larger than the one found
in (16), which implies a important modification to the result
found by Menezes et al. [1]. Thus, if we combine Eqs. (16)
and (17) to find the full expression of the dynamically gener-
ated Chern-Simons term, we get

i�μν
AS (p) = i�μν

AS(1,1) + i�μν
AS(1,2) + i�μν

AS(2,1),

= sgn(m)
q2

h
εμνθ pθ . (18)

The Hall conductivity can be obtained via the Kubo
formula,

σ xy = lim
p→0, p0→0

i�xy
AS

p0
= sgn(m)

q2

h
, (19)

which is the result expected according to the literature [3,18].
Therefore, there is no such atypical Hall conductivity as re-
ported by the authors.

We conclude by emphasizing that the results and con-
clusions presented is this Comment do not alter the others
results shown in Ref. [1], concerning the obtaining of Landau
levels in DKP theory and to the extension of the Jackiw-Rebbi
approach for the DKP quasiparticles.
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