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The dynamic polarization for Kekulé-patterned graphene is studied within the random phase approximation
(RPA). It is shown how the breaking of the valley degeneracy by the lattice modulation is manifested through
the dielectric spectrum, the plasmonic dispersion, the static screening, and the optical conductivity. The valley-
dependent splitting of the Fermi velocities due to the Kekulé distortion leads to a similar splitting in the dielectric
spectrum of graphene, introducing new characteristic frequencies, which are given in terms of the valley-coupling
amplitude. The valley coupling also splits the plasmonic dispersion, introducing a second branch in the Landau
damping region. Finally, the signatures of the broken valley degeneracy in the optical conductivity are studied.
The characteristic steplike spectrum of graphene is split into two half steps due to the onset of absorption in
each valley occurring at different characteristic frequencies. Also, an absorption phenomenon was found where
a resonance peak related to intervalley transport emerges at a “beat frequency,” determined by the difference
between the characteristic frequencies of each valley. Some of these mechanisms are expected to be present in
other space-modulated 2D materials and suggest how optical or electrical response measurements can be suitable
to detect spatial modulation.
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I. INTRODUCTION

Space-modulated two-dimensional materials (2D) are very
interesting platforms for novel physical phenomena [1–10].
One of the most interesting systems is Kekulé-distorted
graphene [11–16], which has recently been observed in
graphene sheets epitaxially grown over copper substrates [17]
and also in monolayer graphene on top of silicon oxide [18].
Tight-binding models of Kekulé-Y (or Kek-Y) distorted
graphene indicate a coupling of the charge carriers’ pseu-
dospin and orbital degrees of freedom [11]. This results in
the breaking of the valley degeneracy of graphene and two
emerging species of massless Dirac fermions [11,12]. Each
species has a different Fermi velocity, resulting in two Dirac
cones with different slopes [11]. A remarkable particularity
about the Kek-Y phase in graphene is that both cones share
the same Dirac point, as graphene’s Brillouin zone is folded
due to the increased size of the unitary cell. In graphene, the
two nonequivalent Dirac cones are far away in momentum
space, implying that intervalley transport between cones is
forbidden at low energies. This is no longer the case in the
Kek-Y distorted phase, which makes it possible to access
the valley degree of freedom in graphene. In fact, Kek-Y
distorted graphene has been proven to be a potential platform
to obtain strain-controlled valleytronics, as the distance be-
tween valleys can be tuned externally [12]. As an example, a
ballistic graphene-based valley field-effect transistor has been
recently proposed [19]. More recently, it has been reported
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that the enabling of low-energy intervalley transport due to
the Kek-Y distortion introduces an absorption peak in the
optical gap of graphene [20]. This peak can be tuned in fre-
quency and amplitude by changing the carrier density, making
this phase a potential candidate for graphene-based optical
modulators [21–27], which rely on the highly tunable optical
properties of graphene. From a topological point of view,
Kekulé patterned graphene can be considered as an extension
of the Su-Schrieffer-Heeger model [28,29], and fractionally
charged topological excitations were predicted in one of the
first proposals of Kekulé modulation in graphene [30]. Me-
chanical strain on patterned graphene based heterostructures
also leads to interesting topological effects [31]. Also, the
Kekulé distortion has been proposed as a possible mecha-
nism behind superconductivity in magic-angle twisted bilayer
graphene [15,32], and multiflavor Dirac fermions were pre-
dicted to emerge in Kekulé graphene bilayers [14]. Moreover,
it is possible to produce such patterns in other kinds of
nonatomic systems, as with mechanical waves in solids [33],
or in acoustical lattices, where topological Majorana modes
were observed [16]. Additionally, Kekulé ordering can be
produced in photonic [34], polaronic [35], and atomic sys-
tems [36]. Therefore, the Kekulé bond order is among one
of the most interesting phases resulting from strain in a 2D
material [3], having substantial potential for a wide range of
applications [11–13,20].

The aim of this work is to study the consequences of the
Kekulé distortion in the dielectric response, static screening,
optical conductivity and plasmonics of graphene and to gain
insight into how the spatial modulation in similar 2D materials
can be detected and characterized through optical and electri-
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FIG. 1. To the left: graphene lattice with a type-Y Kekulé mod-
ulation. To the right: energy dispersion of low-energy electronic
excitations around the Dirac point in Kek-Y modulated graphene.
The letter S labels the slow cone, which has a slope given by the
velocity v0(1 − �0 ). The letter F labels the fast cone, associated with
the velocity v0(1 + �0 ).

cal measurements. We use as a starting point the tight-binding
model reported in Ref. [11], which has been supported by re-
cent experimental measurements [18]. We focus on the Kek-Y
phase, in which the Dirac cones K , K ′ fold on top of each other
and preserve the gapless dispersion. The layout of this work
is the following. First we introduce the model in Sec. II and
we make a general analysis of the polarizability in Sec. III. In
Secs. IV and V, we study the effect of the Kekulé distortion on
the plasmon dispersion and the static screening, respectively,
then a brief discussion on the conductivity is given in Sec. VI.
Lastly, we give some general conclusions.

II. HAMILTONIAN MODEL FOR KEK-Y
DISTORTED GRAPHENE

The graphene lattice with Kek-Y modulation is depicted
in Fig. 1, where the Y-shaped alternation of strong and weak
bonds is shown. According to Gamayun et al. [11], the low-
energy Hamiltonian for Kek-Y distorted graphene is given by
the following 4 × 4 matrix,

H =
(

v0 p · σ �̃Qχ

�̃∗Q†
χ v0 p · σ

)
, (1)

where �̃ is the energy coupling amplitude due to the bond-
density wave which describes the Kekulé textures and σ =
(σx, σy) is a set of Pauli matrices. The Kek-Y texture coupling
between Dirac Hamiltonians is given by the operator Qχ =
v0(χ px − ipy)σ0 with |χ | = 1 and σ0 the identity. To avoid
extra phases and for simplicity we consider a real �̃ = �0

and χ = 1, as a complex �̃ and χ = −1 are equivalent upon
a unitary transformation [11]. In what follows we will also
take h̄ = 1. These considerations lead to the Hamiltonian,

H = v0

(
k · σ �0(kx − iky)σ0

�0(kx + iky)σ0 k · σ

)
, (2)

or H = v0(k · σ ) ⊗ τ0 + v0�0σ0 ⊗ (k · τ ), with τ = (τx, τy)
defining a second pair of Pauli matrices, τ0 the unitary matrix,
and v0 the Fermi velocity of pristine graphene.

The spectrum resulting from such a Hamiltonian is given
by

ε
β

kα
= αsβv0k, (3)

where α = 1 labels the conduction band and α = −1 labels
the valence band. The label β = ±1 is used to define two

velocities, sβ = (1 + β�0), and k =
√

k2
x + k2

y . Therefore, as

shown in Fig. 1, the energy dispersion of the Kekulé pattern
folds graphene’s K and K ′ valleys into the 	 point of the
superlattice Brillouin zone. This results in a “fast” cone with
Fermi velocity v0(1 + �0), corresponding to β = 1, and a
“slow” cone with Fermi velocity v0(1 − �0), corresponding
to β = −1. We label these cones as F and S, respectively,
leading to the F cone being described by the dispersion ε+

k,± =
±v0(1 + �0)k and the S cone by ε−

k,± = ±v0(1 − �0)k.
The corresponding eigenvectors are [11,20]∣∣
α′

α (k)
〉 = |
α (k)〉 ⊗ |
α′ (k)〉, (4)

where |
α〉 is a single-valley eigenvector for pristine
graphene. More explicitly, defining θ = tan−1 ky/kx, the
eigenvectors can be written in terms of the cone and band
indexes as∣∣
β

α (k)
〉 = 1

2 (1, αeiθk , αβeiθk , βe2iθk )
T
, (5)

where the cone index is β = αα′.

III. DYNAMIC POLARIZABILITY OF KEK-Y
DISTORTED GRAPHENE

We first study the dynamical polarizability up to lowest
order in perturbation theory, defined by the bare bubble Feyn-
man diagram, known as the Lindhard formula [37,38]. The
dynamical polarizability is a function of the wave-vector mag-
nitude q and frequency ω and can be written as [39–42]

(q, ω) = − gs

∫
d2k
4π2

∑
α, α′,
β, β ′

f β

kα − f β ′
k′α′

ω + ε
β

kα
− ε

β ′
k′α′ + iη

× Fββ ′
αα′ (k, k′), (6)

where η is a small self-energy added for convergence, gs = 2
is the spin degeneracy, k′ = |k + q|, f β

kα = 1/[eβ(εβ

kα
−μ) + 1]

is the Fermi-Dirac distribution, and

Fββ ′
αα′ (k, k′) = 1

4 (1 + αα′ cos θkk′ )

×(1 + αα′ββ ′ cos θkk′ ) (7)

being the form factor or scattering probability |〈
β ′
α′ (k +

q)|
β
α (k)〉|2 between states with momentum k and k′

= k + q.
For simplicity, we consider the zero temperature case in

which the Fermi-Dirac distribution becomes a step func-
tion. It is convenient to separate the polarizability in two
components,

(q, ω) = +(q, ω) + −(q, ω), (8)

205429-2



DYNAMIC POLARIZATION AND PLASMONS IN … PHYSICAL REVIEW B 102, 205429 (2020)

FIG. 2. Real part of the dynamical polarizability ̃(q, ω) of
graphene with (�0 = 0.1) and without (�0 = 0) Kekulé distortion
for q = kF (top) and q = 2kF (bottom). The jump in graphene at
ωq = v0q splits to frequencies ωq± = v0(1 ± �0 )q as a result of the
Kekulé distortion. These plots were obtained by numerical evaluation
of Eqs. (9) and (10).

where + contains all terms with f β

k+ and − contains all

terms with f β

k−. Then the full expressions for the components
can be written as

+(q, ω) = −D0

∑
ββ ′α

∫
d2k
4π

[
Fββ ′

+ (k, k′)

gββ ′
− + αω+

0

+ Fββ ′
− (k, k′)

gββ ′
+ + αω+

0

]
�(kβ − k), (9)

−(q, ω) = D0

∑
ββ ′α

∫
d2k
4π

Fββ ′
− (k, k′)

gββ ′
+ + αω+

0

�(� − k), (10)

where gββ ′
± = sβk ± sβ ′k′, ω0 = ω/μ and ω+

0 = ω0 + iη.
�(x) denotes the Heaviside function, with kβ = (1 + β�0)−1

and � an arbitrary, high momentum cutoff. D0 is the density
of states of pristine graphene evaluated at the Fermi level
μ = v0kF [43,44],

D0 = 2kF /πv0. (11)

FIG. 3. Imaginary part of the dynamical polarizability ̃(q, ω)
of graphene with (�0 = 0.1) and without (�0 = 0) Kekulé distor-
tion for q = kF (top) and q = 2kF (bottom). The absorption peak
in graphene at ωq = v0q splits to frequencies ωq± = v0(1 ± �0 )q
as a result of the Kekulé distortion. These plots were obtained by
numerical evaluation of Eqs. (9) and (10).

with kF being the Fermi momentum of nondistorted graphene.
Notice also that momentum has been scaled by kF so k
and k′ are unitless and k′ = |k + q/kF |. In the following we
will use a tilde to denote the scaled polarizability ̃(q, ω) =
(q, ω)/D0.

Figures 2 and 3 show the real and imaginary parts of
̃(q, ω) for Kek-Y distorted graphene for different wave vec-
tors. These plots were obtained by numerical evaluation of
Eqs. (9) and (10). As a comparison, in Figs. 2 and 3 we also
include the results for pristine graphene. From these plots, it is
clear that the main effect introduced by the Kekulé distortion
is the splitting of the response in two branches. While pristine
graphene’s spectrum exhibits a peak at ωq = v0q, the Kekulé
distorted graphene exhibits two peaks at ωq± = v0(1 ± �0)q,
therefore making evident the presence of two species of mass-
less Dirac fermions.

Since the spectrum resembles that of pristine graphene
after being split at two frequencies, it would be worthwhile
to understand whether this is just the sum of the polariz-
abilities of graphene for each valley shifted in frequency
from one another by some frequency proportional to �0.
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This seems plausible since, as can be confirmed from the
definition of the polarizability in Eq. (6), a change in the
Fermi velocity v0 → v0(1 ± �0) is equivalent to a shift in
frequency ω → ω/(1 ± �0) and an overall scaling of 1/(1 ±
�0). To answer this question, we rewrite Eq. (6) taking
advantage of the known polarizability of pristine graphene.
First we notice that the scattering probability for Kekulé
patterned graphene, Fββ ′

αα′ (k, k′), can be written in terms of
graphene’s single-valley scattering probability F g

αα′ (k, k′) =
1
2 (1 + αα′ cos θkk′ ) [39–42] as

Fββ ′
αα′ (k, k′) = δβ,β ′F g

αα′ (k, k′) − ββ ′
(

q sin ϕ

2|k + q|
)2

, (12)

where ϕ is the angle between k and q. Using Eqs. (6)
and (12), it can be verified that in the limit of �0 → 0, the
polarizability contains the factor

∑
ββ ′ Fββ ′

αα′ = 2F g
αα′ , that is,

in the limit of nondistorted graphene the valley degeneracy
is restored and the scattering function reduces to two times
(one per valley) the single-valley scattering function F g

αα′ ,
recovering the known expression for the polarizability of
pristine graphene [39–42], as expected. However, when the
Kekulé distortion is introduced, the full scattering function
Fββ ′

αα′ contains an additional term [see Eq. (12)], which leads
to a new component related to intervalley transport in the
polarization. To see this, we rewrite the full polarizability of
Kek-Y distorted graphene in terms of that of pristine graphene
by plugging Eq. (12) into Eqs. (9) and (10). After this, the
polarizability can be written as

̃(q, ω) = ̃g(q, ω+)

2s−
+ ̃g(q, ω−)

2s+
+ �0̃

Y (q, ω), (13)

where we used the definition,

ω+ = ω

s−
, ω− = ω

s+
(14)

or, up to first order �0, ω± = (1 ± �0)ω, so the relation ω+ �
ω � ω− is attained. Here g(q, ω) is the well known full
dynamical polarizability of graphene [39–42], while ̃Y (q, ω)
is an intervalley component introduced by the Kekulé dis-
tortion. The first two terms correspond to the polarizability
of each cone, which is the same as that for graphene ex-
cept for the appropriate change in Fermi velocities v0 →
v0(1 ± �0), which is equivalent to a change in frequency
ω → ω∓ and an overall scaling of 1/s±. Therefore, in the
limit of �0 → 0, these two terms coincide and add up to
the well known polarizability of graphene [39–42], while the
intervalley term �0̃

Y (q, ω) vanishes, resulting in ̃(q, ω) =
̃g(q, ω). Apart from explicitly showing the breaking of the
valley degeneracy introduced by the Kekulé distortion, sub-
stantial insight can be gained from Eq. (13). First, since
̃g(q, ω) exhibits a peak at ω = v0q, ̃g(q, ω±) must instead
exhibit peaks at ω± = v0q, that is, ω = v0(1 ± �0)q, which is
indeed confirmed in Figs. 2 and 3. Second, the polarizability
for Kekulé distorted graphene is not merely given by adding
the polarizabilities per cone with a relative frequency shift
between them, as might appear at first sight from Figs. 2
and 3. Indeed, there is an additional intervalley component,

given by

̃Y (q, ω) =
∑
α,β

β

∫
d2k
8π

q2 sin2 ϕ

k′

×
[

�(kβ − k)

(vβk − k′ + αω+
0 )2 + (�0k′)2

+ �(� − k) − �(kβ − k)

(vβk + k′ + αω+
0 )2 + (�0k′)2

]
. (15)

It should be emphasized that this term does not appear in
pristine graphene, as transitions from one cone to the other
are canceled out in the low-energy approximation. It can be
seen that in the limit �0 → 0 this component vanishes in
Eq. (13). While the analytic expressions for g(q, ω) are well
known [39–42], the solution for Y (q, ω) is quite complicated
and here we only report numerical solutions for it. However,
an analytical solution in the limit of q → 0 can be obtained
from the expressions of the local conductivity previously re-
ported in Ref. [20]. Nevertheless, as seen in Figs. 2 and 3,
at finite q and ω the contribution of Y (q, ω) in the real and
imaginary parts of (q, ω) is a small perturbation, while the
main effect of the Kekulé distortion is displayed by a “split”
of graphene’s spectrum, as accounted by the rescaled terms
with g(q, ω+) and g(q, ω−); while graphene’s spectrum
exhibits jumps at ωq = v0q, Kekulé-distorted graphene will
exhibit such jumps at ωq± = v0(1 ± �0)q.

As we discuss in the following sections, however, while
the intervalley component ̃Y is negligible at finite q and ω,
it becomes apparent in the limit of ω → 0 through the static
screening (see Sec. V) and in the limit of q → 0 through
the local optical conductivity (see Sec. VI). We extend this
discussion in the following sections.

IV. PLASMONS

Accounting for the Coulomb interaction makes possible
the study of collective charge excitations, known as plas-
mons [41,45–50]. Within RPA, the plasmon dispersion ωp is
given by the roots of the dielectric function ε(q, ω) obtained
from the self-consistent RPA polarization [37,38],

RPA(q, ω) = − (q, ω)

1 + vq(q, ω)
(16)

as

ε(q, ω) = 1 + vq(q, ω), (17)

where vq = e2/2κ0q [39–42]. Notice that a negative sign has
been introduced to make RPA coincide with the definitions
in Refs. [40,41]. Additionally, the dispersion and damping
of graphene plasmons can be uncovered from the loss func-
tion [41,51],

L = −	{1/ε(q, ω)}, (18)

which takes maximum values where there is high probabil-
ity of energy loss due to the excitation of stable plasmonic
modes, and falls to zero as it enters the interband Landau
damping domain, where plasmons become unstable [41]. In
Fig. 4 we plot and compare the loss function for nondistorted
graphene (�0 = 0) and for Kekulé-patterned graphene (�0 >
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FIG. 4. Plasmon dispersion obtained from the full polarizability (dashed lines) and the loss function L = −	{1/ε(q, ω)} (color plot) within
RPA for multiple values of the coupling amplitude. For a nonzero coupling amplitude a second branch is introduced in the Landau damping
region. However, at small values of the coupling amplitude (�0 = 0.2) the plasmon dispersion in the stable domain is not affected significantly.
At a high value of �0 = 0.5 the stability of the main branch is reduced substantially. Plots are scaled as log100[1 + L].

0). In order to focus solely on the effect of �0 we use α ≡
e2/4πκ0v0 = 2.5 and ε0 = 1 [39,40,42] in all calculations.
We also superimpose the dispersion curves obtained from the
roots of ε(q, ω) ≈ 1 + vq�{(q, ω)} (assuming weak damp-
ing [40,41]). It can be seen that at a coupling amplitude of
�0 = 0.2, the general low-q plasmon dispersion of graphene
in the stability region is practically not affected by the Kekulé
distortion, while a second branch of the plasmonic dispersion
appears in ωq− < ω < ωq+. However, the system exhibits
optical absorption in this domain, since 	{(q, ω)} = 0 (see
Fig. 3) and therefore, plasmons in this region of the ω − q
space are not stable, decaying quickly into electron-hole ex-
citations. We further notice that this second branch appears
for q/kF � 0.5, and therefore it must be related to nonlocal
effects [41]. The fact that a small �0 has no effect in the low-q
plasmonic dispersion is in agreement with recent calculations
of the Kubo conductivity for Kek-Y distorted graphene [20],
where it was found that a small �0 has no effect in the
Drude peak, which determines the optical response and the
plasmonic dispersion in the q → 0 approximation [41]. Ad-
ditionally, the loss function presents two lines at ω = v0(1 ±
�0)q instead of a single one at ω = v0q, resembling the en-
ergy dispersion of Kekulé-distorted graphene, as expected. At
a large value of �0 = 0.5, it can be seen that the stability of
the main branch has been reduced substantially. This is due
to the fact that the optical gap is reduced by the coupling
amplitude �0 (see Sec. VI).

V. STATIC SCREENING

The static response is obtained from the dynamical polar-
izability in the ω → 0 limit. Here we denote each component
by ±(q, ω → 0) = ±(q). The real components can be ob-
tained from Eqs. (9) and (10) as

�{̃+(q)} = −
∑
ββ ′α

∫
d2k
2π

(vβk − αvβ ′k′)
(vβk − αvβ ′k′)2 + η2

×Fββ ′
α (k, k′)�(kβ − k), (19)

�{̃−(q)} =
∑
ββ ′

∫
d2k
2π

(vβk + vβ ′k′)
(vβk + vβ ′k′)2 + η2

×Fββ ′
− (k, k′)�(� − k). (20)

It is easy to see from Eqs. (9) and (10) that the imaginary parts
are zero (as expected in the ω → 0 limit), therefore, we have
that +(q) = �{+(q)} and −(q) = �{−(q)}.

The total static screening at q = 0 coincides with the den-
sity of states at μ,

(0) = μ

πv2
0s2+

+ μ

πv2
0s2−

≈ (
1 + 3�2

0

)
D0, (21)

which in the case of �0 → 0 reduces to the density of states
of nondistorted graphene. In Fig. 5 we plot and compare (q)
for both the nondistorted (�0 = 0) and distorted (�0 > 0)
graphene. We show the doped +(q) and undoped −(q)
components [Fig. 5(a)], as well as the intervalley compo-
nent Y (q) [Fig. 5(b)]. For q < 2kF , in pristine graphene,
as in the normal 2D electron gas (described by a quadratic
energy dispersion), the static polarizability is equal to the
density of states at the Fermi level, (0) [39,42,52]. It can
be seen in Fig. 5 that for �0 > 0 this is still the case. Notice
however, that since the density of states increases with �0

[see Eq. (21)], the (nonscaled) static polarizability in Kek-Y
distorted graphene actually takes a higher value. On the other
hand, for q > 2kF , while the static polarizability of the normal
2D electron gas falls off from (0) to zero [52], that of
graphene increases linearly with q [39,42]. Since this charac-
teristic behavior is a consequence of the gapless dispersion of
graphene, which is preserved in the Kek-Y distorted phase, the
same linear dependence should be observed. This is confirmed
to be the case in Fig. 5. We notice, however, that for �0 > 0
the (nonscaled) static polarizability exhibits a larger slope, in-
creasing the effective dielectric constant at short wavelengths,
which implies a suppression of the effective interaction in
Kek-Y distorted graphene [39,42]. In Fig. 5(b) we also com-
pare the total polarizability to the intervalley component Y .
It is interesting to notice that Y (q) shows resemblance to the
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FIG. 5. The total static polarizability (ω → 0, q) in nondis-
torted (�0 = 0) and Kekulé-distorted graphene (�0 = 0.2) also
compared to (a) the doped + and undoped − components and
(b) the intervalley component Y [see Eq. (13)]. The curves were
obtained from a numerical evaluation of Eqs. (19) and (20).

static polarizability of a normal 2D material, taking a constant
value for q < 2kF and falling rapidly for q > 2kF , although
this component takes negative values at large wave vectors
instead of falling to zero. It should be noticed, however, that
this component enters the total polarizability as �0

Y (q) [see
Eq. (13)], therefore being a small contribution to the full static
response.

VI. OPTICAL CONDUCTIVITY

In this section we present a short discussion on the sig-
natures of the Kekulé distortion in the optical conductivity
of graphene. The (local) optical conductivity can be obtained
from the polarizability [41] as

σ̃ (ω) = lim
q→0

i
−ω/μ

(q/kF )2
̃(q, ω), (22)

FIG. 6. Top: Real part of the local-optical conductivity σ̃ (ω) for
nondistorted (�0 = 0) and Kek-Y distorted (�0 = 0.1) graphene.
The Kekulé distortion splits the step-like interband conductivity of
graphene into two steps as a consequence of the broken valley de-
generacy, and a resonance peak at ωY = (ω+ − ω−)/2 arises due to
intervalley absorption. Bottom: The real and imaginary parts of σ̃ (ω)
for Kek-Y distorted graphene. The inset shows the singularities of
	{σ̃ } due to the peak at ωY .

which we have plotted and compared to that of nondistorted
graphene in Fig. 6 (to obtain the conductivity in conventional
units, it suffices to multiply σ̃ by a factor of 4e2/h).

As recent calculations for the local conductivity using the
Kubo formula have shown [20], a tunable absorption peak
due to intervalley transitions is exhibited at a frequency ωY ≈
2μ�0. We find that, indeed, this peak is introduced by the
intervalley component Y (q, ω) in Eq. (15). Furthermore,
graphene’s characteristic steplike absorption spectrum (start-
ing at ω0 = 2μ) splits into two half-steps (starting at ω± =
2μ), as was first noticed in the context of the Landauer formal-
ism applied to Kek-Y distorted graphene nanoribbons [53].
Additionally, this two-step optical conductivity (and the
energy dispersion) of Kek-Y distorted graphene holds resem-
blance to that of a 3/2-pseudospin Dirac semimetal [54],
which might indicate that modulation in the lattice could
even change the effective pseudospin of the system. Also,
a very similar two-step absorption was recently shown to
be introduced by electron-hole asymmetry in one of the 2D
phases of boron [55], which have been drawing a lot of
interest due to their remarkable anisotropic transport prop-
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erties [56–59]. We notice that this split of the conductivity
into two half-steps is made evident in our expression for the
polarizability in Eq. (13), which also allows us to obtain the
respective characteristic frequencies. Since graphene’s polar-
izability ̃g(0, ω) exhibits (through the conductivity) the step
at ω = 2μ, the terms in the polarizability of Kek-Y distorted
graphene, ̃g(0, ω±), must exhibit the step at ω± = 2μ, that
is ω = 2μ(1 ± �0). This is in agreement with the curves in
Fig. 6.

For a further discussion on the intervalley and intravalley
transport in Kek-Y distorted graphene we refer the reader to
Ref. [20], where analytical expressions for σ̃ (ω) can also be
found. Here we will focus the rest of our discussion on the fact
that, up to first order in �0,

ωY = ω+ − ω−
2

, (23)

which is reminiscent of the general beating effect that results
from the interference of two waves with close but different
frequencies f1 and f2, leading to the modulation of the re-
sulting wave by an envelope of frequency f = ( f2 − f1)/2.
In acoustics and optics, the difference between two slightly
different frequencies is known as the “beat frequency,” since
the modulation of the resulting wave can be perceived as beats
or pulses [60,61]. This phenomenon is specially relevant in the
context of space-modulated 2D materials, like twisted bilayer
graphene, where moiré beating patterns take place when there
is a slight mismatch between the periodicities of the two
lattices [62–64], leading to a larger-scale (lower-frequency)
spatial modulation of the system and introducing several novel
physical properties [2,64,65]. Equation (23) indicates that a
related effect is present in the optical conductivity of Kek-Y
modulated graphene; the breaking of the valley degeneracy
due to the Kekulé distortion introduces two close but different
frequencies (ω+ and ω−) at which the onset of absorption in
each valley occurs (see Fig. 6) and the resonant frequency
at which intervalley absorption takes place is given by the
corresponding “beat frequency” in Eq. (23). In this way, the
beating effect in the system originating from the presence of
two slightly different scales (here defined by ω+ and ω−) is
manifested through the optical conductivity by introducing a

resonance peak at the beat frequency, which corresponds to
the intervalley absorption.

VII. CONCLUSION

Using the RPA approximation (Lindhard formula), we
calculated the dynamic and static polarizability of Kekulé
distorted graphene and investigated the signatures of the bro-
ken valley degeneracy through the dielectric response, the
plasmonic dispersion, the static screening, and the optical
conductivity. As a consequence of the valley-dependent Fermi
velocity, the dielectric spectrum splits, making evident the
presence of two species of massless Dirac fermions. Fur-
thermore, the Kekulé modulation introduces a second branch
to the plasmonic dispersion of graphene. We used the loss
function to study the plasmon stability at each frequency
and wave vector. In the static limit, it was found that the
static screening is increased at small wavelengths, implying
a suppression of the effective interaction. We also discussed
the optical conductivity, in which the characteristic steplike
spectrum of graphene splits into two half steps due to the
onset of absorption in each valley, occurring at different char-
acteristic frequencies. This effect is akin to that observed in
a 3/2-pseudospin Dirac semimetal [54] suggesting a possible
change in the effective pseudospin.

Lastly, we described an absorption phenomenon where a
resonance peak related to intervalley transport emerges at a
beat frequency determined by the characteristic frequencies
of each valley. We expect some of these signatures to be
present in other space-modulated 2D materials, as strained
graphene [3,7,66], twisted-angle graphene [1,2], patterned
graphene nanoribbons [67], or even in modulated quasicrys-
tals [68]. Our work suggests that simple optical or electrical
measurements can be suitable to detect this kind of modula-
tion in 2D materials.
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