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Disorder-induced broadening of optical vibrational eigenmodes in nanoparticles of nonpolar crystals is studied
numerically. The methods previously used to treat the phonons in defectless particles are adjusted for numerical
evaluation of the disordered problem. Imperfections in the forms of Gaussian and binary disorders as well
as surface irregularities are investigated thoroughly in a wide range of impurity concentrations and disorder
strengths. For dilute and weak pointlike impurities the regimes of separated and overlapped phonon levels are
obtained and the behavior of the linewidth predicted analytically is confirmed; the crossover scale falls into
the actual range of several nanometers. These notions survive for strong dilute impurities, as well. Regimes
and crossovers predicted by the analytical approach are checked and identified, and the minor discrepancies
are discussed. We mention a few of them: slower than in analytics increasing of the linewidth with the phonon
quantum number for weak disorder and only a qualitative agreement between analytics and numerics for the
resonant broadening in strong dilute disorder. The novel phenomena discovered numerically are the “mesoscopic
smearing” of the distribution function in the ensemble of identical disordered particles, an inflection of the
linewidth dependence on the impurity concentration for light “dense” binary impurities, and a position-dependent
capability of a strong impurity to catch the phonon. It is shown that surface irregularities contribute to the phonon
linewidth less than the volume disorder, and their rates reveal faster decay with increasing of the particle size.
It is argued that the results of the present research are applicable also for quantum dots and short quantum wires.
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I. INTRODUCTION

Manufacturing, characterization, investigation, and ap-
plication of diverse small particles and, particularly, of
crystalline dielectric and semiconducting nanoparticles are
among the most important and intensively developing ar-
eas of contemporary scientific research and technology. The
role of nanoparticle studies in domains of optics, quantum
computing, chemistry, and materials science permanently
grows [1–9]; various applications of nanoparticles penetrate
biology and medicine, the nanoparticles being used as dyes,
carriers, and imaging systems [10–15]. This imposes the
strict necessity for tools and methods of their physical and
chemical characterization [16,17]; the particle size is an im-
portant parameter to know. Such experimental techniques
as atomic force microscopy, dynamic light scattering, trans-
mission electron microscopy, calorimetry, x-ray diffraction,
Raman spectroscopy, etc., have been used for these pur-
poses [18–30].

The Raman spectroscopy is sensitive to the finite-size
quantization of wave vectors of optical phonons taking place
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in particles. As a result, the Raman peak for a particle is
redshifted comparing to the bulk material [31]. Since the
introduction of the phonon confinement model (PCM) it has
become possible to connect this shift with the particle size
and therefore to adjust the Raman spectroscopy for size prob-
ing [32]. However, the PCM approach remains completely
phenomenological. Moreover, for the smallest nanoparticles
it produces very inaccurate results [33–37]. Numerous efforts
undertaken to modify the PCM and to enhance the quality
of analysis of the experiment [22,38–43] did not change this
situation principally.

Recently, two mutually related novel descriptions [33,34]
of Raman experiments in nanopowders of nonpolar crystals
have been proposed to replace the PCM. Both of these de-
scriptions utilize a microscopic approach and therefore both
have more solid grounds. Unfortunately, these theories (as
well as the PCM) incorporate the linewidth of the optical
vibrational eigenmode as a fitting parameter.

The theory developed in Ref. [44] and in the present paper
(hereinafter papers I and II, respectively) is the microscopic
approach to the disorder-induced phonon line broadening of
optical modes in nanoparticles which accomplishes the theory
of Raman spectra of nanopowders of nonpolar crystals of
Refs. [33,34]. This method is much more precise and well
grounded than the PCM. In particular, it allows us to extract
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from the Raman data four parameters of a nanopowder, such
as the mean size of the particles L, the standard devia-
tion of the size distribution function δL, the particle shape
parametrized by the effective faceting number p (elongated
particles are not considered), and the strength of intrinsic
disorder S [44] (see also [45]).

Paper I is devoted to the analytical treatment of this prob-
lem. Both spectral weights and linewidths �n of eigenmodes
are calculated as the functions of their quantum number n,
nanoparticle shape, its size, and the strength of disorder within
the framework of three models, namely for Born impurities, in
the smooth random impurity potential, and for strong binary
disorder. The results are drastically different for the cases
of separated phonon levels and for levels belonging to the
continuum.

This paper is a numerical continuation of paper I; however,
its outcome is not only the numerical verification of formulas
obtained in Ref. [44] but also the report of several essentially
new results such as the “mesoscopic smearing” of the size
distribution function or the dependence of the capability for
strong impurity to localize the phonon mode on its location in
the particle. Even more importantly, our numerical approach
allows us to deal with more physical realizations of disorder
such as the so-called NV (nitrogen + vacancy) centers in
diamonds. Furthermore, sophisticated and hardly analytically
expressible types of disorder (e.g., the surface corrugations)
are also investigated.

We adopt the more general DMM-BPM method [33] (dy-
namical matrix method–bond polarization model) and the
EKFG method [34] (a continuous approach using the Eu-
clidean Klein-Fock-Gordon equation) applied previously to
study phonons in the pure particles for the numerical treat-
ment of the disordered problem incorporating the procedure
of averaging over disorder configurations into the formalism
of Green’s functions. We examine numerically (pointlike and
smooth) Gaussian and (pointlike) binary disorders varying
the impurity concentration cimp and the local atomic mass
defects δm/m in the wide intervals but mostly focusing on
the dilute regime cimp � 0.1. For the surface corrugations we
introduce two models of disorder which we call the “peeled
apples model” and the “nibbled apples model,” which allows
to investigate the (possible) scaling properties of the disorder.

The analytical predictions made for the weak pointlike
impurities about the phonon linewidth dependencies in the
form �n ∝ √

S/L3/2 for separated phonon levels and �n ∝
S/L for the overlapped ones are confirmed numerically, and
the spatial scale of the crossover between these regimes is
estimated as lying within the nanometer range. We find that
the phonon linewidth indeed grows with its quantum number
but slower than predicted by the analytics. Investigating the
smooth random potential we observe numerically a significant
diminishing of �(σ ) that occurs at the characteristic disorder
scale σ � L/2π . We discover numerically and explain the
phenomenon of broadening of the distribution function in an
ensemble of identical disordered particles which we call the
“mesoscopic smearing.”

Next, examining numerically the phonons subject to a
strong dilute disorder we find that the notions of separated and
overlapped regimes with their specific cimp and L dependen-
cies for the phonon linewidth survive in this case, as well. For

dense and very light binary impurities we detected a crossover
to the novel regime �n ∝ c3/2

imp/
√

L which originates from the
multi-impurity scattering processes and from the proximity
to the percolation transition. Inspecting the resonant impurity
scattering and the formation of the optical phonon-impurity
(localized) bound state we report a good qualitative agreement
between the results of numerical experiment and the analytics.
The new phenomenon seen in the numerics is a rapid decay
with the distance from the center of a particle observed for the
ability of a strong impurity to capture the phonon mode.

At first, the role of surface corrugations of a particle in the
broadening of the volume optical phonon modes investigated
numerically in the present paper is shown to be essentially
smaller as compared to the volume imperfections. Typically,
the surface disorder could not even lead to an overlap of
the main optical mode. For separated levels we find �1 ∝√

cimp/L2 and �1 ∝ √
cimp/L4 dependencies for this mode

provided that the disorder scales with the particle size and
does not scale, respectively. The phonon line broadening due
to surface disorder strongly increases with its quantum num-
ber, though.

We observe visually an asymmetry of the phonon lines and
their non-Lorentzian shapes predicted in paper I.

The paper is organized as follows. In Sec. II we formu-
late the methods we used to study the pure problem and
adopt them for numerical treatment of disordered particles.
Section III sketches the sources and the peculiarities of dis-
order in nanopowders and specifies their relations to the
models considered. Section IV is devoted to the analysis of
weak disorder (including its pointlike and smooth versions); it
also addresses the phenomenon of “mesoscopic smearing.” In
Sec. V we investigate the strong dilute impurities (including
their resonant and unitary regimes) and the crossover to the
“dense” regime of concentrations. In Sec. VI we examine
the role of surface corrugations. The last section, Sec. VII,
contains the summary of our results and their discussion.

II. METHODS

In Secs. II A and II B we briefly sketch the methods
(DMM-BPM and EKFG) we shall use in order to characterize
the Raman scattering. Section II C is devoted to the descrip-
tion of the Green’s function formalism adapted for disordered
particles.

A. Dynamical matrix method: Atomistic approach

The dynamical matrix method (DMM) [46,47] provides
a very good accuracy of derivation of normal vibrational
eigenmodes and the corresponding eigenfrequencies for
multicomponent quantum objects such as molecules and
nanoparticles. It consists of solving the 3N × 3N matrix
eigenvalue problem formulated for the system of Newton’s
laws of motion for N atoms:

ω2rl,α = 1

ml

N∑
l ′=1

∑
β=x,y,z

∂2


∂rl,α∂rl ′,β
rl ′,β , (1)

where rl,α is the displacement of the lth atom along the direc-
tion α, ml is the mass of the lth atom, and 
 is the total energy
of the particle written as a function of atomic displacements.
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The masses of atoms could be eliminated from Eqs. (1) by
the local rescaling of variables ξl = rl

√
ml for varying atomic

masses and by the global rescaling ξl = rl
√

m for the iden-
tical ones. For translationally invariant crystals DMM yields
the phonon dispersion and its polarization. The solution of
the DMM problem determines displacements rl,α (n) for each
eigenmode n.

Since we choose nanodiamonds as a testing object for
our approach we construct the dynamical matrix utilizing
the elastic parameters of the diamond lattice extracted from
the microscopic Keating model [48–51]. Within this model
parameter α0 measures the bond rigidity with respect to
stretching and parameter β0 is responsible for the valence
angle bending. We use the values α0 = 1.068 dyn cm−2 and
β0 = 0.821 dyn cm−2 from Table II of Ref. [52].

For the dispersion of optical phonons we utilize the con-
ventional expression

ωq = A + B cos(qa0/2), (2)

where a0 = 0.357 nm is the diamond lattice constant. The
Keating model and the employed force constants yield A +
B = ω0 ≈ 1333 cm−1 and B ≈ 85 cm−1. Near the Brillouin
zone center the dispersion simplifies [44]:

ωq = ω0[1 − F (qa0)2], (3)

and F measures the spectrum flatness. Comparing Eq. (3) with
the Taylor expansion of Eq. (2), we get F = B

8(A+B) .

B. Euclidean Klein-Fock-Gordon equation:
Continuous media approach

Another approach to the Raman spectra of nanoparticles
is developed in Ref. [34]. It utilizes a continuous description
of the long-wavelength optical phonons and the continuous
version of the BPM. Within the framework of the EKFG
method the phonon wave functions Y satisfy the following
differential equation with the Dirichlet boundary conditions
(∂� being the particle boundary):(

∂2
t + C1 + C2

)
Y = 0, Y |∂� = 0. (4)

The eigenfrequencies can be obtained as

ω2 = C2 − C1q2, (5)

where q2 is the eigennumber of the problem

Y + q2Y = 0, Y |∂� = 0. (6)

Within the range of validity of the EKFG approach (small q �
a−1

0 ) the phonon frequency of a mode with the generalized
quantum number n reads

ωn ≈ √
C2 − C1√

C2

q2
n

2
. (7)

Since Eq. (7) should be a quantized version of Eq. (3) one
obtains C2 = (A + B)2 and C1 = a2

0 B(A + B)/4.
The main advantage of the EKFG approach is its relative

simplicity. Equation (6) can be solved analytically for cubic,
spherical, and cylindrical particles and numerically for other
particle shapes using standard methods which are included,
e.g., in the Mathematica package [53].

Importantly, both of the above-mentioned approaches can
be easily adopted for the numerical treatment. Moreover, the
EKFG approach allows us to manipulate with larger particles
inaccessible by means of DMM. In our further analysis, we
will combine both of these methods.

C. Phonon propagator in disordered particles

Here we adopt the formalism of the phonon Green’s func-
tions for the treatment of disordered particles. Let n enumerate
the eigenstates of a pure particle while the variable ε spans the
energies of eigenstates in the ensemble of disordered particles;
the eigenfunctions of these states are |n〉 and |ε〉, respectively.
The propagator of the nth phonon mode has the form [54]

Dn(t ) = i〈vac|T̂(b†
n(t ) − bn(t ))[b†

n(0) − bn(0)]|vac〉
= −i θ (t )〈n|e−iHt |n〉 − i θ (−t )〈n|eiHt |n〉
= −i

∑
ε

|〈n|ε〉|2[θ (t )e−iεt + θ (−t )eiεt ]. (8)

Here T̂ is the time-ordering operator, b†
n (bn) are the creation

(annihilation) operators acting on pure eigenstates, θ (t ) is
the Heaviside theta function, and H is the Hamiltonian of
the disordered problem. After the Fourier transform we obtain
the propagator

Dn(ω) =
∑

ε

|〈n|ε〉|2
(

1

ω − ε + i0
− 1

ω + ε − i0

)
. (9)

Near the positive pole its imaginary part reads

Im Dn(ω) = −π
∑

ε

δ(ω − ε)|〈n|ε〉|2. (10)

Averaging Eq. (10) over disorder configurations (which is
denoted by the overline) we calculate the density of states
ρ(ω):

Im Dn(ω) = −πρ(ω)|〈n|ω〉|2. (11)

This quantity multiplied by −π−1 represents the spectral
weight of a broadened vibrational eigenmode. Using the
Lorentz approximation for the spectral weight we obtain the
linewidth for the nth mode.

In order to perform the disorder averaging in Eq. (10)
one should specify the type of disorder. Within the DMM
approach we deal with the eigenfunctions r(k, n)l,α , where k
stands for the index of disorder realization (we reserve the
value k = 0 for the pure particle). Then Eq. (11) becomes

Im Dn(ω) = − π

Nc

Nc∑
k=1

3N∑
n′=1

δ(ω − ωn′ )

×
[

N∑
l=1

∑
α=x,y,z

r(0, n)l,αr(k, n′)l,α

]2

, (12)

where Nc is the number of configurations. In order to distin-
guish visually between DMM-BPM and EKFG formulas we
denote the eigenfunctions as r(k, n)l,α in the former case and
as Yn(k, r) in the latter one which differs from the notations of
Ref. [44]. In real calculations we replaced the upper limit in
the inner sum (the number of eigenmodes 3N) by the energy
cutoff ωc = 1000 cm−1 in order to prevent the mixing of

205422-3



KONIAKHIN, UTESOV, AND YASHENKIN PHYSICAL REVIEW B 102, 205422 (2020)

optical and acoustic modes at large momenta. This is justified
by the fact that we never observed the broadening reaching the
value ∼102 cm−1 even for unrealistically strong disorder.

For continuous EKFG calculations the analog of Eq. (12)
reads

Im Dn(ω) = − π

Nc

Nc∑
k=1

N ′∑
n′=1

δ(ω − ωn′ )

×
[∫

�

d3r Yn(0, r)Yn′ (k, r)

]2

, (13)

where � is the volume of a particle. The upper limit N ′ of
the inner sum in Eq. (13) is chosen from the condition for the
characteristic “wave vector” kc = maxY ′

maxY to be smaller than the
size of the Brillouin zone π/a0, where the prime stands for
the spatial derivative.

III. DISORDER

In Sec. III A we present a qualitative picture of various
types of disorder existing in nanoparticles. The peculiar-
ities of their numerical investigation within the frame-
work of approaches outlined in Sec. II are discussed in
Secs. III B, III C, III D, and III E.

A. Preliminary remarks

When addressing the phenomena responsible for disorder-
induced broadening of the Raman peak in nanoparticles one
should mention four principal mechanisms. The first one is
due to “ordinary impurities.” The substitutional impurities
in diamonds are realized as the distortions of the dynamical
matrix stemming from random replacements of carbon atoms
by another isotope of the carbon (weak pointlike impurities)
or by another sort of atom (e.g., by nitrogen which forms
the so-called NV centers [55] identified below as the strong
pointlike impurities). These local variations of masses and
rigidities scatter the vibrational modes and therefore provide
their damping [see Fig. 1(a)]. Although physically the masses
and the rigidities vary simultaneously, in Ref. [44] for the sake
of simplicity only the masses have been taken to be random.

The second mechanism is related to large-scale inclusions
(gaseous or solid) often existing in nanoparticles, to lattice
distortions (dislocation, etc.), and to slow changes of char-
acteristics of the crystal caused by the evolution of external
parameters (pressure, temperature, chemical composition of
the atmosphere, etc.) during the time of crystal growth. All
these influences have a large-scale structure and could be
regarded as “colored noise” with certain spatial scale σ ex-
ceeding the interatomic distance a0 and comparable with the
particle size L [see Fig. 1(b)]. We describe this type of dis-
order qualitatively by means of a smooth random (Gaussian)
potential.

The third way to incorporate the disorder into the problem
which is often referred to as the “surface corrugations” is
specific for finite particles. It arises if one introduces the
irregularities of the particle surface; the phonon scattering
within the particle is due to the surface reflections whereas
the interior of a crystal may be perfect for wave propagation
[see Fig. 1(c)]. The surface scattering broadens the phonon

FIG. 1. The sketch of four types of disorder contributing to the
phonon damping in nanoparticles. (a) The pointlike impurities lo-
cated in the interior of a particle. Phonons propagate through the
particle and sometimes scatter off the impurity. If the scattering
occurs frequently (as in this picture), the phonon levels overlap.
(b) A smooth disorder in the volume of a particle. The characteristic
disorder scale σ is shorter than the particle size L. (c) The surface
corrugations which can be considered as a random faceting of the
particle. They lead to chaotization of propagating waves. (d) The
shell of an amorphous phase near the surface of a particle. Vibrations
propagating within this shell are not the phonons.

line; the details of the broadening depend on the charac-
ter of surface roughnesses. The correspondence between the
propagation of electromagnetic (or electron) waves in irreg-
ular cavities and in regular cavities with spatial disorder was
widely discussed in the late 1990s in terms of chaotization of
dynamics in (both quantum and classical) “billiards” [56].

The fourth mechanism which leads to the Raman peak
broadening in nanoparticles originates from surface amor-
phization [see Fig. 1(d)] well-documented for nanodia-
monds [25,29,57,58]. It takes place within the near-surface
shell of a crystal due to the crystal interference with a
surrounding media during its growth and/or aging. The amor-
phous surface shell is also known to exist in bulk crystals, but
its importance increases with increasing of the surface-to-bulk
ratio, i.e., in nanoparticles. This mechanism implies a very
strong disorder in the near-surface shell where even the notion
of propagating wave (phonon) modes loses its meaning due to
the lack of translational invariance. It is the only mechanism
we shall not address in this paper. We postpone this issue to
the forthcoming publications because it requires a principally
different (critical-dynamics-like) analytical approach for its
treatment and interpretation.

We believe that in real nanoparticles there is realized a
certain combination of all four aforementioned mechanisms.

B. Binary disorder in discrete model

It is important to define a clear and meaningful measure
of the disorder strength. Consider first the simplest binary
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disorder, when the lattice sites are occupied with the prob-
ability 1 − cimp by the atoms with masses m and with the
probability cimp by the randomly placed impurities with
masses m + δm. Here cimp = Ni/N is the dimensionless con-
centration, Ni is the total number of impurities, and N is the
total number of lattice sites in a particle. Then at low impurity
concentrations cimp � 1 and for the small mass difference
δm/m � 1 the disorder strength parameter could be intro-
duced as follows:

S = cimp

(
δm

m

)2

. (14)

The mean variation of the binary disorder is not equal to zero,
〈δmi〉 �= 0. The strength of the strong impurities with |δm| �
m should be measured by the parameter

U = δm

m + δm
, (15)

still, under the condition cimp � 1. If |U | ∼ 1 and cimp ∼ 1,
then the notion of the translational invariance (in any sense)
disappears, and the solid becomes amorphous.

For diamonds, the binary distribution appears in two vari-
ants: as the isotopic disorder and in the form of substitutional
nitrogen impurities. In the former case m corresponds to the
12C atom and m + δm is the 13C atomic mass which yields
δm/m = (13 − 12)/12 = 1/12. When the nitrogen atoms are
considered, the effect is not so obvious. Normally, the nitrogen
located in a diamond is accompanied by a vacancy in the
lattice (NV center). These NV centers are in fact molecule-
like complexes embedded into the carbon atoms surrounding
which have the rich characteristic vibrational spectra [55,59].
The nitrogen atom possesses 5 electrons in the outer shell
which are a subject of sp3 hybridization: 3 of them form
covalent bonds with the neighboring carbon atoms and 2
electrons related to the vacancy constitute a pair accompanied
by an outer electron to form the NV− center. The spectra of
NV centers are quite intricate; in order to describe their fine
structure one should engage the ab initio methods [60–62].
However, as far as the long-wavelength optical phonons are
considered, all these peculiarities do not play significant role,
and the phonons feel the NV defects as pointlike disturbances
in the dynamical matrix of a diamond nanoparticle. Within
the DMM approach we model the NV center as a vacancy
neighboring the impurity with δm/m = 0.17; however, even
simpler representation via a binary disorder with the unitary
defects U → −∞ yields a pretty good result (see below).

C. Gaussian disorder in discrete model

For a Gaussian disorder, the masses of atoms are randomly
distributed according to the Gaussian law around some mean
value. Although precisely this form of disorder is rarely real-
ized in practice, the model is very popular among the theorists
for its analytical convenience. Moreover, the solution of the
Gaussian problem reveals the majority of generic features
shared by many physical types of disorder (see, e.g., Fig. 2).
Therefore, the numerical study of the Gaussian disorder is
the most straightforward way to verify the predictions of the
analytical approach simultaneously staying on the physical
grounds.

1290 1300 1310 1320 1330 1340 1350
0
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8 cm-1
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/
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Gauss, S=0.011
NV, c_imp=0.65%
NV, c_imp=6.1%
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NV, shifted, 0.65%

42 cm-1

FIG. 2. The spectral weight of the first vibrational mode obtained
using the DMM method and evaluated for the Gaussian disorder
(blue and black curves) and for the binary disorder in the form
of NV centers (gray and red curves) drawn for two values of the
disorder corresponding to separated and overlapped regimes. The
binary curves are significantly shifted with respect to the Gaussian
ones due to nonzero value of 〈δml〉; however, after the substraction
of these shifts (orange and green curves) the Gaussian and the binary
line shapes became almost indistinguishable. Also, the line shapes
calculated for the overlapped regime are asymmetric in agreement
with the theory of paper I.

The definition (14) can be generalized onto an arbitrary
distribution of the impurity masses:

S = 〈(δml )2〉
m2

, (16)

where the nonzero contribution comes only from the impu-
rity sites making the quantity S proportional to the impurity
concentration cimp. The distribution function for a Gaussian
disorder with |δm|/m � 1 is given by

F (δml ) = 1√
2πS

exp

[
− (δml/m)2

2S

]
. (17)

For the purposes of the DMM-BPM method we model the
weak Gaussian disorder as follows. The carbon-normalized
inverse impurity mass m̃−1 of the lth atom is chosen to be
randomly varying within the interval [0.25, 1.75] quantity
with the probability

F
(
m̃−1

l

) ∝ exp

(
−

(
m̃−1

l − 1
)2

2S

)
. (18)

This procedure does not deliver zero for the average mass
variation. Therefore, we add to each mass the value

m̃−1 = 1 − 1

N

N∑
l=1

m̃−1
l , (19)

thus providing 〈δml〉 = 0.

D. Disordered continuous EKFG model

Disorder can be incorporated into the continuous model
by several means. The pointlike impurities of the discrete
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DMM-BPM approach are mapped onto the spatial variation
of the parameters C1,2 in the EKFG equation. However, since
the term with C1 in Eq. (4) possesses an additional smallness
due to the spatial derivatives we can vary only C2:

δC2(r) = − δm(r)

m + δm(r)
C2. (20)

Here m and C2 stand for their values in the pure particle. Then
for Born impurities one has

〈δm(r)〉 = 0,
〈δm(r)δm(r′)〉

m2
= S V0 δ(r′ − r), (21)

where V0 is the unit cell volume and S is the dimensionless
strength of the impurities given by Eq. (16).

In our numerics we use the Mathematica package [53]. For
Born impurities we reformulate the definition of the momen-
tum q in Eq. (6) which can be rewritten in the form

Y + δC2(r)

C1
Y + q2Y = 0, Y |∂� = 0. (22)

Notice that the eigenfrequencies still can be found from
Eq. (5), where C2 corresponds to the pure particle. Then
the procedure of generating new disorder configurations and
numerically solving Eq. (22) should be performed repeatedly.
The obtained eigenfunctions and eigenfrequencies are utilized
in the subsequent calculation of the disorder-induced phonon
line broadening (see Sec. II C).

In order to adopt the EKFG approach for the treatment of
a smooth disorder let us introduce Ndef defects providing the
random Gaussian potential in the form

δC2(r) =
Ndef∑
i=1

diC2

(2πσ 2)3/2
e
−

(r − ri )2

2σ 2 , (23)

where ri are the centers of uncorrelated impurity potentials
and di are the corresponding (Gaussian distributed) strength
constants obeying the following conditions:

〈di〉 = 0, 〈did j〉 = δi jS. (24)

One can check that δC2(r)δC2(r′) ∝ S, and, performing disor-
der averaging 〈δC2(r)δC2(r′)〉, the standard deviation is equal
to σ ; the latter result is valid if one neglects the boundary ef-
fects. Thus, we arrive to the problem investigated analytically
in paper I.

When applying the continuous EKFG approach in order to
investigate the more involved case of rare strong impurities
we introduce Nimp unit cells in a particle (Nimp � N) with a
fixed large value of |δm| inside each of the cells.

E. Surface corrugations

We adjust the canonical EKFG approach for the analy-
sis of an influence of particle surface irregularities on the
phonon linewidth by solving the Laplace eigenproblem with
the Dirichlet boundary conditions given by Eq. (6) for the
shape of a boundary ∂� randomly varying from particle to
particle under the constraint to preserve the particle volume.
We examine in detail two particular models of the surface
corrugations. The first one is the random triangular faceting of
a cubic particle which yields the convex irregular polyhedron

FIG. 3. (a) The particle with the random surface made of triangu-
lar facets (“peeled apples” model). This object is an example of the
convex irregular polyhedron. (b) The particle made of cubic bricks
with randomly removed bricks on the surface (“nibbled apples”
model).

[hereinafter, the “peeled apples” model; see Fig. 3(a)]. For the
second model we construct the particle using the cubic bricks
of a certain size; some bricks on the surface are randomly re-
moved with the probability cimp [the “nibbled apples” model;
see Fig. 3(b)]. These models differ by the type of surface
irregularities whereas the volume of a particle is supposed to
be clean in both cases.

IV. RESULTS: WEAK IMPURITIES

In this section we present the results of numerical modeling
for a weak (both pointlike and smooth) disorder and compare
these results with the analytical predictions made in paper I.
We also discuss the phenomenon of “mesoscopic smearing”
not addressed in paper I. The disorder is assumed to be
weak if not only the condition S � 1 is fulfilled but also its
constituents cimp and (δm/m)2 are much smaller than unity
independently.

A. Density of states and spectral weight

Let us discuss the behavior of the phonon density of states
(DOS) in disordered nanodiamonds. The bulk DOS reveals
the van Hove singularity at ω → ω0:

ρ(ω → ω0) = θ (ω0 − ω)
√

ω0 − ω

4π2(Fω0)3/2
. (25)

A more involved formula applicable in a wider frequency
range can be found in Ref. [33]. The bulk DOS, together with
the DOS functions calculated numerically for a 3 nm disor-
dered spherical diamond (the number of atoms is ≈ 2450),
is plotted in Fig. 4 as a function of frequency for different
values of disorder; the disorder-induced shift of ω0 is sub-
tracted by hand. At the smallest S the phonon lines acquire
just a little broadening much smaller than the energy spac-
ings between different eigenmodes. The resulting DOS has a
comblike structure similar to the DOS of a single particle. This
DOS structure reproduces itself in the Raman spectrum, as it
occurs, e.g., for fullerenes [63]. The observation of a comblike
Raman spectrum for one nanoparticle or for an ensemble
of very small, clean, and equal-sized nanoparticles is a very
challenging but intriguing experimental task.

When the disorder strength grows up the phonon lines start
to overlap (see Fig. 4). However, every line can be resolved
and the first mode remains well separated. Qualitative change
in DOS visible by eye shows up between S = 0.00024 and
S = 0.005. The first mode starts to overlap with its neighbor

205422-6



LIFETIMES OF CONFINED OPTICAL PHONONS AND THE … PHYSICAL REVIEW B 102, 205422 (2020)

1270 1280 1290 1300 1310 1320 1330 1340
0

2

4

6

8

10

12

14 Raman spectrum
DOS, S=0.00015
DOS, S=0.0024, shifted
DOS, S=0.005, shifted
DOS, bulk

D
O
S
an
d
In
te
ns
ity
(a
.u
.)

(cm-1)

FIG. 4. Phonon density of states vs frequency. The bulk pure
DOS is shown by the dashed black curve. The disordered DOS is
calculated for a 3 nm spherical diamond particle (about 2450 atoms)
with the use of the DMM approach for the weak Gaussian disorder.
At small S = 0.00015 the DOS has a comblike structure, and the
resulting Raman peaks are shown by the dotted black curve. The
crossover between the regimes of separated and overlapped levels
occurs between S = 0.0024 and S = 0.005.

whereas the other lines are strongly overlapped and smeared
out into the bulklike DOS with some small features on the top.
For the stronger disorder the DOS in nanoparticles is almost
the same as in the bulk diamond but it has a pronounced tail
at ω > ω0 hiding the van Hove singularity located at ω0 ≈
1333 cm−1.

The picture described above for the disordered DOS in
nanoparticles is in the one-to-one correspondence with the
picture of the Raman peak structure in nanoparticles pre-
sented in paper I. Indeed, the discrete vibrational eigenmodes
(see, e.g., Fig. 5) which we call (not entirely accurately) the
“phonons” constitute both the disordered DOS in nanoparti-
cles and the Raman peak (peaks). The only difference is that
in the latter case some of these lines are suppressed due to
the symmetry properties of related eigenfunctions, and the
rest of them are reweighted with the matrix elements of the
photon-phonon interaction. These eigenmodes can exist either
in the separated or in the overlapped regime depending on the
disorder strength and the particle size. Moreover, since the
distance from the first triple-degenerate mode to its closest
neighbor is larger than any other interlevel spacing in the
spectrum the particle can exist in a mixed state (cf. Fig. 4,
magenta curve), which provides a wide crossover between the
purely separated and the completely overlapped regimes.

B. Linewidth and crossover scales

Here we present a comparison between the results of ana-
lytical calculations of paper I and the numerics of the present
paper concerning the phonon line broadening.
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FIG. 5. The spectral weight of the first phonon eigenmode D1 in
a disordered nanoparticle; S = 0.0024 and other parameters are the
same as in Fig. 4, where this eigenmode is seen as a tiny magenta
hump under the Raman peak. Although this value of S is close to the
crossover one, the shape of a peak still resembles a semicircle more
than the Lorentzian (cf. Fig. 5 of paper I).

The analytical formula for the phonon linewidth reads

�n = ωnμn(p)
√

S

(
a0

L

)3/2

(26)

for separated levels, and

�n = ωnνn(p)S
a0

L
(27)

for overlapped ones. Here μn(p) is the shape p and quantum
number n dependent coefficient defined by

μ2
n(p) = P3

p

N

128

∑
l,α

[r(n)l,αr(n)l,α]2, (28)

where Pp converts the linear size of a particle with p facets
into the diameter of a sphere L containing the same number of
atoms; the sum in Eq. (26) runs over all atoms in a particle.
Furthermore, νn(p) ∝ 1/64F and strongly depends on the
phonon quantum number n. The width of the Raman peak
inversely proportional to the particle size has been extracted
from the experimental data in Ref. [19], where the particles
with L ∼ 102 nm have been analyzed.

First, we test the linewidth dependence on the particle size
L predicted by Eqs. (26) and (27). Using the DMM approach
and the Gaussian distribution of disorder we investigated nu-
merically the broadening of the first phonon line in spherical
diamond particles as a function of the particle size L for two
values of the disorder strength parameter S supposedly corre-
sponding to the regimes of separated (S = 0.0011) and over-
lapped (S = 0.011) levels. The results are plotted in Fig. 6. We
observe the predicted power-law dependencies �1 ∝ L−3/2

and �1 ∝ L−1 for these two cases. Notice that not only the
functional dependence of �1 but also the numerical prefactors
are in a good agreement with the analytics of paper I.
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FIG. 6. The broadening parameter for the first optical phonon
eigenmode �1 as a function of the particle size L obtained within
the DMM-BPM scheme for spherical diamond particles subject
to a weak Gaussian disorder. The black squares and the red dots
correspond to the disorder strengths S = 0.0011 and S = 0.011, re-
spectively. The range of L presented in this figure covers the regime
of separated levels in the former case and the regime of overlapped
levels in the latter one; the lines depict the analytical predictions for
these two regimes.

Second, in order to examine the disorder strength and
quantum number dependence in Eqs. (26) and (27), we study
numerically the broadening parameter �n for several phonon
modes with different quantum numbers versus the disorder
strength parameter S in spherical 3 nm diamond particles; the
method used is the same as for Fig. 6. The result is plotted
in Fig. 7. We mention a very good agreement between the
numerics and the analytics for the first phonon linewidth �1

including the functional dependence and the crossover scale.
For higher modes a transition between the regimes occurs
smoother than for the first one manifesting a wider crossover
area; for the highest mode, the overlapped regime for all
considered S is identified. The tendency for the highest modes
to have larger linewidths in the regime of overlapped levels
predicted in paper I is correctly reproduced in our numer-
ics; however, we observed that the character of this growth
is overestimated by the analytical theory. Nevertheless, the
linewidth �n growing with the increase of the quantum num-
bers n is an important ingredient of our approach. It has been
demonstrated in Ref. [45] where the incorporation of this phe-
nomenon essentially improved the χ2 criterion as compared to
the fit with the n-independent linewidth.

Notice that for the fit of �1 on separated levels we used the
value μ1 ≈ 0.33 in Eq. (26) which is nearly 1.5 times smaller
than its value extracted from the exact DMM eigenfunctions.
We attribute this discrepancy to the Lorentz approximation we
used in our analytics, whereas the semicircle form (see paper
I) gives the additional

√
3 factor which solves the problem.

Moreover, it is seen in Fig. 5 that the real phonon spectral
weight is not just non-Lorentzian but even asymmetric. We be-
lieve that the right-hand side of Eq. (26) should be multiplied
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FIG. 7. The broadening parameter �n for several optical phonon
eigenmodes as a function of the disorder strength S obtained within
the DMM approach for 3 nm spherical diamonds. At small S the
regime of separated levels takes place (dotted line), where �n ∝ √

S
and reveals a weak quantum number dependence, whereas at larger
S the linewidth follows the asymptote �n ∝ S (dashed line), typical
for overlapped levels. The crossover between these regimes occurs at
S ∼ 0.005.

by the factor
√

3 caused by an imperfection of the Lorentz
approximation.

The third issue we would like to discuss in this subsec-
tion concerns the crossover scales between the regimes of
the phonon line broadening. The estimates for these scales
presented in paper I for the mean particle size L,

Lc ∼ a0

S
, (29)

at a given disorder strength, and for the disorder strength S,

Sc ∼ a0

L
, (30)

at a fixed particle size, yield just a qualitative understanding
of this issue without answering the question, is this particular
phonon mode separated from others or overlapped with them?
The answer depends also on the shape and quantum number
dependent prefactor omitted in Eqs. (29) and (30). To give
some feeling of numbers, we rewrite here the expression for
Lc obtained in the Appendix of paper I for the first vibrational
mode of a cubic particle which includes all numerical and
parametric prefactors:

Lc = 15π4F 2 a0

S
. (31)

For a diamond, the flatness parameter F ≈ 0.008, and the
prefactor in front of the model-free ratio in Eq. (31) is about
0.094. This means that for a reasonable amount of disorder,
say, between S = 0.001 and S = 0.05, the crossover particle
size Lc varies from 1.9a0 to 94a0, or, in the metric units,
from 0.67 nm to 34 nm. This is precisely the range of pa-
rameters intensively studied in the recent experiments. For
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FIG. 8. The damping of the first optical phonon eigenmode �1 as
a function of characteristic scale σ of the Gaussian smooth disorder
calculated numerically with the use of the EKFG approach (black
dots) and analytically (black curve) for cubic particles with L =
8.9 nm. Numerical and analytical results are in a good agreement. For
σ comparable with the particle size the broadening is much smaller
that for equivalent pointlike impurities. For the highest phonon
modes the diminishing takes place at even smaller σ .

nanodiamonds, if one does not account for the adamantane
derivatives [64], the lowest reported size is 1.4 nm [23]. Most
studies deal with 3–10 nm; we would like to mention here
Refs. [20,65–67]. The nanodiamonds of sizes of dozens of
nanometers are also actively investigated [10,19,68]. How-
ever, at such sizes, the size-quantization-induced Raman peak
redshift proportional to L−2 becomes lower than the preci-
sion of Raman spectrometers; still the broadening effects can
stay visible due to L−1 dependence in the overlapped levels
regime. For other materials, like Si nanoparticles [69] and
semiconductor quantum dots [70,71], the sizes from several
nanometers to dozens of nanometers are also of highest re-
search interest, which supports the actuality of the considered
parameter range.

C. Smooth disorder

In this subsection we discuss the effect of a smooth weak
disorder, characterized by the spatial scale σ , on the optical
vibrations in nanoparticles.

Utilizing the EKFG approach and studying numerically the
Gaussian-correlated disorder introduced in Sec. III D we ar-
rive at the same conclusions as in paper I. Namely, we observe
that for a given phonon mode n the broadening essentially
depends on the product qnσ . When qnσ � 1 one can use the
results for weak pointlike impurities; the smooth character of
the disorder provides only small corrections. Notice that for
the first phonon mode the condition q1σ � 1 implies σ �
L/(2π ) which for nanoparticles of nanometer size means that
even the disorder correlated with distances of the order of
several lattice parameters leads to the significant suppression
of broadening. This statement is illustrated by Fig. 8 depicting
the fast decay of �1(σ ) as σ increases observed for cubic
particles with L ≈ 8.9 nm. In the opposite case qnσ � 1 one
observes a drastic diminishing of the damping. This means
that in the absence of additional broadening mechanisms this

type of disorder is not capable of providing the level overlaps
leaving the spectrum in the separated regime.

D. Line shift and mesoscopic smearing

The disorder yields an additional contribution to the broad-
ening of the Raman peak which appears even in the ensemble
of identical disordered particles due to a “mesoscopic” smear-
ing of phonon lines. The origin of this smearing could
be clarified as follows. In the ensemble of identical par-
ticles the disorder (say, local mass variations) generates a
size-independent shift of the maximal phonon frequency ω0

proportional to the mean mass variation 〈δm〉 and to the im-
purity concentration cimp. For disorders with zero mean this
shift is equal to zero. Nevertheless, even in the latter case
there exist the fluctuations of the mean (over the particle)
impurity mass value due to the difference of disorder realiza-
tions in various particles. This difference generates different
fluctuation-induced shifts of ω0 in particles. Upon the disorder
averaging (over an ensemble) these shifts lead to a finite
linewidth of the phonon mode as well as to its size-dependent
shift. The latter shift is nonzero even when 〈δm〉 = 0 because
it is proportional to the autocorrelator 〈(δm)2〉, the quantity
related to the variance of the function rather to its mean value.

If the disorder realizations in various particles are indepen-
dent, the above-mentioned fluctuations obey the Poissonian
statistics in the discrete ensemble of particles or the Gaussian
statistics in the (quasi)continuous one. This smearing mech-
anism is similar to the smearing that occurs due to the real
particle size variation in powders but appears even for identi-
cal particles, stemming from the fluctuations of the number of
impurities Ni rather than the number of atoms N in a particle.

The above shift is due to (supposedly, independent) fluctu-
ations of disorder. The relative number of atoms participating
in a fluctuation is Ni/N and the relative probability of this
fluctuation is 1/

√
Ni. This yields

ω0 ∝ ω0
Ni

N

1√
Ni

∝ ω0

√
cimp

L3/2
, (32)

which resembles the linewidth behavior for separated levels.
In the overlapped regime the levels start to cross-talk, and the
analysis becomes more tricky. Evidently, the effect disappears
in the bulk limit N → ∞.

Now let us provide some details. In the presence of im-
purities with concentration cimp � 1 and masses m + δm the
average atomic mass in a particle reads

〈ml〉 = m + cimpδm, (33)

while its variance is〈
m2

l

〉 − 〈ml〉2 = cimp(δm)2. (34)

When calculating how the mass is distributed in a particle
containing N atoms, the latter quantity gives the standard
deviation

m = δm

√
cimp

N
. (35)
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FIG. 9. We investigate the effect of “mesoscopic” smearing ex-
amining the linewidth of the first phonon mode �1 for separated
levels in 3 nm spherical nanodiamonds with the use of DMM. In the
upper panel the Gaussian disorder is forced “by hand” to have zero
mean value in each particle separately, which delivers the linewidth
�1 ≈ 1.2 cm−1. In the lower panel we did not use that trick allowing
the impurity mass to fluctuate from particle to particle. The resulting
broadening increases to the value �1 ≈ 1.4 cm−1.

Since ω2
0 is inversely proportional to the reduced mass of a

cell we have the standard deviation of ω0 in the form

ω0 = ω0

4

δm

〈ml〉
√

cimp

N
. (36)

This quantity is simply related to the disorder strength param-
eter S introduced above:

ω0 = ω0

4

√
S

N
. (37)

Again, we see that the frequency shift given by Eq. (37) is
not only proportional to 1/L3/2 but also depends on other
parameters in the same fashion as the linewidth for separated
levels. Hence, it should be taken into account. Estimates reveal
that it provides about 1/6 of the overall broadening. For strong
disorder and/or overlapped levels this contribution is found to
be much smaller.

The above arguments are supported by our numerics. In
Fig. 9 we show the difference between the broadening of the
first phonon mode �1 in 3 nm spherical diamonds subject to
a weak pointlike disorder with and without the subtraction of
the mean impurity mass value for every particle. We obtain
�1 ≈ 1.2 cm−1 for the former case and �1 ≈ 1.4 cm−1 for the
latter one.

In this section the prediction of paper I for the weak
pointlike impurities about the linewidth dependencies �n ∝√

S/L3/2 for separated levels and �n ∝ S/L for the overlapped
ones is verified numerically; the crossover scale typically
belongs to the nanometer range. Our numerics confirms a
significant diminishing of the damping due to the smooth
disorder in comparison with the pointlike one. We also study
the “mesoscopic” smearing of the distribution function that
occurs even in the ensemble of identical disordered particles.

V. RESULTS: STRONG IMPURITIES

In this section we present the results of numerical modeling
for a strong disorder and compare them with the analyt-
ical predictions of paper I. In Sec. V A we explain the
physical reasons to distinguish between the “weak” and
“strong” impurities and outline the results of paper I for the
latter. Section V B is devoted to the numerical study of the
crossover from the weak to strong regime and to the phe-
nomenon of the resonant scattering. In Sec. V C we observe
and investigate a strong dependence of the capability for the
impurity to localize the vibrational mode on its location inside
the particle, the problem not addressed in paper I because of
its analytical complexity. Throughout this section we assume
that the disorder is strong if the condition S � 1 is fulfilled but
at least one of the requirements, cimp � 1 or |δm|/m � 1, is
relaxed.

A. Preliminary remarks

The weak (and dilute) disorder studied in the previous
section is distinguished from other types of disorder by two
important features. First, it is sufficient to use as its measure
a single small parameter S � 1 (“disorder strength”). Sec-
ond, the parameter S is a product of dimensionless impurity
concentration cimp and dimensionless randomness parameter
(atomic mass, in our case) squared, (δm/m)2; both these
quantities assumed to be independently small, cimp � 1 and
|δm|/m � 1.

When any of these parameters becomes of the order of
unity, the physical picture changes, even though the smallness
of another parameter provides S � 1. For instance, when
cimp becomes of the order of unity (more carefully, when the
phonon mean free path lph ∼ 3

√
cimp becomes of the order of a

few interatomic distances), the approximation of the phonon
scattering by the isolated impurities breaks down, and the
multi-impurity processes which include the interference of the
phonon scattering off several impurities come into play. In the
lack of a detailed theory we touch this issue slightly detecting
the crossover to a novel regime at lph ∼ 3a0 and speculating
on general properties of �n(cimp) for the unitary impurities.

On the other hand, when the variation of the random pa-
rameter becomes of the order of its mean value, |δm|/m ∼ 1,
or even more, the processes of multiple scattering off the
same impurity become important, and the parameter S defined
above loses its meaning, the results begin to depend on cimp

and δm/m (more precisely, on U ) separately. Moreover, the
physics starts to vary with the sign of U : at a positive U (heavy
impurities) there is no chance to form a long-lived optical
phonon-impurity bound state. On the contrary, at a negative U
(light impurities) limited by the condition δm/m � −1 (here
the equality stands for a vacancy) the impurity scattering is
enhanced; it even acquires a resonant character at certain Umin.
For a vacancy we get U → −∞, and the mass drops out from
the result.

Sketching here the analytical results of paper I for the
strong disorder, let us mention that the phonon damping �n

as a function of the particle size L and the concentration
cimp basically follows the same

√
cimp/L3/2 and cimp/L depen-

dencies in the regimes of separated and overlapped phonon
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FIG. 10. The linewidth of the first phonon eigenmode �1 versus

the impurity concentration cimp for various values of the impurity
potential U ; the results are obtained numerically for 3 nm spheri-
cal diamond particles with the use of DMM. For heavy impurities
(inverted green triangles) the broadening follows �1 ∝ √

cimp de-
pendence, whereas light resonant impurities (gray triangles) reveal
�1 ∝ cimp dependence. The vacancies (orange squares) demonstrate
a crossover from the square-root dependence to the new regime
�1 ∝ c3/2

imp at higher concentrations. The NV centers (black stars)
behave similarly to the vacancies.

levels which it demonstrates for the weak disorder. The only
difference occurs in the proximity of the resonance wherein an
appearance of the long spatial scale ζ leads to the crossover
in the L dependence taking place at L ∼ ζ . Furthermore, the
capability of a strong light impurity to capture the phonon and
the frequency of the impurity-phonon bound state evaluated
analytically depend on the parameter ζ but not on the location
of the impurity.

B. Strong impurities and NV centers

The numerically calculated phonon linewidth of the first
vibrational mode �1 as a function of the impurity concen-
tration cimp is depicted in Fig. 10 for several values of the
parameter U (or δm/m), namely, (i) for moderately heavy im-
purities with U ≈ 0.23 (δm/m ≈ 0.35) by the inverted green
triangles; (ii) for the resonant impurities with U ≈ −0.43
(δm/m ≈ −0.30) by the gray triangles; (iii) for the empty
vacancies, which corresponds to the unitary limit U → −∞
(δm/m → −1) by the orange squares; and (iv) for the NV
centers described as a vacancy plus the neighboring heavy
impurity with U ≈ 0.14 (δm/m = 0.17) by the black stars.
We observe that in the considered range of concentrations
heavy and light (resonant) impurities lead to the dependencies
peculiar for separated (� ∝ √

cimp) and overlapped (� ∝ cimp)
regimes, respectively, which is not a surprise because the the-
ory predicts for resonant impurities the strong enhancement of
the prefactor (also seen in Fig. 10) capable of transferring the
system from one regime to another even though the concen-
tration cimp and the absolute value of the mass defect |δm/m|
are not very different in these cases.
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FIG. 11. The linewidth of the first phonon eigenmode �1 as a
function of the particle size L calculated numerically with the use of
DMM for spherical diamond particles and for the impurities in the
form of the empty vacancies. The plot is presented for two values of
the vacancy concentration corresponding to the “dilute” and to the
“dense” regimes wherein the linewidth behaves as �1 ∝ √

cimp/L3/2

and �1 ∝ c 3/2
imp/

√
L, respectively.

We observe another interesting phenomenon for the unitary
impurities and for the NV centers. As we know from the
analytics (see also below) the U dependence disappears in the
unitarity. Moreover, in Fig. 10 the crossover from the square-
root cimp dependence of separated levels to yet another regime
�1 ∝ c3/2

imp is seen at high concentrations. This regime is not
predicted by our analytics in paper I. Notice that the crossover
takes place at cimp � 0.03 which presumably coincides with
the boundary between the “dilute” and the “dense” regimes
for the phonon mean free path lph, where the multi-impurity
physics begins to be important.

In order to cross-check our understanding of the crossover
for �1(cimp) depicted in Fig. 10 we calculate numerically the
�1(L) dependence for the vacancies (see Fig. 11). We observe
that in the regime when �1 ∝ √

cimp its size dependence is
�1 ∝ 1/L3/2, in agreement with our analytics for separated
levels. In the novel “dense” regime �1 ∝ c 3/2

imp it behaves as

�1 ∝ 1/
√

L yielding

�1 ∝ c3/2
imp√
L

. (38)

Inspecting all formulas for �n we discover that each power of
concentration always comes with the first power of the mean
particle size, i.e., as a product cimp × L.

At the moment, we have no detailed theory for the behavior
given by Eq. (38) although the underlying physics is evident.
Below we just speculate about the binary disorder which is
invariant under the duality transformation cimp ⇐⇒ 1 − cimp.
More accurately, the duality condition requires for physical
observables the symmetry property (cf. Ref. [72])

MA
1 MB

2 G(cimp) = MA
2 MB

1 G(1 − cimp), (39)
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FIG. 12. The phonon linewidth � plotted versus the impurity
concentration c: a schematic plot in the entire interval of c ∈ [0, 1]
for the binary disorder; all the curves are normalized to the mass
of the “first” material. Blue and green curves depict the situations
when the “impurities” are just slightly heavier and lighter than the
host material, respectively, and the black dashed line represents their
separatrix

√
c (1 − c). Black dotted line portrays the percolation

transition that occurs in the unitary limit U = −∞, and the red one
shows � close to the criticality, i.e., for the very light “impurity”
atoms.

where M1 and M2 are the masses of atoms of the first and
second sort, respectively, while A and B are certain exponents
(which may coincide or be equal to zero for some quanti-
ties) specific for any observable. Transferring all the mass
dependence to the right-hand side of Eq. (39) we get

G(cimp) = G(1 − cimp)(1 + δm/m)α

≈ G(1 − cimp)(1 + α δm/m), (40)

where α = A − B, and the approximate equality in Eq. (40)
holds for small δm/m. Thus, we obtain that any mass-
dependent observable (including the broadening parameter
�n) is not simply a subject of the duality condition cimp ⇐⇒
1 − cimp but should be simultaneously reweighted with some
mass-dependent prefactors.

The behavior of �(cimp) in the entire interval of concen-
trations 0 < cimp < 1 is schematically plotted in Fig. 12. It
is assumed that the region of small cimp � 1 corresponds to
a small number of impurities with mass M2 and a material
with mass M1, which forms the host lattice there, while the
region where cimp � 1 describes the opposite situation. The
entire picture is normalized to the first mass so the mass of
the second element is treated as light or heavy relative to the
first one. The linewidth dependence on the parameter cimp

for second atoms slightly heavier and slightly lighter than
the first ones is depicted in Fig. 12 by the featureless blue
and green curves, respectively. Both of these curves behave
as

√
cimp near zero and as a

√
1 − cimp near unity, where a

is some mass-dependent prefactor [cf. Eq. (40)] with a < 1
for heavy M2 atoms and a > 1 for light M2 atoms. We match
these asymptotes at intermediate concentrations following the
continuity reasons. With the increasing of the second mass
the blue curve in Fig. 12 does not change drastically; its right
shoulder continues to decrease monotonically. This is not the
case for the light M2 atoms. To understand this better consider
the extreme case of vacancies when M2 is equal to zero and

the impurity potential U reaches the unitary limit becom-
ing the infinite pointlike on-site repulsion. The appearance
of such on-site potential means the elimination of this site
from the lattice dynamics. When the number of eliminated
sites is small, they work as the conventional strong impuri-
ties; however, at certain critical concentration ccr they lock
the propagation of vibrational modes. The transition occurs
according to the percolation scenario (notice that the particle
diffusion and the propagation of vibrational modes on fractals
belong to the same universality class; see Ref. [73]). It is
natural to assume that the phonons become poorly defined
(overdamped) excitations before they die; i.e., the phonon rate
is the critical quantity in this problem:

� ∝ (cimp − ccr )−τ , (41)

with τ > 0 being some percolation-related critical exponent.
The behavior of � in the unitary limit is shown in Fig. 12
by the dashed black line, with the square-root increase at
small concentrations crossing over to the critical behavior near
the percolation transition. Finally, the red curve in Fig. 12
represents the cimp dependence of � for light M2 atoms close
to unitarity. It is drawn based on the continuity arguments
as an interpolation between the regimes described by the
green and the dotted black curves, and it includes the re-
gion near ccr wherein the damping of phonons (or, probably,
already “phasons”; see [73]) reveals the critical properties, al-
though the real localization of vibrational modes does not take
place yet.

The important feature common for the vacancies and for
very light M2 atoms is an inflection point on the left shoul-
der of the �(cimp) dependence stemming from the necessity
to match the square root and the critical asymptotes. Al-
though our methods are not well suited for the treatment of
the phonon modes at intermediate impurity concentrations
(“dense” regimes), we believe that the departure from the√

cimp low-concentration dependence of � to the more fast

c3/2
imp behavior seen in Fig. 10 for two numerical plots related

to the light impurities (NV centers and vacancies) revealing
this inflection is a strong argument in favor of the picture we
presented above based on general arguments.

C. Resonant scattering and localized states

It was predicted in paper I that the damping of phonons
grows essentially as a function of U in the vicinity of its
resonant value determined from the condition for the relevant
spatial scale

ζ = π

2qD

(
1 + 8π2F

qDa0U

)−1

(42)

to diverge. It occurs at

Umin = −8π2F

qDa0
, (43)

where qD is the Debye momentum. In Fig. 13 we plot the
analytical curve for the linewidth of the first phonon mode
�1 as a function of δm/m at cimp = 0.02 (black line) and
compare this plot with �1 calculated numerically within the
scheme presented in Secs. II and III of this paper (black dots).
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FIG. 13. The linewidth of the first optical phonon mode �1 nor-
malized to its unitary value as a function of δm/m at the fixed
concentration of strong impurities cimp = 0.02 calculated numeri-
cally for 3 nm diamond particles with the use of DMM (dots) and
analytically using the T-matrix approach (line). For δm/m → −1
(U → −∞) (vacancies) and for δm/m → +∞ (U → 1; extremely
heavy impurities) the linewidth saturates at different values. At
δm/m ≈ −0.30 (U ≈ −0.43) the damping acquires the resonant
character.

We use qD as an adjustable parameter to tune the maximum
of the analytical curve to coincide with the maximum in our
numerics (for the reason to do this see paper I) which happens
at the reasonable value qD ≈ 0.47π/a0 yielding (δm/m)min ≈
−0.30 (Umin ≈ −0.43). We see that the analytical theory un-
derestimates the effect. This is expected because the T -matrix
approximation we used only manifests the phenomenon while
for its detailed treatment the specific methods adopted to deal
with the resonant scattering are required. For light impurity
atoms with δm/m < −0.7 (U < −2) and for heavy ones with
δm/m → +∞ (U ≈ 1) the damping �1 obtained numerically
saturates at different values in accordance with the analytical
predictions. Generally, we report a good qualitative agreement
in the description of the resonant features between the analyt-
ics of paper I and the numerics of this paper. Notice that we
presented the resonant behavior in Fig. 13 in terms of δm/m
instead of U because it looks more evocative.

Now we shall analyze a possibility to localize the vibra-
tional mode on the impurity. The energy of this state ωloc,
slightly exceeding the maximal energy of the optical phonon
ω0, is found to be (see paper I)

ωloc = ω0[1 + F (a0/ζ )2]. (44)

We model the single-impurity problem investigating nu-
merically 3 nm spherical diamond particles by means of
DMM. We obtain a very interesting new phenomenon which
has not been predicted by the analytical theory of paper I.
Namely, we find that the capability for the impurity to localize
the phonon strongly depends on the location of this impurity
inside the particle: it is maximal at the particle center and
rapidly decays to the boundary.

Our argument in favor of this picture is presented in Fig. 14
where we plot the maximal phonon frequency as a function of
the distance from the defect to the particle center for several
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FIG. 14. The highest phonon frequency in a particle versus the
position of a single impurity of given mass calculated numerically
for 3 nm spherical diamond particles with the use of DMM. When
the frequency is higher than ω0 = 1333 cm−1 the corresponding
vibrational mode is localized on the impurity. The maximal phonon
frequency decreases when the distance between the location of the
impurity and the center of a particle grows. It leads to the absence of
localization if the defect is close enough to the particle boundary.

nearly resonant values of the impurity potential U . One can
see that if the localized state emerges (Umin > U ) then its fre-
quency is almost constant as long as its wave function does not
“feel” the boundary (see Fig. 15). When the defect is near the
boundary, ωloc decreases and the localized state disappears.
It occurs because the amplitudes of optical vibrations near
the boundary are much smaller than at the center, and the
impurity cannot “catch” the phonon which results in the usual
scattering rather than in the localization of the vibration.

In Fig. 15 we portray the wave function for the highest
phonon mode in the localized regime Umin > U for two par-
ticular cases, namely when the same impurity is located at
the center of the particle [panel (a)] and when it lies near its
boundary [panel (b)], thus visualizing the above reasoning.
We see that in the former case the wave function is con-
centrated in the closest vicinity of the defect, the decay rate
being much shorter than the particle size which reflects the
phonon localization. On the contrary, if we settle down the
impurity near the particle boundary, the phonon wave function
is smeared over the particle which implies an extended state.
Moreover, the wave function in the latter case resembles the
pure case (cf. Fig. 3 of Ref. [34]); the only impurity-induced
disturbance is seen in the neighborhood of the impurity.

To summarize, we find numerically that the regimes of
separated and overlapped levels observed for the phonon
linewidth in a weakly disordered particle survive for the
strongly disordered dilute case. Inspecting the line broadening
due to vacancies and NV centers at yet higher concentrations
we identify a crossover to the novel regime � ∝ c3/2

imp/
√

L at-
tributed to the multi-impurity scattering in the proximity of the
percolation transition. Our numerics qualitatively confirms all
analytical results for the resonant phonon scattering including
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FIG. 15. The phonon wave function obtained numerically for
3 nm spherical diamonds using DMM. Two different locations of the
impurity with δm/m = −0.33 are studied. When the defect lies near
the particle center the highest in energy vibrational mode is localized
(a), whereas the impurity settled near the boundary leads to the wave
function resembling the pure case with some local feature around the
defect (b).

the formation of the phonon-impurity bound state which is
found to be dependent on the impurity location inside the
particle.

VI. RESULTS: SURFACE CORRUGATIONS

In this section we present our results concerning the in-
fluence of several types of realistic surface disorder on the
broadening of the volume optical phonon modes which con-
tribute to the Raman spectrum of nanoparticles.

Below we are interested in the effect of surface (i.e.,
two-dimensional or quasi-two-dimensional) irregularities on
the behavior of volume (i.e., three-dimensional) excita-
tions (volume phonons). Surely, both propagating surface
modes (surface phonons) and surface-volume mixed modes
(breathers, etc.) exist and play an important role in the physics
of nanoparticles. Moreover, the approaches we developed in
the present work are also applicable for a treatment of these
modes. However, the characteristic frequencies of the surface
modes lie away from the frequency range relevant for the main
Raman peak. Therefore, we postpone their investigation for
the future.

When investigating the surface corrugations, we observe
only a minor influence of this type of disorder on the broad-
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FIG. 16. The linewidth of the first phonon line �1 as a function
of the surface impurity concentration cimp calculated with the use of
the EKFG approach for 4.5 nm diamond particles within the model
of nibbled apples. The numerical results (dots) are well described by
the square-root dependence (line).

ening of the first phonon mode as compared to the volume
disorder considered in previous sections, the statement valid
for both the “peeled apples” and “nibbled apples” models we
studied. Even for the strongest disorder we get �1 < 1 cm−1.
In Fig. 16 we plot the broadening parameter �1 versus the
impurity concentration cimp within the framework of the nib-
bled apples model. The volume of a particle is taken clean,
and the surface disorder fails to overlap the first level with
its neighbor. This leads to the square-root dependence of the
linewidth on the impurity concentration seen in Fig. 16, which
agrees with the prediction of paper I for separated levels.
Notice that the notion of concentration should be revised for
the surface impurities. Say, for the nibbled apples one should
count the number of “jobbsings” (removed bits) and then
divide it by the total number of surface bricks, whereas for the
peeled apples which could be regarded as a convex irregular
polyhedra the definition of concentration includes the average
distance between the ribs in the disordered particle divided by
the same quantity in the pure one.

The importance of the surface disorder increases for higher
phonon levels where the notion of classical chaos is better
applicable since 1/n is a version of the quasiclassical param-
eter. For the highest modes the (almost) classical chaotization
due to the surface roughnesses works better resulting in the
overlapped regime at the same number of impurities which
did not allow the lowest levels to overlap (see Fig. 17). We
conclude that the surface corrugations may slightly affect the
main Raman peak only on its left shoulder; the scattering
by the volume impurities remains the dominant broadening
mechanism in nanoparticles.

Another feature of the surface disorder which makes it
less important than the volume one is the rapid decay of its
contribution to �n with L increasing. We shall demonstrate
it considering the nibbled apples model as an example. This
model allows two modifications: for one of them the size of
jobbsings is scaled with the particle size and for another one
it does not, so for very large particles the impurities acquire a
truly surface pointlike character.
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FIG. 17. The DOS function calculated numerically for disor-
dered 4.5 nm diamond particles with the use of the EKFG approach
within the peeled apples model (result for the nibbled apples is very
similar). Several lowest phonon levels are separated whereas the
higher levels overlap due to the same amount of the surface disorder.

In the former case the dependence �n(L) could be obtained
from the scaling arguments. Inspecting the EKFG equations
we observe that due to the (statistically understood) scale
invariance of the disordered EKFG problem with this type of
imperfection its eigennumbers scale in the same manner as for
the pure EKFG problem [34]:

q2
n(L1)L2

1 = q2
n(L2)L2

2 . (45)

Thus, the ensembles of particles of different sizes are similar
to each other, and the corresponding broadenings are mutually
related by the scaling law

�n(L1)L2
1 = �n(L2)L2

2 ⇐⇒ �n(L) ∝ 1

L2
. (46)

We argue that this �n ∝ 1/L2 dependence is the slowest size
dependence possible in both models of surface corrugations
(at least, for the separated phonon modes). Qualitatively, it can
be understood as follows. Let us inspect the Born impurity
scattering on the separated levels [see Eq. (29) of paper I].
The squared linewidth parameter �n is proportional to the
fourth power of the phonon wave function Yn ∝ 1/

√
N . Let

us introduce Ld as the characteristic scale of the surface
disorder. Then each of four wave functions provides the fac-
tor (Ld/L)/L3/2 and the surface area where the interaction
with disorder occurs is estimated as cimpL2. This yields �2

n ∝
L4

d/L8. If now Ld scales as the particle size, Ld ∝ L (the
first modification of the nibbled apples model), then we get
�n ∝ 1/L2. If however the surface disorder is not scaled with
the particle size, Ld ∝ constant (the second modification), we
obtain �n ∝ 1/L4. An intermediate situation Ld ∝ Lβ with
0 < β < 1 yields �n ∝ 1/L4−2β . The general reason for these
rapid decay laws is that the phonon wave function in the
disordered region near the surface tends to zero (cf. with the
position-dependent localization in Sec. V C). For disorders
scaled slower than L the relative volume of the disordered
region decreases when the particle grows. This results in a
faster decay of the scattering amplitude.

FIG. 18. The linewidth of the first optical phonon mode �1 ver-
sus the particle size L calculated numerically for the model of nibbled
apples with the use of the EKFG method at the surface impurity con-
centration cimp = 0.1. The red dots correspond to the scaled disorder
and the black squares correspond to the unscaled one; the lines depict
1/L2 and 1/L4 dependencies, respectively.

This is exactly what we observe in our numerics. The result
is depicted in Fig. 18, where 1/L2 and 1/L4 regimes are found
for �1 calculated for the nibbled apples model in its scaled and
unscaled modifications, respectively.

Thus, the surface corrugations yield a minor input to the
broadening of phonon levels for the volume optical phonons
as compared to the volume disorder. This is caused by the
vanishing of the phonon wave function on the particle surface.

VII. DISCUSSION AND CONCLUSIONS

In this concluding section we summarize the outcome of
the numerics reported in paper II and compare them with the
results of the analytical consideration of paper I in Sec. VII A.
Possible applications and generalizations of our theory as
well as its disadvantages and limitations are discussed in
Sec. VII B.

A. Summary

Both papers I and II constituting the present work are
devoted to the treatment of disorder influence on the propa-
gating optical vibrational modes in powders of nanoparticles
of nonpolar crystals considering the diamond particles as a
representative example. The linewidths and the line shifts of
these phonon modes as well as the shapes of individual spec-
tral lines in the phonon spectra are investigated as functions
of the mean particle size, the particle shape, the impurity
concentration, the strength and the type of disorder, and the
phonon quantum number, addressing these issues analytically
in paper I and numerically in the present paper. Furthermore,
we apply our knowledge of this subject for the analysis of the
structure of the main Raman peak, in view of the possibility
of extracting confidently the values of the above-mentioned
parameters from the experimental data [45].

In both papers we apply the methods of treatment we
developed previously for pure nanoparticles in Refs. [33,34],
utilizing the discrete atomistic approach in the form of the
DMM-BPM method and the continuous elasticity-theory-
like approach solving the EKFG equation with the Dirichlet
boundary condition, depending on the particular problem at

205422-15



KONIAKHIN, UTESOV, AND YASHENKIN PHYSICAL REVIEW B 102, 205422 (2020)

hand. Parameters emerging in our approaches are simply re-
lated to the parameters of microscopic models of solids, i.e., of
the Keating model. We properly adopted both methods for the
analytical calculations in paper I and for the numerical ones
in paper II.

As far as the disorder is concerned, we investigated several
types of imperfections most interesting from theoretical and
experimental points of view. In paper I we studied analyt-
ically weak Gaussian disorder in its pointlike and smooth
modifications and strong binary disorder, both considered in
the regime of “dilute” concentrations. In paper II we had two
objectives, namely to check numerically the predictions of the
analytics and to investigate realistic regimes of disorder hardly
analyzable analytically. Executing the second task we studied
the disorder at the intermediate impurity concentrations and
at an arbitrary disorder strength as well as in two models of
surface corrugations. We also investigated the isotopic impu-
rities and the NV centers (nitrogen plus vacancy) widespread
in diamonds.

The main observation of paper I is the existence of two
regimes of behavior for the phonon linewidth �n depending
on the particle size and the impurity strength investigated.
For the smallest particles and/or for the weakest disorder the
phonon levels are separated. This results in �n ∝ √

S/L3/2

dependence on these parameters; the prefactor varying with
the particle shape and with the phonon quantum number could
be calculated either analytically or numerically. When the
particle size and/or the strength of disorder increases the levels
start to overlap, and the linewidth crosses over to another
regime �n ∝ S/L with different quantum number and shape
dependent prefactor.

Investigating numerically weakly disordered particles we
confirm the analytical predictions of paper I. For the pointlike
impurities we demonstrate the regimes of separated and over-
lapped levels and reproduce the dependencies � ∝ √

S/L3/2

for the former and � ∝ S/L for the latter regime, respectively.
We slightly correct the numerical prefactor in the former case
and attribute this correction as a certain disadvantage of the
Lorentz approximation. We observe that the rapid growth
of the linewidth as a function of quantum number predicted
by the analytical theory of paper I overestimates the effect
which nevertheless exists and is found to be important for
the fit of experimental data. We estimate the crossover scales
between the regimes and obtain that for the realistic values
of the disorder it lies on the scale of nanometers or dozens
of nanometers for the mean particle size L, i.e., in the most
intensively studied and most interesting range of parameters.
Considering the case of a smooth random potential we in-
spect and confirm numerically a significant decrease of the
linewidth when the characteristic spatial scale σ of the poten-
tial grows toward the particle size L. We also address (both
analytically and numerically) an issue which has been only
slightly touched on in paper I discussing the phenomenon of
mesoscopic smearing of the distribution function which is pre-
dicted to arise in the ensemble of disordered particles due to
the variations of disorder realizations in various particles and
to survive even in the ensemble of identical in size and shape
particles.

We examine numerically the phonon line broadening in the
regime of strong rare impurities when the parameter S loses its

meaning and the disorder is characterized by two independent
quantities such as the dimensionless impurity potential U and
the dimensionless impurity concentration cimp, allowing the
potential U to be strong enough, |U | � 1, and mostly keeping
the concentration dilute, cimp � 1. We find that the regimes of
separated and overlapped levels with their characteristic cimp

and L dependencies survive for strongly disordered particles
as well, although the crossover between these regimes could
be shifted due to the large U -dependent prefactor. For vacan-
cies and NV centers we discover a crossover which occurs at
some intermediate concentration to the regime with c3/2

imp/
√

L
dependence of the linewidth not appearing in the low-cimp the-
ory of paper I. This stems from the multi-impurity scattering
processes (“dense” defects). We also argued that for the binary
disorder the above-mentioned dependence [more accurately,
existence of an inflection point in the �n(cimp) dependence]
emerges for the light enough impurities reflecting the prox-
imity to the percolation transition taking place in the unitary
limit, and qualitatively restore the behavior of �n(cimp) in the
entire interval 0 < cimp < 1.

When examining the resonant enhancement of the phonon
damping, we observe a good qualitative agreement between
the analytical approach and the numerical calculations. Al-
though the former underestimates the amplitude of the effect,
it qualitatively reproduces all principal features of the be-
havior of the damping �n as a function of its parameters.
We report the similar agreement for our numerical study of
the phonon localization by a strong light impurity. The novel
phenomenon not predicted analytically and investigated only
by the numerical tools in the present paper is the strong depen-
dence on the location of impurity inside the particle observed
for the capability of the impurity to localize the phonon: this
capability is maximal when the defect is located in the center
of a particle and decays rapidly when it moves toward the
boundary.

We inspect how the surface corrugations affect the
linewidths of volume (optical) phonons studying numerically
two models of the surface disorder named the peeled apples
model and the nibbled apples model. For the reasonable values
of parameters we found that the surface contribution to the
damping is essentially smaller than the contribution of the
volume disorder. Since the effect is small we concentrated
mainly on the regime of separated levels. The linewidth of the
main phonon mode �1 as a function of the surface impurity
concentration is shown to behave similarly to the volume im-
purities, whereas the linewidths of the highest phonon modes
grow rapidly due to their better chaotization. The phonon
linewidth decays with an increase of the particle size faster
than it occurs for the volume impurities as a result of the
rapid decrease of phonon wave functions on the surface.
The character of this decay is estimated analytically and
calculated numerically as �n ∝ 1/L2 for the disorder scaled
with the particle size and as �n ∝ 1/L4 for the unscaled
imperfections.

We monitored numerically the asymmetry of phonon lines
and their non-Lorentzian shape predicted in paper I.

We conclude that the analytical theory of paper I is ver-
ified and approved by the numerics of paper II; the minor
deviations caused by an approximate character of the ana-
lytical approach could be easily corrected. Furthermore, the
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numerical methods formulated in paper II allowed us to study
the regimes which are hardly achievable analytically but inter-
esting from the experimental point of view.

B. Discussion and prospects

The present paper continues our efforts to build up a new
microscopic theory of Raman scattering in nanopowders of
nonpolar crystals started in Refs. [33,34,44,45]. We believe
that this theory should replace in usage the phonon confine-
ment model previously applied for the analysis of Raman
spectra of nanoparticles. Starting from the microscopic quan-
tum description of mechanical vibrations in the finite-size
systems and incorporating the photon-phonon interaction un-
der the assumption (obviously valid for nonpolar crystals) that
the polarization of a solid occurs exclusively due to the atomic
displacements, this theory, being applied for the interpretation
of existing experimental data, is able to provide us with the
most complete information about the physical parameters of
a powder, about the shape and the structure of particles con-
stituting the powder, and about the collective excitations that
govern the atomic dynamics in particles.

All this could be done with an accuracy limited only by the
accuracy of Raman (optical and therefore precise) experiment.
The fit of the Raman experiment performed in Ref. [45] where
four parameters of the nanopowder have been confidently
extracted from the data clearly demonstrates significant in-
crease of the precision when the data are evaluated within the
framework of our method as compared to the PCM approach;
the latter is shown to work worse and worse for smaller
particles.

In addition, the PCM is in fact a purely phenomenological
approach which simply replaces the bulk result by a convolu-
tion of the bulk result with a certain inexplicable Gaussian,
with the further assignment for the Gaussian-caused decay
rate of a phonon spectral weight the meaning of a particle
size. Meanwhile, it has been shown in Ref. [33] that the
microscopic theory (in its approximate version) allows the
formulation in terms of a convolution of bulk formulas; how-
ever, the function convoluted with the bulk DOS has nothing
in common with the Gaussian. That is why we believe that
several attempts made recently in order to cure the PCM
are doomed at best to partial success. On the contrary, the
significant increase in the accuracy of the data interpretation
promised by the present approach is of paramount importance
for the industrial manufacturing of nanoparticles as well as for
their scientific and technological employments.

The only imperfection of this theory in comparison with
the PCM is its relative complexity. Indeed, since even the
eigenfrequency of the main phonon mode was shown to
be 20% varying with the particle shape [34], both the
DMM-BPM and the EKFG methods require the numerical
calculations (not very tedious, though) for any particle shape
beyond the minimal set of a cube, sphere, and cylinder. To
make the things easier, we plan a paper revisiting the existing
data with the use of our theory and containing step-by-step
description of programming operations which would simplify
the life of possible exploiters.

Although the main principles of this theory are elaborated,
many important problems still remain to be solved. Let us
outline some of them. As far as the Raman experiment in
the nanopowders is concerned, it would be very interesting
to extend the theory to elongated particles and to the closely
related problem of nanopowders with multiparametric dis-
tribution functions. Furthermore, in the present research we
concentrated on the intrinsic for nanoparticles mechanisms of
disorder. Investigation of such extrinsic mechanisms of the
optical phonon line broadening as a solvent or crystalline
matrix impact as well as a contact with other particles in a
powder are of high interest. Next, an extension of the contin-
uous EKFG treatment onto the anisotropic crystals requires a
more sophisticated tensor modification of the EKFG method
itself. Moreover, the analysis of Raman scattering in the polar
crystals within the framework of the same theory as done for
the nonpolar ones would essentially extend the range of ap-
plicability of the theory. An experimental search and a proper
theoretical description of the surface (surface phonons) and
surface-bulk mixed (i.e., breathing) modes in nanoparticles
which should create their own Raman peaks is one more task
for our method; the latter phenomena might be very helpful
for testing the nanoparticle surface.

Considering possible extensions and generalizations of
the theory of the optical phonon line broadening in parti-
cles not necessarily appealing to the Raman experiment we
should mention an intriguing task to include in the theory
the anharmonicity-induced processes of inelastic phonon scat-
tering by each other which would lead to a temperature
dependence of the phonon linewidth (by the way, seen also
in the Raman experiment [74]). In the meantime, the lifetimes
of optical phonons (stemming from both inelastic and elastic
processes) are a subject of extensive experimental investiga-
tion in other confined systems such as quantum dots and short
nanotubes. Our treatment of the elastic phonon rates adjusted
for the Raman experiment in nanoparticles could be applied
for these systems without a significant revision. Moreover,
it could be applied also for the treatment on these rates in
the polar nanocrystals as far as other experimental setups
different from the Raman experiment are involved.

Addressing possible generalizations of the present theory
for the Raman processes due to different (nonphonon) excita-
tions one should mention first the case of strongly disordered
(probably, amorphous) particles where the notion of prop-
agating phonon modes is meaningless, and the vibrational
dynamics is due to the “fractons” [73], which is an issue
requiring quite a different analytical approach as compared to
the one used in the present work. Finally, it would be very
beneficial to develop an EKFG-like theory for the Raman
(or Mandelstam-Brillouin) scattering due to magnons in the
magnetically ordered particles wherein the Bloch equations
should replace the phonon equations of motion.
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