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Shell model for superfluids in rough-walled nanopores
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Recent experiments on the flow of helium-4 fluid through nanopores with tunable pore radius provide a
platform for studying the quasi-one-dimensional (quasi-1D) superfluid behaviors. In the extreme 1D limit, the
helium atoms are localized by disordered small variations in the substrate potential provided by the pore walls.
In the limit of wide pore radius, a solid layer of helium-4 is expected to coat the pore walls smoothing out the
substrate potential, and superfluidity is observed in the central region. Building on earlier quantum Monte Carlo
results, we propose a scenario for this crossover using a shell model of coupled Luttinger liquids. We find that
a small-radius pore will always localize the helium atoms, but above a critical radius, a single 1D channel flows
through the pore and can be described by Luttinger liquid theory.
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I. INTRODUCTION

Superfluidity in bosonic helium-4 can be characterized by
flow through narrow pores or constrictions with zero viscosity
[1,2]. The walls of such pores are never perfectly smooth, but
will always be characterized by some combination of disorder
and periodic modulation associated with the solid material
through which they traverse. Thus, as helium atoms flow
through the pore, they will necessarily experience a spatially
dependent potential. Although the detail of this potential is
material dependent, its origin lies in the dipole-dipole or van
der Waals interaction between helium atoms and the atoms in
the surrounding substrate. A ubiquitous feature of such po-
tentials is the presence of a deep potential minimum near the
surface of the pore. This is responsible for the phenomenon
of wetting [3] and drives the escape of superfluid helium
from an open container. In a confined nanopore geometry,
the potential has an approximately cylindrical symmetry, and
the wetting layer will instead form a shell, localized near the
pore walls. For any excess helium atoms inside this shell, its
presence helps to smooth out the localizing effects of disorder
or commensuration with the wall and allows for a superfluid
component to remain to flow through the center of the pore.

On the other hand, a host of recent experiments aim
to study the quasi-one-dimensional (quasi-1D) properties of
helium-4 confined inside regular nanometer-sized constric-
tions. Examples of the restricted geometries include solid
helium cells in contact with superfluid helium [4,5], networks
of edge dislocations [6], and nanopores in mesoporous ma-
terials [7–21]. An alternative approach has been undertaken
to study helium-4 mass flow in a single cylindrical nanopore,
carved with an electron beam through a thin Si3N4 mem-
brane [16]. A major motivation for these experiments is to
study the crossover of a quantum fluid to the 1D regime. A
fluid of interacting bosons at low temperatures T confined
to move along an infinite line is predicted to be a “Luttinger
liquid” [22], a sort of quasisuperfluid with power-law decay at

T = 0 of the superfluid correlation function 〈ψ†(x)ψ (y)〉 ∝
|x − y|−K/2, where ψ (x) is the boson annihilation operator.
Such a liquid is characterized at low energies by its Luttinger
parameter K , which is a measure of the tendency towards
algebraically decaying superfluid or solid order.

On the theory side, various quantum Monte Carlo (QMC)
simulations have been performed to study the behaviors of
helium atoms confined in quasi-1D geometries by tuning the
pressure and pore radius, where realistic interatomic interac-
tions are included in the simulations. It was found that the
system shows superfluid behaviors at low helium densities
but transits into an ordered phase when the density is high
[23,24]. When the pore radius is large, the density distribution
of helium atoms exhibits the form of concentric shells, and a
shell-by-shell solidification is observed by increasing the pres-
sure or helium density [25,26]. In addition, QMC simulations
have also provided evidence for the quantum liquid-crystal
phase at high pressures [27].

On the other hand, there have also been attempts to un-
derstand the system from a Luttinger liquid point of view
at moderate helium densities. Grand canonical QMC simula-
tions have been performed for helium confined inside smooth
nanopores [28,29], where realistic interactions between he-
lium atoms and the walls of a translationally invariant Si3N4

pore were included at a chemical potential corresponding to
the bulk three-dimensional (3D) saturated vapor pressure. It
was found that a pore of radius R = 2.9 Å will support a single
quasi-1D column of atoms which can be described at low
temperature by Luttinger liquid theory with a large value of
K = 6.0 ± 0.2 [29]. QMC studies on smooth cylindrical pores
with larger radii observed the formation of multiple circular
layers inside the pore [29,30] and a significantly slower decay
of the superfluid correlation function near the pore center.
In Fig. 1, QMC configuration snapshots illustrating this be-
havior are shown for a nanopore with length L = 10 nm at
T = 0.75 K for R = 3–15 Å [29].
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FIG. 1. Quantum Monte Carlo configurations (particle world
lines) projected onto a plane at T = 0.75 K for helium-4 atoms
confined inside silicon nitride nanopores with radii between R = 3
and 15 Å and length L = 10 nm. The azimuthal symmetry in con-
junction with a strong confining potential leads to a mass density that
oscillates as a function of radius due to the spontaneous formation of
concentric cylindrical shells. Simulations are done using the same
method and under the same setup as in Ref. [29].

In real Si3N4 pores, it is expected that there would be
a large confining potential with both periodic and random
components due to the glassy structure of the substrate and
irregularities in the pore produced by the high-energy electron
beam. Even a small external potential is predicted to localize
a 1D Luttinger liquid for sufficiently large K , with the critical
values of K being 1/2 for a periodic potential commensurate
with the helium density and 2/3 for a random potential [31].
Thus we should expect that experiments on small-radius nar-
row pores, if possible, would not detect any fluid flow at least
for small pressure gradients. On the other hand, as explained
previously, bulk 3D superfluid behavior is expected when the
pore radius reaches the micrometer range, regardless of the
presence of a sizable substrate potential.

In this paper, based on the results of the QMC simulations
in Refs. [28,29], we develop an analytical theory and propose
a shell model of coupled Luttinger liquids to analyze the
effects of disordered wall potentials, where the Luttinger liq-
uid channels correspond to the shells of concentrated helium
atoms as shown in Fig. 1. Here, we note that the helium atoms
are assumed to be free of solidification, which applies to the
cases of low and moderate helium densities. Each channel
is expected to have a large Luttinger parameter K due to
intrashell interactions. The couplings between different chan-
nels arise from intershell hoppings and the residual intershell
interactions. We find that the repulsive intershell interactions
always lower the Luttinger parameters, at least for small in-
teraction strengths. If the Luttinger parameters are rendered

FIG. 2. Collective groups of channels bound by the relevant in-
tershell tunneling operators at low energies. The solid blue circles
represent different Luttinger liquid channels in the absence of in-
tershell interactions, intershell tunnelings, and disorders. The red
line represents the relevant tunneling term between the two channels
which the line connects. The black ovals and circle represent the
groups of channels that are bound by the relevant intershell tunneling
operators in the RG sense. In this case, P = 9 and Q = 3.

small enough, the intershell hoppings become relevant at low
energies in the sense of the renormalization group (RG) and
are able to pin the superfluid phases of the corresponding
shells among which the hoppings take place. As a result, the
P Luttinger liquid channels are regrouped into Q (� P) bound
entities, such that at low energies, the channels within each
entity share the same superfluid phase. An illustration of such
regrouping is shown in Fig. 2. In particular, the Luttinger pa-
rameters of the groups of bound channels will be significantly
lowered, making them more immune to disorder effects.

Based on this analysis, we propose a scenario of the
crossover behavior from narrow to wide nanopores: The he-
lium atoms are localized by the random substrate potential
for small-radius pores, whereas there exists a critical ra-
dius value above which a single-(grouped)-channel Luttinger
liquid emerges in the central region of the nanopore. This
scenario indicates that the large Luttinger parameter in 1D
helium-4 does not necessarily destroy the hope of observing
the 1D to 3D crossover in experiments and may actually make
it easier due to the resulting increase in the critical pore radius.
It would be desirable to compare the predictions here with
QMC simulations as well as real experiments.

Finally, we also note that the whole analysis does not
necessarily rely on the decomposition of channels based on
cylindrical shells. Other ways of choosing the channels, for
example, angular momentum decomposition, work equally
well, which is discussed in Sec. IV A.

The rest of the paper is organized as follows. In Sec. II,
the model Hamiltonian is introduced, and the bosonization is
performed. In Sec. III, the effects of intershell interactions on
the scaling dimensions of the intershell tunnelings are ana-
lyzed. In Sec. IV, the low-energy theory for the Hamiltonian
including the intershell interactions and intershell tunnelings
is derived. Based on the results in the previous sections, Sec. V
discusses the effects of disordered substrate potential. Finally,
in Sec. VI, we briefly summarize the main results of the paper.

II. THE MODEL HAMILTONIAN

It is a familiar idea that the single-particle quantum wave
functions in an infinitely long small-radius pore correspond
to a set of sub-bands with different transverse wave vectors.
However, that is not the approach we are using here. As
indicated in Fig. 1, for pore radii of 4 Å or greater, several
concentric cylindrical shells of helium atoms form inside the
nanopore. This is a consequence of the Aziz potential [32]
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describing the interaction between helium atoms and also the
potential used to model the interaction with the smooth wall
of the pore. The density of helium atoms is suppressed at
radii between the shells, motivating a starting point in which
tunneling (i.e., hopping) of atoms between shells is ignored.

Then, for suitably long pores, each shell may be considered
as an independent 1D system, giving a P-channel Luttinger
liquid for a pore with P shells. Each of these shells will
have a different linear density of atoms and different effective
1D interatomic interactions. At least three effects need to be
included if this model is to be used to describe the physics
of quantum fluids in real nanopores: intershell interactions,
intershell tunneling, and the substrate potential, which we
might expect to be larger on the outer shells near the pore wall
than on the inner shells. This model corresponds to a multileg
ladder, with each leg corresponding to a shell.

We consider the Hamiltonian of P channels of Luttinger
liquids as

H = H0 + Hint + HT , (1)

in which H0 is the sum of intrachannel terms

H0 =
P∑

i=1

[∫
dxψ†

i

(
− h̄2

2m

d2

dx2
− μi

)
ψi

+ 1

2

∫
dxdyρi(x)Ûii(x − y)ρi(y)

]
, (2)

where ψ
†
i , μi, and ρi(x) = ψ

†
i (x)ψi(x) are the boson creation

operator, the chemical potential, and the density operator,
respectively, in the ith channel; Hint includes the intershell
density-density interactions as

Hint =
∑

1�i< j�P

∫
dxdyρi(x)Ûi j (x − y)ρ j (y); (3)

and HT is the intershell tunneling term

HT =
∑

1�i< j�P

∫
dxdy[ti j (x − y)ψ†

i (x)ψ j (y) + H.c.], (4)

where H.c. is the Hermitian conjugate. Later we will also
include the substrate or disorder potential HS given by

HS =
P∑

i=1

∫
dxVi(x)ρi(x), (5)

in which Vi(x) represents the substrate or disorder potential
acting in the ith channel.

The above Hamiltonians can be expressed in bosonized
forms. We introduce the bosonization fields θi(x), φi(x), such
that ψi(x) and ρi(x) can be expressed in terms of θi(x), φi(x)
using the following bosonization formulas [22]:

ψi(x) =
√

ρ0i + 1

π

dθi(x)

dx
e−iφi (x),

ρi(x) = ρ0i + 1

π

dθi(x)

dx
+ [const × e2π iρ0ix−2iθi (x) + H.c.],

(6)

in which θi(x), φi(x) satisfy the commutation relations

[θi(x), φ j (y)] = π

2
δi jsgn(x − y) (7)

and ρ0i is the average density in the ith channel.
After bosonization, H0 acquires the form

H0 = 1

2π

∫
dx

P∑
i=1

{
vJi

[
dφi(x)

dx

]2

+ vNi

[
dθi(x)

dx

]2}
, (8)

in which the Luttinger parameter Ki and the velocity vsi are
related to vNi and vJi by

Ki =
√

vNi

vJi
, vsi = √

vNivJi. (9)

For later convenience, we write H0 in a matrix form

H0 = 1

2π

∫
dx∇θT VN∇θ + 1

2π
∇φT VJ∇φ, (10)

in which θ and φ are both P-component column vectors de-
fined as

θ = (θ1, . . . , θP )T , φ = (φ1, . . . , φP )T (11)

and VJ ,VN are diagonal matrices whose matrix elements are
given by

(VN )i j = vNiδi j, (VJ )i j = vJiδi j . (12)

The intershell interaction term Hint acquires the bosonized
form

Hint = 1

π2

P∑
i< j=1

∫
dxÛi j

dθi

dx

dθ j

dx
, (13)

in which we have only kept the local terms, and the oscillating
terms in the density operators drop off the expression under
the assumption that different channels have different densities
ρ0i. Hint can also be written in a matrix form

Hint = 1

π2

∫
dx∇θT U∇θ, (14)

in which the matrix elements of U are given by

Ui j = (1 − δi j )Ûi j . (15)

Notice that the diagonal matrix elements of U are all zero.
Here, we note that the two-leg version of this model was
studied in Ref. [33] in the special case where the two legs
are equivalent, having equal densities and velocity parame-
ters. In our case, the occurrence of different densities actually
simplifies the analysis since the coupling of oscillating den-
sity operators cos{2π (ρ0i − ρ0 j )x − 2[θi(x) − θ j (x)]} can be
dropped from the low-energy theory due to the oscillating
phase.

The intershell tunneling terms in Eq. (4) acquire the
bosonized form

HT =
∑

1�i< j�P

ti j

∫
dx cos(φi − φ j ). (16)

Finally, the disorder term can be bosonized as

HS =
P∑

j=1

∫
dxVj (x) cos[2πρ0 jx − 2θ j (x)]. (17)
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III. THE INTERSHELL INTERACTIONS

In this section, we consider the effects of intershell inter-
actions. As will be discussed in Sec. III A, the Hamiltonian
remains quadratic by including the intershell interactions and
can be diagonalized by performing a canonical transforma-
tion. Then, in Sec. III B, we determine the scaling dimensions
of the intershell tunneling terms.

A. Canonical transformation

Including the intershell interactions, the Hamiltonian H1 =
H0 + Hint becomes

H1 = 1

2π

∫
dx

[
∇θT

(
VN + 1

π
U

)
∇θ + ∇φT VJ∇φ

]
. (18)

Define θ ′ and φ′ as

φ′ = V 1/2
J φ, θ ′ = V −1/2

J θ ; (19)

then H1 can be written as

H1 = 1

2π

∫
dx[∇θ ′,T V ′

N∇θ ′ + ∇φ′,T ∇φ′], (20)

in which

V ′
N = V 1/2

J

(
VN + 1

π
U

)
V 1/2

J , (21)

and the matrix kernel of the φ′ term becomes the P × P
identity matrix.

Let O be an orthogonal matrix that diagonalizes V ′
N , i.e.,

V ′
N = O�θOT , (22)

where �θ is a diagonal matrix, and define

φ′′ = OT φ′, θ ′′ = OT θ ′; (23)

then we obtain

H1 = 1

2π

∫
dx[∇θ ′′,T �θ∇θ ′′ + ∇φ′′,T ∇φ′′]. (24)

The Luttinger parameter K ′′
j in the jth channel is given by the

jth eigenvalue of V ′
N , i.e.,

K ′′
j = √

(�θ ) j j . (25)

Here, we note that the Luttinger parameter K ′′
j is not dimen-

sionless. This is because after the transformation equation
(19), the new coordinates φ′, θ ′ acquire dimensions, unlike
the original canonical coordinates φ, θ , which are dimension-
less. Alternatively, one can introduce an arbitrary velocity v0

into Eq. (19), such that the transformations become v
1/2
0 φ′ =

V 1/2
J φ and v

−1/2
0 θ ′ = V −1/2

J θ . Then K ′′
j becomes dimension-

less, which is dependent on the scale v0. However, we will
keep using Eq. (19) in this paper for simplification of notation,
since this does not affect any physical observable.

B. Scaling dimensions of intershell tunnelings

The scaling dimension of the field eiλφ′′
j is [31]

[eiλφ′′
j ] = 1

4λ2K ′′
j , (26)

where [· · · ] denotes the scaling dimension of the operator
inside the bracket. Thus, to get the scaling dimensions of the

tunneling terms cos(φi − φ j ), we need to rewrite φi − φ j in
terms of φ′′

j .
Denote êi to be the P-dimensional unit column vector along

the ith direction, i.e.,

êi = (0, . . . , 0, 1, 0, . . . , 0)T , (27)

in which 1 appears at the ith position. Let

xi j = êi − ê j ; (28)

then φi − φ j = φT xi j . Using Eqs. (19) and (23), we obtain
φT xi j = φ′′,T yi j , in which

yi j = OT V −1/2
J xi j . (29)

Notice that the scaling dimension of cos(φ′′,T y) is

di j = 1

4

P∑
l=1

[(yi j )l ]
2K ′′

l = 1

4
yT

i j�
1/2
θ yi j, (30)

where (yi j )l is the lth component of the column vector yi j and
K ′′

l is given by Eq. (25). Using Eqs. (22) and (29), we obtain

di j (U ) = 1

4
xT

i jV
−1/2

J

√
(Vs)2 + 1

π
V 1/2

J UV 1/2
J V −1/2

J xi j, (31)

in which Vs = √
VNVJ .

Since V 2
s in general does not commute with 1

π
V 1/2

J UV 1/2
J ,

the square root
√

V 2
s + 1

π
V 1/2

J UV 1/2
J cannot be easily carried

out. We will consider this square root in the limit of a small
U and only keep the results up to first order in the matrix
elements Ui j . To proceed, the following lemma is needed, and
a proof is included in Appendix A.

Lemma. Let A and B both be real symmetric matrices.
Suppose that A is also positive definite. Then[

d

dλ

√
A + λB

]
λ=0

=
∫ ∞

0
dte−t

√
ABe−t

√
A. (32)

Now we apply Eq. (32) to our case. By taking A = V 2
s and

B = 1
π

V 1/2
J UV 1/2

J , we obtain√
V 2

s + 1

π
V 1/2

J UV 1/2
J − Vs

=
∫ ∞

0
dte−tVs

(
1

π
V 1/2

J UV 1/2
J

)
e−tVs + O(U 2). (33)

Thus, to linear order in U , 
di j = di j (U ) − di j (U = 0) can
be expressed as


di j = 1

4
xT

i jV
−1/2

J

[∫ ∞

0
dte−tVs

(
1

π
V 1/2

J UV 1/2
J

)
e−tVs

]
V −1/2

J xi j .

(34)

Notice that both Vs and VJ are diagonal matrices; hence they
commute. Using the expressions for xi j , we obtain


di j = 1

4π

∫ ∞

0
dtxT

i je
−tVsUe−tVs xi j

= −Ui j

2π

∫ ∞

0
dte−t (vsi+vs j )

= − Ui j

2π (vsi + vs j )
, (35)

in which vs j = (Vs) j j .
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In summary, the scaling dimension of cos(φi − φ j ) is given
by

di j (U ) = 1

4
(Ki + Kj ) − Ui j

2π (vsi + vs j )
+ O(U 2). (36)

Therefore the repulsive intershell interactions always lower
the scaling dimensions of the intershell tunneling terms, at
least for small U . In particular, this indicates that the intershell
tunnelings are rendered more relevant at low energies in the
RG sense.

IV. LOW-ENERGY THEORY WITH
INTERSHELL TUNNELINGS

A. The gapless modes of center-of-mass motions

Now we are prepared to discuss the effects of intershell
tunnelings. In general, some of the tunneling operators are
relevant, while some are irrelevant. We will build up the low-
energy theory for H = H0 + Hint + HT by integrating over the
modes which are rendered massive by the relevant tunneling
terms. As a consequence, the number of Luttinger liquid chan-
nels at low energies is reduced.

Since Ki ∼ 6 (1 � i � P) [29], the value of di j in Eq. (36)
is around 3 in the absence of intershell interactions. According
to Eq. (36), repulsive interactions always lower the scaling
dimensions di j . If di j becomes smaller than 2, then the corre-
sponding tunneling cos(φi − φ j ) is relevant and flows to the
strong-coupling limit at low energies. Graphically, as shown
in Fig. 2, we connect the two channels by a solid line if the
tunneling term between them is a relevant operator. In this
way, the P channels can be partitioned into Q (� P) groups.
Within each group, any two channels are connected by a path
formed by the solid lines, whereas for two channels in two
different groups, there is no path connecting them.

Let us consider the ith group containing Pi channels, where∑Q
i=1 Pi = P. An example is shown in Fig. 2, in which P1 = 5,

P2 = 3, P3 = 1, and P = 9, Q = 3. Let {i1, . . . , iPi} be the
numberings of the channels in the ith group. Then in the
strong-coupling limit, the tunneling potential becomes∑

1�k<l�Pi

Tik il cos
(
φik − φil

)
, (37)

in which we have denoted Tik il = b2−dik il tik il as the RG flowed
coupling at low energies when the cutoff is reduced by a
factor of b. We note that not all Tik il ’s are nonzero. If dik il is
larger than 2, then the corresponding Tik il vanishes. However,
by assumption, any two channels within {i1, . . . , iPi} can be
connected by a path of nonzero Tik il ’s. We also note that Tik il
can be either positive or negative depending on the sign of the
bare tunneling term tik il . The strategy is to perform a mean-
field (i.e., classical) analysis to the RG flowed potential in
Eq. (37). In the strong-coupling limit, the ground state of the
system is determined by minimizing the potential in Eq. (37).
The simplest situation is when all Tik il ’s are negative. Then the
minimum solution is given by φik ≡ φ

(0)
i , where 1 � k � Pi

and φ
(0)
i is some arbitrary real number.

For general Tik ,il ’s, we assume that φik = φ
(0)
ik

(1 � k � Pi)
is a minimum solution. Apparently, translating all φil ’s by
the same amount does not cost any energy, since the cosine

potential only depends on the difference φik − φil . Therefore
the shifted coordinates

φik = φ
(0)
ik

+ λ, λ ∈ R (38)

also minimizes the potential. Hence the shift of an overall
phase is a gapless mode, and it corresponds to the center-of-
mass motion of all the Pi channels within the ith group.

Supposing we have found a minimum solution of the tun-
neling potential in the strong-coupling limit for each group
of channels, next we expand Eq. (37) around the minimum
solutions. Let δφil defined as

δφil = φil − φ
(0)
il

(39)

be the coordinate parametrizing the deviation from the mini-
mum solution. Then the tunneling potential can be expanded
in a Taylor expansion of δφil . The linear terms vanish since
{φ(0)

il
}1�l�Pi constitutes a saddle point. Keeping only the

quadratic terms, the tunneling potential becomes
1

2π
δφT Mδφ, (40)

in which M is a P × P symmetric and semi-positive-definite
matrix.

Notice that M contains Q zero eigenvalues, corresponding
to translating all the φ j’s within the same group of channels by
the same amount of displacement. More explicitly, the vector
wk defined as

wk = (0, . . . , 1, 0, . . . , 1, . . . , 0)T (41)

is a null vector of M (i.e., Mwk = 0), in which the 1s appear at
the k1, . . . , kPk positions. The massive modes in Eq. (40) can
be integrated out. Hence, at low energies, it is enough to keep
the Q gapless modes. Our next step is to write down the low-
energy theory for these Q Luttinger liquid modes, which will
be discussed in Secs. IV B and IV C. We will first diagonalize
the Hamiltonian for the q = 0 sector. Then a nonzero wave
vector can be included by a k · p perturbation on the Q gapless
modes in the q = 0 case.

Here, we make a comment on the choice of decomposing
the channels. Although we have based our discussions on a
shell model of coupled Luttinger liquids, it can be readily
observed that the whole discussion does not rely on how
the channels are defined. For example, one can define the
channels according to the angular momentum decomposition
of the wave functions in a cylindrical geometry. In that case,
the regrouping of channels discussed in this section due to
interchannel tunnelings equally applies. The subsequent dis-
cussions in Secs. IV B, IV C, and V essentially only rely on
a collection of regrouped channels, not dependent on how
these regrouped entities arise. Hence our analysis is based on
a flexible scheme which captures the overall features and is
not sensitive to the microscopic details.

B. The zero-wave-vector Hamiltonian

We first consider the q = 0 case. The Hamiltonian is
given by

H (q = 0) = 1

2π
∇θT (q = 0)

(
VN + 1

π
U

)
∇θ (q = 0)

+ 1

2π
δφT (q = 0)Mδφ(q = 0), (42)
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in which ∇θ j (q = 0) is the canonical conjugate partner of
δφ j (q = 0). In what follows, we will drop q = 0 for simpli-
fication of notation. To diagonalize H , we first diagonalize
VN + 1

π
U , then rescale it to an identity matrix, and finally

diagonalize M.
The real symmetric matrix VN + 1

π
U can be diagonalized

by an orthogonal matrix O1 as

VN + 1

π
U = O1AθOT

1 , (43)

in which Aθ is a diagonal matrix. Define the transformed
coordinates θ (1) and δφ(1) as θ (1) = OT

1 θ , δφ(1) = OT
1 δφ.

Then the θ part in the Hamiltonian is diagonalized with ma-
trix kernel Aθ . Next rescale θ (1), δφ(1) according to θ (2) =
A1/2

θ θ (1), δφ(2) = A−1/2
θ δφ(1); then H = 1

2π
∇θ (2),T ∇θ (2) +

1
2π

δφ(2)M̃δφ(2), where

M̃ = A1/2
θ OT

1 MO1A1/2
θ . (44)

Since M̃ is symmetric, it can be diagonalized by an orthogonal
matrix O2, as

M̃ = O2�φOT
2 , (45)

where �φ is diagonal. Defining θ̃ = OT
2 θ (2), δφ̃ = OT

2 δφ(2),
we obtain

H = 1

2π
∇ θ̃T ∇ θ̃ + 1

2π
δφ̃T �φδφ̃. (46)

In summary, under the transformations

θ̃ = OT
2 A1/2

θ OT
1 θ,

δφ̃ = OT
2 A−1/2

θ OT
1 δφ, (47)

the Hamiltonian at q = 0 is transformed into Eq. (46). In what
follows, for �φ , we will take the convention of arranging
the zero eigenvalues in the upper left block and put the re-
maining massive eigenvalues in later positions on the diagonal
line, i.e.,

�φ =

⎛
⎜⎜⎜⎜⎜⎝

0
· · ·

0
m1

· · ·
mP−Q

⎞
⎟⎟⎟⎟⎟⎠, (48)

in which there are Q zeros among the diagonal elements.
We are going to relate the Q canonical pairs of the col-
lective gapless modes {θ̃k, δφ̃k}1�k�Q with the coordinates
{θ j, δφ j}1� j�P, which will be used in deriving the q �= 0
Hamiltonian.

Before proceeding, let us try to gain a better understanding
of the structure of O2. If �k is a null vector of M, then �̃k

given by

�̃k = A−1/2
θ OT

1 �k (49)

must be a null vector of M̃ [as defined in Eq. (44)]. We
emphasize that this is not true for the eigenvectors of other
eigenvalues; that is, if � is an eigenvector of M with a nonzero
eigenvalue, then �

−1/2
θ OT

1 � may not necessarily be an eigen-
vector of M̃. By assuming �k to be the “center-of-mass”

motion of the kth group of channels as discussed in Eq. (38),
it is clear that �k ∝ wk , where wk is defined in Eq. (41). To
determine the normalization of �k , notice that �̃k is a column
of the orthogonal matrix O2; hence �̃k is normalized to 1, i.e.,
�̃T

k �̃k = 1. This fixes the normalization of �k to be

�k = 1√
Pk∑

l=1

[
(Aθ )kl kl

]−1

(
êk1 + · · · + êkPk

)
, (50)

in which e j and Aθ are defined in Eqs. (27) and (43), respec-
tively, and (Aθ )kl kl represents the matrix element of Aθ at the
(kl , kl ) position. Since M̃ is diagonalized by O2, we see that
the kth column (1 � k � Q) of O2 is �̃k , i.e.,

(O2)cl
k = �̃k, (51)

in which (C)cl
k denotes the column vector formed by the kth

column of the matrix C. More explicitly,

O2 = (�̃1, . . . , �̃k, �̃
′
k+1, . . . , �̃

′
P ), (52)

in which �̃′
j (k + 1 � j � P) are the eigenvectors of the mas-

sive eigenvalues in Eq. (48).
Next, we express θ̃k (1 � k � Q), which is the gapless

mode of the kth component of the column vector θ̃ , in terms
of θi’s (1 � i � P). According to Eq. (47), θ̃k is equal to
[(O2)cl

k ]T A1/2
θ OT

1 θ . Using Eqs. (49) and (51), it is straightfor-
ward to obtain

θ̃k = �T
k θ. (53)

By virtue of Eq. (50), we conclude that for the “center-of-
mass” motion of the kth group of channels { j1, . . . , jPk }, the
gapless mode is given by θ̃k ∝ θk1 + · · · + θkPk

. Here, we make
a comment on the (Aθ )kl kl ’s which appear in the normalization
factor of �k . According to Eq. (43), (Aθ )kl kl is equal to vNkl

up to lowest order in U . Since the diagonal elements of U
vanish, the first-order corrections of the eigenvalues of Aθ are
zero. Hence the next-order term in (Aθ )kl kl is on the order
of U 2, i.e.,

(Aθ )kl kl = vNkl + O(U 2). (54)

We also examine δφ̃ and derive the component of δφi

on δφ̃k (1 � k � Q). Notice that δφ = O1A1/2
θ O2δφ̃. Thus

the component of δφ on δφ̃k is given by the kth col-
umn of O1A1/2

θ O2. On the other hand, (O1A1/2
θ O2)cl

k =
(O1A1/2

θ )(O2)cl
k = �k , where Eqs. (49) and (51) are used. This

shows that the component of δφ on δφ̃k is given by �k . Taking
into account the normalization, we obtain

δφ =
Q∑

k=1

1√
Pk∑

l=1

[
(Aθ )kl kl

]−1

(
êk1 + · · · + êkPk

)
δφ̃k

+ (massive modes), (55)

in which the notation “massive modes” denotes the contribu-
tions from the massive eigenvectors δφ̃k (Q + 1 � k � P).

In summary, the transformations between {θ̃ , δφ̃} and
{θ, δφ} are given by Eqs. (53) and (55) and can be arranged
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into the following matrix forms:

θ̃L =
⎛
⎝�T

1· · ·
�T

k

⎞
⎠θ,

δφ = (�1, . . . , �k )δφ̃L + (massive modes), (56)

in which θ̃L and δφ̃L are both Q-component column vectors
defined as

θ̃L = (θ̃1, . . . , θ̃Q)T ,

δφ̃L = (
δφ̃L

1 , . . . , δφ̃L
Q

)T
, (57)

where θ̃L
k , δφ̃L

k (1 � k � Q) are used to denote the gapless
Luttinger liquid modes within θ̃ j, δφ̃ j (1 � j � P). The com-
ponents of δφ on δφ̃l (Q + 1 � l � P) are abbreviated in the
notation “massive modes” and not explicitly shown.

Finally, we note that besides the detailed derivations of the
transformations in Eq. (56) given within this section, there
are understandings of Eq. (56) based on considerations on
general grounds. An understanding of Eq. (56) from the point
of view of the Noether theorem is discussed in Appendix B,
which, in particular, does not rely on the Gaussian fluctuation
approximation made in Eq. (40). In addition, the transforma-
tion from δφ to δφ̃ can be inferred from that from θ to θ̃ as
discussed in Appendix III A, since the two transformations
together constitute a canonical transformation.

C. The nonzero-wave-vector Hamiltonian

Now we are able to write down the low-energy theory
for the Q gapless modes by including nonzero wave vectors,
which can be achieved using a k · p perturbation theory. Com-
paring the Hamiltonians between the q = 0 and q �= 0 cases,
we see that there is one additional term for a nonzero q which
involves the derivatives of δφ, i.e.,


H (q) = 1

2π
∇δφT (q)VJ∇δφ(−q), (58)

in which ∇δφ = ∇φ is used and VJ is defined in Eq. (12).
Notice that in the k · p treatment, we should replace ∇ in
Eq. (58) by ±iq, but we choose to keep the gradient symbol
for simplicity.

By integrating out the massive modes, it is enough to
keep the gapless modes δφ̃L

k (1 � k � Q) in Eq. (58). Using
Eq. (56), we obtain


H (q) = 1

2π
∇δφ̃L,T (q)ṼJ∇δφ̃L(−q), (59)

in which

ṼJ =
⎛
⎝�T

1· · ·
�T

k

⎞
⎠VJ (�1, . . . , �k ). (60)

Since VJ is diagonal and different �k’s do not have any com-
mon channel, it is clear that ṼJ is diagonal, i.e.,

�T
mVJ�n = (ṼJ )mmδmn, 1 � m, n � Q. (61)

The normalization factor can be straightforwardly calculated
as

(ṼJ )kk =
∑Pk

l=1 vJkl∑Pk
l=1(Aθ )−1

kl kl

, (62)

in which Aθ is defined in Eq. (43). Keeping only the O(1)
terms, we have

(ṼJ )kk =
∑Pk

l=1 vJkl∑Pk
l=1 v−1

Nkl

+ O(U 2). (63)

In summary, the low-energy theory for the Q gapless
modes is

H̃ = 1

2π

Q∑
k=1

∫
dx

[∇ θ̃L
k ∇ θ̃L

k + ṽJk∇δφ̃L,T
k ∇δφ̃L

k

]
, (64)

in which the velocity and Luttinger parameter for the kth
mode are

ṽJk = (ṼJ )kk, K̃k = 1√
ṽJk

. (65)

V. SUBSTRATE POTENTIAL

To understand the fate of the Q remaining gapless boson
fields in Eq. (64) which are not pinned by intershell tun-
nelings, we must finally consider the effect of the substrate
potential.

The bosonized form HS of the substrate potential is given in
Eq. (17). If the substrate potential has a Fourier component at
wave vector 2πρ0 j , then the operator cos[2θ j (x)] will appear
in the effective Hamiltonian and will be relevant if it has
dimension dS j < 2. Alternatively, if the substrate potential has
a random component at this wave vector, HS will be relevant
if [31,34] dS j < 3/2. However, to study the RG behavior of
HS , we must take into account the effects of the intershell
tunnelings. These lead to competing phases since HS attempts
to pin the θ j variables, whereas HT attempts to pin the φ j vari-
ables. When a field is pinned, its dual field fluctuates strongly
making the corresponding interaction irrelevant [31]. Here,
we assume that the substrate potential is sufficiently weak
compared with the intershell tunneling, such that Eq. (17)
can be treated as a perturbation on Eq. (64). This assumption
should be true at least for the channels in the central region of
the nanopore when the radius of the pore is large.

Next we rewrite θ j in the θ̃ basis to study the effects of the
substrate potential. According to Eq. (47), it is straightforward
to obtain θ j = (U −1

θ ) jiθ̃i, in which i is summed over 1 �
i � P. Generically, (U −1

θ ) ji does not vanish for Q < i � P,
corresponding to the massive modes. Since the gapped modes
δφ̃i (Q < i � P) are pinned by intershell tunneling terms,
the couplings involving their dual fields are irrelevant. This
analysis demonstrates that cos(2θ j )’s (1 � j � P) generically
are all irrelevant once the substrate potential is included. Thus
the intershell tunneling terms can stabilize the system against
disorder.

However, the above analysis only applies to the first-order
effect of HS . There are higher-order processes which can be
potentially relevant. For example, the following term is al-
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lowed via a Pkth-order perturbation of HS:

H (k)
S =

∫
dxV (x) cos

[
2πρ0,(k)x − 2

Pk∑
l=1

θkl

]
, (66)

in which 1 � k � Q represents the kth gapless collective
mode and ρ0,(k) = ∑Pk

l=1 ρ0kl is the total linear density in the
kth group of channels. Expressing 2

∑Pk
l=1 θkl in terms of

θ̃i’s, it is straightforward to see that 2
∑Pk

l=1 θkl = 2μk θ̃k , in

which μk =
√∑Pk

l=1[(Aθ )kl kl ]
−1. Therefore only the kth gap-

less mode is involved, and, in particular, there is no component
of the gapped modes which have been pinned by the inter-
shell tunnelings. Taking into account the fact that V (x) may
have a Fourier mode at 2πρ0,(k) and a random component,
the relevance of H (k)

S is determined by the scaling dimension
dS,(k) of cos[2

∑Pk
l=1 θkl ], which is dS,k = μk/K̃k . According to

Eq. (65), we obtain

dS,k =
√√√√(

Pk∑
l=1

vJ jl

)(
Pk∑

l=1

[
(Aθ )kl kl

]−1

)
. (67)

To understand Eq. (67), let us consider the special case
of identical P channels of Luttinger liquids without intershell
interactions, i.e.,

vJi ≡ vJ , vNi ≡ vN , (68)

where 1 � i � P. Then it is clear that up to O(U 0), we have

dS,k =
√

P2
k

vJ

vN
= Pk

K
, (69)

in which K =
√

vJ
vN

∼ 6 is the Luttinger parameter of a single
channel in the initial model of P coupled Luttinger liquid
channels. Thus we see that the larger Pk is, the more robust the
kth gapless mode in Eq. (64) becomes with respect to disorder
effects.

Finally, let us consider an example for illustration, which
might be relevant to real situations with a large pore radius.
For simplification, suppose initially that there are P approxi-
mately identical channels satisfying Eq. (68). Assume that the
inner P − 1 channels are bound by intershell tunnelings and
the outer Pth channel is left decoupled. In this case, we have
Q = 2. Then according to Eq. (69), the scaling dimensions of
the disorder potentials are given by

dS,1 ∼ P − 1

K
, dS,2 ∼ 1

K
, (70)

where K ∼ 6. Clearly, the outermost Pth shell is localized by
the disorder which coats the pore wall. For the inner P − 1
shells, they are localized by the disordered substrate potential
when P is small. However, dS,1 can be made arbitrarily large
by increasing P; hence the effect of disorder potential on the
inner entity of the P − 1 shells will be made irrelevant for
sufficiently large P. As a result, we should be able to observe
a Luttinger liquid flowing through the nanopore.

We note that the above analysis provides an understand-
ing to the physical arguments about the 1D to 3D crossover
behavior as discussed in Sec. I. The Pth shell is pinned
by the wall potential and shields the inner fluids from the

substrate such that superfluidity (here, quasi-long-range su-
perfluidity) is maintained in the central regions. For more
complicated situations, we expect that as long as the pore
radius is large enough, there exists a group of shells which
are bound together by intershell tunnelings, making them ro-
bust to disorder effects. Therefore a Luttinger liquid channel
always exists in the system for nanopores with a large enough
radius.

VI. CONCLUSION

In conclusion, based on earlier QMC observations, we pro-
pose a shell model of coupled Luttinger liquids to describe the
helium-4 mass flow through rough-walled nanopores. Using
this shell model, the effects of substrate potential and increas-
ing pore radius are studied. For small pore radius, all helium-4
atoms are localized by the substrate potential. However, at a
critical radius, a single-component gapless Luttinger liquid
emerges as the first step in the crossover to 3D behavior.
This result is related to the standard picture for larger pores,
where a layer of bosons near the pore wall smooths out the
substrate potential and allows a tube of atoms to flow through
the center with zero viscosity. It suggests that there may be
a range of pore radii over which single-component Luttinger
liquid behavior could be observed. Surprisingly, this does not
require such a small radius that there is only one shell. Rather,
the minimum required pore radius corresponds to multiple
shells in order for the effects of the substrate potential to
be screened. Our bosonization analysis is expected to apply
to helium atoms confined in quasi-1D structures at low and
moderate densities, where a solid is assumed not to form. A
numerical test of the proposed scenario is worth further study.
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APPENDIX A: PROOF OF EQUATION (32)

In this Appendix, following Ref. [35], we give a quick
proof of Eq. (32). Let A(λ) = A + λB. Let D be defined as

D =
[

d

dλ

√
A + λB

]
λ=0

, (A1)

i.e., D = [ d
dλ

√
A(λ)]

λ=0. Differentiating [
√

A(λ)]
2 = A(λ),

we have

D
√

A +
√

AD =
[

d

dλ
A(λ)

]
λ=0

= B, (A2)

which has a unique solution for D. We show that the in-
tegral expression for D in Eq. (32) satisfies Eq. (A2). In
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fact,

D
√

A +
√

AD

=
∫ ∞

0
dt[e−t

√
ABe−t

√
A
√

A +
√

Ae−t
√

ABe−t
√

A]

=
∫ ∞

0
dt

(
− d

dt

)
(e−t

√
ABe−t

√
A)

= B, (A3)

completing the proof of Eq. (32).

APPENDIX B: NOETHER THEOREM AND THE
COLLECTIVE GAPLESS MODES

For simplification, we consider the special case of Q = 1,
i.e., there is only one gapless mode, which corresponds to
the center-of-mass motion of all the P channels. The general
case of an arbitrary Q can be discussed in a similar manner
by considering the channels of each collective gapless mode
separately.

To apply the Noether theorem, we consider the original
Hamiltonian in Eq. (1) in its bosonized form. The system has
a continuous symmetry defined as

φi → φi + λ, (B1)

where 1 � i � P and λ ∈ R. The corresponding Noether cur-
rent is

jμ =
∑

i

∂L
∂ (∂μφi )

, (B2)

in which μ = 0 and 1 corresponding to the time and spatial
coordinates, respectively, and the Lagrangian L density is
given by

L = 1

π

∑
i

∂tφi∂xθi

− 1

2π

∑
i

[vJi(∂xφi )
2 + vNi(∂xθi )

2]

− 1

π2

∑
i< j

Ûi j∂xθi∂xθ j −
∑
i, j

ti j cos(φi − φ j ). (B3)

This gives

j0 = 1

π

∑
i

∂xθi,

j1 = − 1

π

∑
i

vJi∂xφi. (B4)

The local conservation law

∂μ jμ = 0 (B5)

then implies

∂t

∑
i

∂xθi =
∑

i

vJi∂
2
x φi. (B6)

Multiplying both sides of Eq. (B6) by �T
1 , where, accord-

ing to Eq. (50), �1 is defined as

�1 = 1√
P∑

l=1
[(Aθ )ll ]−1

(1, . . . , 1)T , (B7)

Eq. (B6) can then be alternatively written as

∂t∂x θ̃1 = �T VJ∂
2
x φ, (B8)

in which VJ is the matrix defined in Eq. (12) and θ̃1 represents
the collective coordinate of the center-of-mass motion defined
in Eq. (56). Notice that the designation of the coordinate as
θ̃1 is consistent with the convention taken in Eq. (48), where
the numbering of the gapless modes is in front of the massive
modes. Using Eq. (56), ∂2

x φ can be expressed in terms of
∂2

x δφ̃i’s. Then Eq. (B8) becomes

∂t∂x θ̃1 = �T VJ� · ∂2
x δφ̃1 + ∂2

x (massive modes). (B9)

According to Eq. (60), Eq. (B9) is simply

∂t∂x θ̃1 = (ṽJ )1∂
2
x δφ̃1 + ∂2

x (massive modes). (B10)

At low energies, the massive modes can be removed from
Eq. (B9). Thus Eq. (B10) coincides exactly with the equation
of motion for ∂x θ̃1 which can be readily derived from the
Hamiltonian in Eq. (64). This provides an understanding of
Eq. (64) in terms of the conservation law and the Noether
theorem.

APPENDIX C: CANONICAL TRANSFORMATION FROM
{θ, δφ} TO {θ̃, δφ̃}

Consider the following linear transformations

θ̃ = Uθ θ, δφ̃ = Uφδφ, (C1)

in which both Uα (α = θ, φ) are P × P matrices. Assuming
{θ̃ , δφ̃} to satisfy the same commutation relations as {θ, δφ},
i.e., Eq. (7), it is straightforward to obtain

UθU T
φ = IP, (C2)

where IP represents the P × P identity matrix. Therefore we
obtain δφ̃ = U −1,T

θ δφ, or alternatively,

δφ = U T
θ δφ̃. (C3)

This is exactly Eq. (56).
In summary, according to Appendix B, we see that the ex-

pression of θ̃ is fixed by the Noether theorem, since its spatial
derivative ∂x θ̃ simply corresponds to the Noether charge. Then
the transformation for δφ̃ is determined from the property of
the canonical transformation as discussed in this Appendix.
However, we emphasize that the usefulness of Eq. (C1) in
diagonalizing the Hamiltonian is based on the Gaussian fluc-
tuation approximation made in Eq. (40).
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