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Microscopic description of Raman spectra in nanopowders of nonpolar crystals is accomplished by developing
the theory of disorder-induced broadening of optical vibrational eigenmodes. Analytical treatment of this
problem is performed, and line shape and width are determined as functions of phonon quantum numbers,
nanoparticle shape, size, and the strength of disorder. The results are found to be strongly dependent on whether
the broadened line is separated from or overlaps other lines of the spectrum. Three models of disorder, i.e., weak
pointlike impurities, weak smooth random potential, and strong rare impurities, are investigated in detail. The
possibility of forming the phonon-impurity bound state is also studied.
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I. INTRODUCTION

The properties of very small particles and their ensem-
bles are a subject of current active scientific investigation,
mostly due to their promising applications in materials sci-
ence [1], quantum computing [2–4], chemistry [5,6], biology
and medicine [7–10], etc. Among others, disordered arrays
(powders and water suspensions) of crystalline nanoparticles
of nonpolar crystals, both semiconducting and diamond-like
ones, attract close attention.

Even before being utilized in a certain manner, the
nanopowders need to be attested and certified. For compre-
hensive certification of a powder such obvious characteristics
as chemical formula and crystallographic structure of the
material that form particles of a powder should be supple-
mented by geometrical parameters of its constituents such as
(i) the mean size of a particle, (ii) the particle size distribu-
tion function, (iii) the effective faceting number (in the case
of nontrivial particle shape), and (iv) the measure of their
elongation (if exists), as well as by some characteristics of (v)
nanoparticle intrinsic disorder, surface morphology, and phase
composition.

In order to examine the nanopowders, several experimental
techniques are utilized. High-resolution transmission elec-
tron microscopy (HRTEM) [11–17], atomic force microscopy
(AFM) [13,14,18], dynamical light scattering [19–22], x-ray
diffraction [17,23,24], and Raman spectroscopy (see, e.g.,
Ref. [25] and references therein) are among them. The lat-
ter one is of prime importance because it provides a unique
precise and nondestructive tool for optical investigation of
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collective excitations in nanoparticles. Examining the shape
of a Raman peak and its position one could extract a great
amount of information about the nanoparticles including some
parameters mentioned above [26,27].

Indeed, since the momentum in a particle is quantized due
to the finite-size quantization effect, the maximum of a Ra-
man peak for nanoparticles is redshifted (i.e., shifted to lower
frequency) as compared to the bulk material, with the shift
value increasing for smaller particles. Furthermore, the entire
discrete spectrum of vibrational modes for the particle of a
given shape is peculiar and specific for this particular shape
[26,27]. This manifests itself in the asymmetry of the Raman
peak. One can think of restoring the portrait of a particle
from the analysis of the peak shape and its position, thus
formulating a sort of “inverse problem.” It makes the Raman
data analysis a very important and challenging issue. The
goal of this work is to present an instrument for this analysis
in the form of a microscopic theory of Raman scattering in
nanoparticles which includes intrinsic disorder as the main
mechanism of phonon damping.

Recently, we proposed two closely related methods of the
Raman data evaluation [26,27] which gave much more de-
tailed information about the parameters of a powder than all
previously used variations of the phonon confinement model
(PCM) [28–33] and other models [34,35] provided. One of
these methods, the dynamical matrix method–bond polariza-
tion model (DMM-BPM) [26], consists of the direct solving
of the dynamical matrix eigenproblem [36] for a particle with
further evaluation of its Raman spectrum. The latter procedure
utilizes the proportionality between the electric polarization
and the deformation in nonpolar crystals with the use of the
bond polarization model [37]. The (empirically broadened)
individual lines of the spectrum together constitute the first
(and subsequent) Raman peaks [26].
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FIG. 1. Four steps necessary to obtain the Raman peak for a
diamond nanopowder. Gray vertical line marks the maximal optical
phonon frequency ω0. (a) The phonon spectrum of a 3 nm cubic
diamond particle consists of Raman-active (red) and Raman-silent
(blue) modes. (b) The Raman spectrum before broadening; only
Raman-active modes contribute. (c) Phenomenologically broadened
Raman spectrum is a smooth function with the main and subsequent
peaks. (d) The Raman spectrum of a powder with the mean particle
size 3 nm and the standard deviation 0.3 nm. Only the main Raman
peak is clearly seen while subsequent peaks are smeared out into
the slightly sloping left shoulder. In (c) and (d) the results of the
respective previous steps are shown by semitransparent color. The
main goal of the present work is to establish microscopic grounds
for individual phonon line broadening procedure.

An important observation made in Ref. [26] and related
to the discrete spectra of nanoparticles (before this broad-
ening is done) concerns their fine structure shared by all
particle shapes investigated. Namely, the spectrum starts from
a threefold-degenerate first line which carries the majority
(more than 2/3) of its weight. This triple line is well separated
from the rest of the spectrum that begins effectively with the
13th line because of dividing the eigenmodes onto “Raman
active” and “Raman silent” ones. The Raman-silent modes
do not contribute to the Raman spectra due to the symmetry
properties of their eigenfunctions. Furthermore, both types of
modes form a “quasicontinuum” wherein the level spacings
are essentially smaller than the first gap. This quasicontinuum
is split onto several “bands” by inter-band-gaps which do not
exceed the first one [see Fig. 1(a)].

Terminologically, we shall distinguish between (i) the
phonon lines that form the vibrational spectrum of a nanopar-
ticle [see Fig. 1(a)], (ii) the Raman spectrum which includes
only the Raman active modes with corresponding weights
influenced by the photon-phonon scattering matrix elements
[see Fig. 1(b)], and (iii) the main (and possibly subsequent)
Raman peak constituted by broadened Raman spectrum lines
[see Fig. 1(c)] of all the particle sizes contained in a powder
[see Fig. 1(d)].

Another proposed method replaces the original discrete
dynamical matrix problem with its long-wavelength contin-
uous counterpart which is the Euclidian Klein-Fock-Gordon
equation under the Dirichlet boundary conditions [27]; we
dub this approach “EKFG.” Being supplemented by the con-

FIG. 2. DMM-BPM and EKFG approaches both successfully
interpret experimental data. Here the solid blue curve (DMM-BPM)
and the dashed red curve (EKFG) stand for the best fit of the ex-
perimental Raman spectrum of nanodiamond powder from Ref. [13]
(black dots); the only free parameter is the phonon linewidth �. The
vertical gray line represents the maximal optical phonon frequency
in the bulk ω0.

tinuous version of the bond polarization model and by the
phenomenological line broadening procedure this approach
generates the Raman spectra almost indistinguishable from
those obtained within the DMM-BPM scheme, although
before the line broadening the EKFG spectra look a bit over-
simplified as compared to the DMM-BPM ones: they contain
only one degenerate level in the place where the DMM-BPM
method yields many weakly split levels, etc.

This means that the EKFG method correctly captures a
spectral weight distribution along the energy axis rather than
all rigorous details of the spectrum. Since the spectral line
broadening plays the role of an effective energy averaging, the
approximate EKFG method appears to be sufficient for repro-
ducing all important features of such integral characteristics
as the first Raman peak; see Fig. 2.

The imperfection of these theories [26,27] is the phe-
nomenological character of the line-broadening procedure;
the linewidth parameter � is treated as a fitting one with no
theoretical analysis of its origin and value. To the best of our
knowledge, no detailed theory of the Raman peak broaden-
ing in nanoparticles exists in modern literature; all current
attempts have mostly phenomenological or philological char-
acter. (One should mention the paper by Yoshikawa et al.
[38] who extracted � ∝ constant + 1/L dependence, with L
being the particle size, from the analysis of experimental
data.) The present work aims to accomplish the approach of
Refs. [26,27], providing us with the microscopic theory of
the Raman peak broadening due to nanoparticle disorder and
imperfections, as well as with its numerical verification.

The work consists of two papers, and this is the first one
(hereinafter, paper I). Within the framework of a set of simple
models of disorder it analytically treats the linewidth prob-
lem in disordered nanoparticles. The second paper (Ref. [39];
hereinafter, paper II) is devoted to numerical simulations of
the same problem, necessary for both verification and jus-
tification of the analytical results of paper I, as well as for

205421-2



LIFETIMES OF CONFINED OPTICAL PHONONS AND THE … PHYSICAL REVIEW B 102, 205421 (2020)

FIG. 3. The phonon spectrum of a 3 nm cubic nanodiamond cal-
culated with the use of the DMM-BPM approach for several amounts
of disorder; the position of the bulk phonon peak is marked by the
black vertical line. (a) Clean case. Each dot corresponds to certain
eigenfrequency. (b) For the weakest disorder the density of states
(DOS) consists of discrete peaks. (c) For stronger disorder the lines in
quasicontinuum begin to overlap, whereas the first triple mode is still
separated. (d) For the strongest disorder all the modes are overlapped
and the DOS is getting close to the bulk one. In (c) and (d) the results
of the respective previous plots for weaker disorder are shown by
semitransparent color.

numerical investigation of disorder types and regimes which
are hardly analyzable analytically. In line with paper I, the nu-
merical paper II allows us to represent the all-around picture
of the dirty Raman problem including the effect of realistic
disorder.

In order to get a preliminary insight into our theory and
to understand better the general picture we propose, let us
discuss in detail Fig. 3. Panel (a) represents the typical spec-
trum of vibrational optical eigenmodes of a particle. As we
said above, this spectrum consists of the threefold-degenerate
first line and a sequence of “bands,” the interlevel distances
between the lines in these bands being essentially smaller than
the first gap. Then we introduce disorder into the system. For
a small amount of disorder it broadens the spectral lines, see
Fig. 3(b), but the lines remain narrower than the distances be-
tween the levels. This is valid for levels lying inside the bands
as well as for the first (triple) line. Therefore, we are in the
regime of separated levels now for all parts of the spectrum.
With disorder increasing, the levels inside the bands start to
overlap, while the first line is still separated from the rest of
the spectrum; see Fig. 3(c). Hence, for this amount of disorder
the band levels cross over to the continuous regime, while the
first triple line remains in the discrete one. We argue that this
“mixed” situation is typical for nanoparticles that have the size
of the order of several nanometers which were investigated in
recent experiments [14]. At last, with the further increase of
disorder the linewidths become so large that they fill in even
the first (largest) gap, making the entire spectrum continuous;
see Fig. 3(d).

We presented above this detailed picture of the line broad-
ening in order to highlight the importance of the main
statement of the present work (which, however, sounds quite
evident from a general point of view). Namely, we argue that

the properties of the phonon linewidths in nanoparticles vary
dramatically depending on whether the level is a separated
level or whether it belongs to the continuum.

More specifically, in paper I we study analytically
the phonon scattering by weak pointlike impurities.
For the disorder-induced broadening of spectral lines we
observe the linear dependence on the disorder strength
parameter S and the inverse proportionality to the mean
particle size L, � ∝ S/L, when the broadened levels are
overlapped. For separated levels the linewidths behave
as � ∝ √

S/L3/2. At fixed impurity strength there exists
a crossover particle size Lc ∝ a0 S−1 between these two
regimes. The strength parameter S is defined as a product
of the (dimensionless) impurity concentration cimp and
the (squared normalized) variation of a random parameter
of the theory (here, the atomic mass m), which yields
S = cimp(δm/m)2, with a0 being the lattice constant. The
prefactors in both regimes are found to be specifically
phonon quantum number n and faceting number p dependent
quantities; the latter serves for shape parametrization purposes
(elongated particles are not considered). We also detect the
non-Lorentzian shapes of spectral lines in the separated
regime of level broadening and a strong line shape asymmetry
in the overlapped regime.

Examining then the lowest eigenmodes of phonons sub-
jected to a smooth random impurity potential we find that the
results crucially depend on the relationship between the mean
particle size L and the characteristic spatial scale of a random
potential σ . At σ < L the formulas obtained for pointlike
impurities are also applicable in this case; the long-range
character of the potential generates only small corrections
∼(σ/L)2. In the opposite case L < σ we get a saturation of
�(L) for separated levels and the linear L dependence of the
linewidth for the overlapped ones.

We evaluate also the damping of optical phonons in
nanoparticles due to strong rare pointlike impurities. Inves-
tigating the regimes of separated and overlapped levels at
arbitrary mass variation |δm| � m we obtain the same L de-
pendencies of the linewidths as for the weakly disordered
case, but the disorder strength dependence is more involved.
The most interesting situations are the unitary limit for im-
purity scattering when the mass variation does not enter the
formulas, and the regime of resonant scattering when we ob-
serve the parametric enhancement of the damping. The latter
regime is connected with the problem of formation of the
impurity-phonon bound state also investigated in the present
paper.

Technically, our approach in paper I can be described as
follows. In order to address the problem comprehensively,
we successively evaluate the broadening of optical phonon
spectral lines in nanoparticles due to the scattering (i) off
weak pointlike Gaussian (Born) impurities and (ii) in the
weak smooth random Gaussian potential, as well as (iii) due
to the strong dilute binary disorder. When studying sepa-
rated levels we apply the self-consistent Born approximation
for the first two problems, the diagram technique being
formulated in the basis of eigenfunctions of the problem.
Strong impurities are treated within the T-matrix approxi-
mation for both cases. When investigating the overlapped
levels we utilize the fact that the eigenfunctions are essentially
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extended in this case. This allows us to replace them by plane
waves thus formulating the ordinary bulk problem within the
momentum representation and making the size quantization
replacement of the momentum q → qn(L, p) only in final
formulas. For example, in cubic particles p = 6 and qn =
(π/L)P6

√
n2

x + n2
y + n2

z , where nx,y,z are the quantum numbers

related to size quantization in the cubic box, with Pp being the
factor converting the linear measure of a particle with faceting
number p (e.g., the cube edge) into the diameter of a sphere
which contains the same number of atoms, P6 = (π/6)−1/3.

In paper II we focus on the numerical studies of disorder-
induced broadening of vibrational modes in nanoparticles. We
use the atomistic DMM and the continuous EKFG models
in order to obtain the phonon eigenfunctions and the cor-
responding eigenfrequencies. This allows us to implement
the “model” Gaussian disorder for direct comparison with
the analytics and to investigate Gaussian and binary dis-
order, smooth disorder, isotopic impurities, vacancies, and
NV centers (nitrogen + vacancy) within the unified scheme.
This scheme includes the numerical evaluation of the phonon
Green’s function for each state of a pure particle with their
subsequent averaging over disorder realizations. The typical
statistical sampling was no less than several hundred (to be
precise, 128, 256, or 384 depending on the problem at hand).
Also, we use the continuous EKFG model for the treatment
of particle surface imperfections, for which case we introduce
and investigate the models of “peeled apples” and “nibbled
apples.”

Some results of the present work have been reported in
Ref. [40].

Paper I is organized as follows. Section II contains a
short description of approaches of Refs. [26,27] necessary to
make the understanding of the line broadening problem more
clear and fluent. In Sec. III we introduce the Hamiltonian
and sketch the Green’s function formalism for dirty optical
phonons in the situation when the energy levels are separated
(overlapped). Then we calculate the spectral line broadening
within the weak delta-correlated Gaussian impurity potential
(pointlike Born impurities). In Sec. IV we extend our treat-
ment to the case of weak and smooth random potential, while
in Sec. V we elaborate the case of strong rare impurities, the
latter being evaluated within the T-matrix method. Finally,
Sec. VI summarizes our analytical results. The comparative
discussion of separated and overlapped level broadening is
also presented. An example of the application of our general
approach (EKFG method for cubic particles) can be found in
the Appendix.

II. BRIEF OVERVIEW OF DMM-BPM AND EKFG
APPROACHES

This paper is devoted to the (analytical) treatment of the
role of disorder in the problem of vibrational eigenmode
broadening in nanoparticles, so no detailed knowledge is
needed about the theory used to evaluate the “clean” spec-
tra. Nevertheless, for the sake of integrity of presentation we
supply it with a brief outline of two theoretical methods we
advocate for spectral calculations. Their detailed description
can be found in Refs. [26,27].

The program of interpretation of the Raman peak for a
powder of particles of a given sort consists of four steps. The
first one is the solution of the vibrational eigenproblem pro-
viding a set of phonon eigenfrequencies and eigenfunctions.
In our first approach [26] this step is implemented with the use
of the dynamical matrix method [41] which is a direct solution
of the 3N × 3N matrix equation of motion for mechanical
vibrations:

m ω2rl,α =
N∑

l ′=1

∑
β=x,y,z

∂2


∂rl,α∂ rl ′,β
rl ′,β , (1)

where N is the number of atoms in a particle, rl,α is the lth
atom displacement along the direction α, m is the mass of the
atom, ω is the frequency, and 
 is the total energy of a particle
as a function of atomic displacements. The function 
 could
be extracted from any mechanistic theory of crystals; we use
the Keating model [42]. This straightforward approach has
only one disadvantage: it takes quite a long time to evaluate
numerically 3N × 3N matrices, so the particles exceeding
6 nm (∼20 000 atoms) are hardly analyzable on present-day
PC clusters.

One of the ways to avoid this difficulty is realized in
our second approach. It has been demonstrated in Ref. [27]
that the long-wavelength limit of the discrete DMM problem
Eq. (1) for optical phonon modes is governed by the con-
tinuous Klein-Fock-Gordon equation in the Euclidean space
(EKFG) with the Dirichlet boundary conditions:(

∂2
t + C1� + C2

)
Y = 0, Y |∂� = 0. (2)

Here C1,2 are some positive constants which can be expressed
via the parameters of a microscopic theory, Y are the eigen-
functions to be obtained in the course of solution of the
problem, ∂ � is the nanoparticle boundary. This latter equa-
tion is much easier to solve for an arbitrary particle shape even
for the particle size essentially larger than 6 nm with the use
of the routine Mathematica [43] apparatus.

The second step of calculations is the elaboration of spec-
tral characteristics obtained at the first step in order to figure
out how they manifest themselves in the optical experiment,
i.e., as a result of certain photon-phonon interactions. For this
aim we used the bond polarization model which is known to
be appropriate for the description of the photon scattering in
nonpolar crystals under the Raman experimental conditions
[37]. In this model the polarization tensor Pαβ for the nth
phonon mode is given by

Pαβ (n) =
N∑

l=1

∑
γ

Ml,α,β,γ rl,γ (n), (3)

with Ml,α,β,γ being some combinations of atomic radius vec-
tors and material constants, which could be expressed via the
microscopic parameters of the theory [26], as well.

Analyzing theoretically the spectral properties of diamond
nanocrystals of various shapes, we observe a very help-
ful common feature of them, namely, existence of Raman
“active” (strongly contributing) and “silent” (almost not con-
tributing) modes in the spectrum. This allows us to formulate
the approximate analytical version of the DMM-BPM [26]
which is much easier to evaluate, thus making it applicable
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for larger particles than the regular DMM-BPM allows. Fur-
thermore, for the EKFG method we developed the continuous
version of BPM, and the Raman intensity of the nth mode of
a single particle with volume V now reads

In =
∣∣∣∣∫ Yn dV

∣∣∣∣2

. (4)

This makes it possible to obtain the outcome of EKFG calcu-
lations with nearly the same accuracy as can be done with the
use of the more direct DMM-BPM method.

As a result of these first two steps the Raman spectra are
given by dense series of zero-width spectral lines with intrin-
sic structure peculiar to and characteristic of the shape and the
sort of particles studied. The third step needed to describe the
Raman experiment is to broaden these lines replacing zero-
width delta functions by Lorentzians and thus introducing the
damping of individual eigenmodes. This damping is known to
be much larger for nanoparticles than for relevant bulk materi-
als [44]. In our previous calculations, we treated the linewidth
� as a fitting parameter. The present work is intended to
certify the disorder as the main microscopic source of the
phonon line broadening observed in Raman experiments and
to express the fitting parameters via the microscopic charac-
teristics of disordered nanocrystals.

After the spectral lines are properly broadened, we end up
with the Raman peak (or peaks) as would exist for a powder
of equal-sized particles. The fourth step of calculations is to
include the size distribution function. The easiest way to do it
is to apply for spectral lines the scaling arguments developed
in [27] within the EKFG approach:

IL2 (ω) =
(L2

L1

)3

IL1

(
ω0 − (ω0 − ω)

(L2

L1

)2)
. (5)

Here IL1,2 (ω) are the spectra of particles which both have the
same shape but different sizes L1 and L2, respectively.

Empirically, the EKFG scaling Eq. (5) may be extended
onto the DMM-BPM approach, as well, which can be justified
by the similarity of spectra obtained with the use of both these
methods. This allows us to incorporate the size distribution
into the theory without boring recalculation of spectra for
each particle size contained in the distribution function, as one
should do at the first glance.

Notice that the Raman peaks calculated within the DMM-
BPM and the EKFG methods look very similar. They also fit
existing experimental data for small nanoparticles much better
than the previous theories even with the empirical broadening
procedure undertaken instead of the third step of the approach
of this section (see [26,27] and Fig. 2).

III. WEAK POINTLIKE IMPURITIES

In this section we introduce a diagram technique for the
disordered phonon problem and discuss the phonon scattering
by Born impurities in two qualitatively different regimes of
separated and overlapped energy levels.

A. General formalism

Let us start the derivation of the Hamiltonian of “dirty
phonons” from the more general one,

H =
∑

l

p2
l

2ml
+ 1

2

∑
ll ′

Kll ′ (rl − rl ′ )
2, (6)

where the first sum runs over all the lattice sites l , and the
atomic mass ml varies from site to site. The second sum
includes all pairs of atoms, with spring rigidities being Kll ′ ,
and rl stand for the corresponding displacements.

As we mentioned above the phonon line broadening prob-
lem in a nanoparticle should be treated separately depending
on whether this broadening results in the level overlap or not.
For weak enough disorder and/or for small enough particles
we are definitely in the regime of separated levels. In order
to describe this regime it is convenient to use the Green’s
function formalism formulated in the basis of eigenfunctions
of a given problem.

In a particle containing N atoms there are 3N normalized
to the unity vibrational modes Yn(Rl ) with energies ωn. Here
n is the generalized (multicomponent) quantum number of
our eigenproblem. Assuming all the masses to be equal to
each other (as, e.g., in diamond) for atom displacements and
momenta we have

rl = 1√
2m

∑
n

Yn(Rl )√
ωn

(bn + b†
n) (7)

and

pl = i
√

m√
2

∑
n

Yn(Rl )
√

ωn(b†
n − bn), (8)

respectively. Using Eqs. (7) and (8) one gets the Hamiltonian
in the form H = Hph + Himp, where the first term yields the
phonon energy

Hph =
∑

n

ωn(b†
nbn + 1/2). (9)

The second term Himp specifies how the disorder affects vi-
brational modes. Hereinafter we shall assume for simplicity
that the disorder appears in the problem via the mass variation
only (another source of disorder would be random rigidities).
For the simplest pointlike impurities the perturbation of the
bare Hamiltonian Hph reads

Himp = 1

2

∑
l

δm−1
l p2

l , (10)

with the inverse-mass variation δm−1
l given by

δm−1
l = 1

m + δml
− 1

m
≈ −δml

m2
, (11)

where

m = 〈ml〉, (12)

and the random masses are supposed to be Gaussian delta-
correlated quantities with zero averages〈

δm−1
l

〉 = 0, 〈δml〉 = 0, (13)
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FIG. 4. Diagrams for the phonon scattering by disorder evalu-
ated in the present paper. (a) A single scattering by the impurity
does not lead to the phonon damping. (b) The diagram giving
the leading contribution to the phonon self-energy in the Born
regime. The self-consistent Born approximation appears when re-
placing the bare phonon propagator under the “impurity arch” by
the full one. For strong rare impurities one should sum up all the
diagrams of the type (c) taking into account multiple scattering by
the same impurity (T-matrix approximation).

and delta-functional pairwise correlators

〈δml δml ′ 〉/m2 = δll ′ cimp

(
δm

m

)2

≡ δll ′ S. (14)

Here S � 1 is the dimensionless strength of disorder.
“Strong” impurities (S � 1) with nonzero average will be
considered in Sec. V of this paper.

Using Eq. (8) we can write the impurity-induced perturba-
tion in the form

Himp = −m

4

∑
l,n,n′

Yn(Rl ) · Yn′ (Rl ) δm−1
l

√
ωnωn′ (b†

n − bn)(b†
n′ − bn′ ). (15)

Let us introduce the Green’s function −i〈T̂ φnφn〉 for oper-
ators φn = i(b†

n − bn), where T̂ stands for the time-ordering
operator. Upon an averaging over impurity configurations, the
self-energy �n(ω) arising due to the phonon scattering by
disorder enters this Green’s function in the following way:

Dn(ω) = 2ωn

ω2 − ω2
n − 2ωn�n(ω)

. (16)

To the leading order in the impurity strength S only the dia-
gram shown in Fig. 4(b) contributes to the phonon self-energy
[diagram Fig. 4(a) is zero due to condition Eq. (13)], and the
corresponding contribution reads

�n(ω) = Sωn

16

∑
l,n′

[Yn(Rl ) · Yn′ (Rl )]
2 ωn′Dn′ (ω). (17)

This equation will be solved in the next subsection. When
the disorder increases the levels start to overlap. Another
way to obtain the overlapped states is to treat large particles.
For both these situations it is convenient to use the ordinary
(bulk) diagram technique in the momentum space and then
incorporate the finite-size quantization q → qn(L, p) in final
formulas; the quantization rule qn(L, p) depends on the shape
of a particle.

For bulk crystals one can use standard expressions for
atomic displacements and momenta via the phonon creation-
annihilation operators b†

qν (bqν ):

rl = 1√
2Nm

∑
qν

Pq√
ωqν

(b†
qνe−iqRl + bqνeiqRl ), (18)

pl = i
√

m√
2N

∑
qν

Pq
√

ωqν (b†
qνe−iqRl − bqνeiqRl ). (19)

Here Pq is the phonon polarization and the index ν runs
over all branches of the optical spectrum. For longitudinal
phonons Pq = eq = q/q, and for transverse ones Pq ⊥ eq.
Using Eqs. (18) and (19) we obtain the Hamiltonian Hph in
the form

Hph =
∑
qν

ωqν (b†
qνbqν + 1/2), (20)

where ωqν is the bare phonon frequency. For the sake of
simplicity, the phonon spectrum is taken to be identical in
all branches; the generalization onto the case of different
parameters is straightforward. We shall be interested in the
optical phonons near the Brillouin zone center, where their
dispersion is well approximated by the formula

ωq = ω0 − αq2 = ω0[1 − F (qa0)2]. (21)

Here we introduce the dimensionless parameter of flatness of
the optical phonon spectrum F :

F = 1

2ω0a2
0

(
∂2ωq

∂q2

)
q=0

, (22)

and a0 is the lattice parameter. Relations between phenomeno-
logical parameters ω0 and α and the parameters of the
microscopic Keating model [42] for materials under investi-
gation can be found, for instance, in Refs. [26] and [27].

We can rewrite the interaction term Eq. (10) as follows:

Himp = m

4N

∑
l, q1,2,ν

(Pq1 · Pq2 ) δm−1
l

√
ωq1ν ωq2ν

× [
b†

q1ν
bq2νei(q2−q1 )Rl − bq1νbq2νei(q2+q1 )Rl

] + H.c.,

(23)

where H.c. stands for Hermitian conjugate. The diagram
technique for the Hamiltonian Eqs. (20) and (23) (see, e.g.,
Ref. [45]) is very similar to the one widely used for disordered
electrons (cf. Ref. [46]). The Green’s function D(ω, q) is built
upon the bosonic field operators φ(q) ∝ bq − b†

−q. The bare
phonon propagator is given by

D0(ω, q) = 2ωq

ω2 − ω2
q + i0

. (24)

After averaging over impurity configurations, the disorder-
induced self-energy �q(ω) enters this equation in the
following way:

D−1(ω, q) = D−1
0 (ω, q) − �q(ω). (25)

To the leading order in S the analog of Eq. (17) reads

�q(ω) = S ωq

16N

∑
k

ωkD0(ω, k), (26)

205421-6



LIFETIMES OF CONFINED OPTICAL PHONONS AND THE … PHYSICAL REVIEW B 102, 205421 (2020)

where the proper choice of coordinates allowed us to eliminate
the contribution from one of the phonon branches.

It should be mentioned the similarity between our formulas
for separated and overlapped levels; cf. Eqs. (16) and (25) as
well as Eqs. (17) and (26). However, the final results for these
two cases are drastically different.

B. Separated levels

When using the formal perturbation theory in the parame-
ter S the phonon self-energy on the right-hand side of Eq. (17)
should be omitted. It can be shown that no broadening of
the phonon line appears in this case. We shall use the self-
consistent Born approximation keeping the self-energy on the
right-hand side of Eq. (17) finite, and thus obtaining �n(ω)
self-consistently. This method resembles an approach used
for disorder-induced broadening of Landau levels in a two-
dimensional degenerate electron gas subject to high magnetic
fields [47]. Following the same line we consider an equation

�n(ω) = Sωn

8

∑
l,n′

[Yn(Rl ) · Yn′ (Rl )]2 ω2
n′

ω2 − ω2
n′ − 2ωn′�n′ (ω)

. (27)

One can easily see that for nonoverlapped levels this equation
contains effectively only the term with n′ = n. For nondegen-
erate levels it yields

�n(ω) = 2 c2
n(p) S ω3

n

N

1

ω2 − ω2
n − 2ωn�n(ω)

. (28)

Here c2
n(p) = N

∑
l [Yn(Rl )]4/16 is a certain shape p and

quantum number n dependent coefficient. Solving Eq. (28) we
obtain

�n(ω) =
ω2 − ω2

n −
√

(ω2 − ω2
n )2 − 16c2

n(p)Sω4
n

N
4ωn

. (29)

When the square root in Eq. (29) is imaginary it determines
the phonon damping which leads to the well-known semicir-
cle law for the density of states [47]. Similarly to the case
of disordered electrons in high magnetic fields, the range
of validity for this self-consistent solution is limited by the
proximities of semicircle maxima, whereas near their edges
one should take into account the phonon scattering by rare
configurations of impurities which results in exponential tails
in the density of states (see Ref. [48] and references therein).
However, if we are not interested in these details, one can use
the crude Lorentzian (on-shell) approximation. This approxi-
mation (ω = ωn) in Eq. (29) leads to the phonon damping in
the form

�n = ωn cn(p)

√
S

N
. (30)

The definition of � we use in papers I and II differs from that
of Refs. [26,27,40] where the width of the Lorentzian has been
parameterized by �/2 rather than � of the present work.

The semicircle shape of a spectral line in the independent-
levels approximation and its simplified Lorentzian form are
shown in Fig. 5.

Next, we express the number of atoms N in a particle
via its effective size L. (For example, cubic particles provide

FIG. 5. The shape of a spectral line in the regime of separated
levels (blue line) has a symmetric semicircle form. Its on-shell
approximation leads to the standard Lorentzian shape (red dashed
curve).

N → (2L / P6 a0)3, the lattice assumed to be cubic with two
atoms in the unit cell.) This finally yields

�n = ωn μn(p)
√

S
(a0

L

)3/2
. (31)

Here we absorbed the shape-dependent parameter Pp into

μn(p) = cn(p)
√

P3
p/8. The constant μn(p) can be calculated

analytically for cubic, spherical, and cylindrical particles and
numerically for any other shape of particles.

The real correction to the phonon self-energy stemming
from other energy levels can be found from Eq. (27) without
self-consistency:

�n(ω) = Sωn

8

∑
l,n′ =n

[Yn(Rl ) · Yn′ (Rl )]2ω2
n′

ω2 − ω2
n′

. (32)

This weakly ω-dependent correction originates from the many
phonon modes in the spectrum and results mainly in the effec-
tive renormalization of ω0 for the highest (i.e., closest to the
Brillouin zone center) modes.

C. Overlapped levels

The difference between separated and overlapped levels is
evident already when comparing Eq. (17) and Eq. (26). First,
the sum over n′ in Eq. (17) could be safely omitted within the
independent-levels approximation while the integration over
intermediate momenta in Eq. (26) is an essential ingredient
of the theory. Second, the nonzero linewidth for separated
levels appears only due to the self-consistent treatment while
in the continuum the phonon line broadening is provided by
the regular perturbation theory in S. In the latter case one gets

Im �q(ω) = −πSωq

16N

∑
k

ωk[δ(ω + ωk) + δ(ω − ωk )].

(33)

Equation (33) contains two delta functions. Since we are inter-
ested in its behavior in the vicinity of the positive pole ω ≈ ωq
of the Green’s function, the phonon dispersion does not allow
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the argument of the delta function δ(ω + ωk ) to reach zero
value anywhere in the Brillouin zone, so this term gives zero
contribution to the integral. Hence, the only delta function
which contributes is δ(ω − ωk ). Notice that in the vicinity
of the negative pole ω ≈ −ωq the situation is opposite. Then
using the expansion of the optical phonon spectrum near its
maximum, one obtains

Im �q(ω) = − S a3
0 ωq

64 π α3/2
θ (ω0 − ω) ω

√
ω0 − ω. (34)

We see that the imaginary part of �q(ω) is nonzero only for
frequencies lower than ω0. Moreover, it reveals a square-root
nonanalytical behavior when ω → ω0 originated from the van
Hove singularity in the phonon density of states that occurs at
this energy.

The real part of �q(ω) can be calculated in a similar
manner, and the result is given by

Re �q(ω) = − S a3
0 ωq

64 π α3/2
θ (ω − ω0) ω

√
ω − ω0. (35)

This result is essentially frequency-dependent in the vicinity
of the phonon pole ω � ωq ≈ ω0 − αq2. Likewise Eq. (34)
it stems from the van Hove singularity in the spectra of in-
termediate phonons scattered by disorder. It can be evaluated
either directly or from the imaginary part of �q(ω) via the
Kramers-Kronig relations; see [46,49].

In addition to Eq. (35), there appears one more term which
is almost constant near the pole ω ≈ ωq and proportional to
the Debye momentum qD that comes from the upper limit of
the integration over the Brillouin zone in Eq. (26). It is the
momentum domain wherein the details of the phonon band
structure become important, and the Debye approximation is
valid only qualitatively. Moreover, the Keating model we use
in our calculations essentially fails in this area. This makes the
numerical prefactor in front of the high-momenta contribution
very unreliable. Also, similar contributions stem in this case
from both (ω ± ωk )−1 poles of the integrand in Eq. (26). In
fact, this term has the same origin as the contribution dis-
cussed below for certain types of disorder with nonzero mean
value 〈δm−1

l 〉 which provides the constant shift of the real
part of the phonon self-energy. Below we shall concentrate
on a strongly frequency- and momentum-dependent part of
the self-energy assuming that all constant (q, ω-independent)
terms are already absorbed into ω0 (see, however, Sec. V and
paper II).

Notice that the real and the imaginary parts of �q(ω) can
be conveniently rewritten jointly as follows:

�q(ω) = − S a3
0 ωq

64 π α3/2
ω

√
ω − ω0. (36)

Substituting Eq. (36) into Eq. (25) we can draw the spectral
weight of the phonon Green’s function

Aq(ω) = − 1

π
ImDq(ω). (37)

This function, depicted in Fig. 6 (blue curve), represents
the broadened spectral line of the optical phonon (rigorously
speaking, in the bulk). Our first observation is that the shape
of the line is quite asymmetric. This asymmetry originates
from the nontrivial frequency dependence of both the real

FIG. 6. The shape of a spectral line in the regime of overlapped
levels (blue curve). The spectral weight is essentially asymmetric.
Conventional Lorentzian shape (red dashed curve) can be obtained
using the on-shell approximation.

and the imaginary parts of the self-energy which take place
in different frequency domains. It is the common feature
in many physical problems where the self-energy demon-
strates visible frequency variation near the quasiparticle pole
(see, e.g., Ref. [50]). Let us perform, however, the on-shell
approximation:

�q(ω) = −2ωqIm�q(ω)

ω + ωq
→ �q(ω = ωq) ≡ �q. (38)

Making this substitution in Eq. (37) we observe that the result-
ing curve becomes Lorentzian (see Fig. 6, red dashed line),
i.e., symmetric near its maximum, the width of the peak being
close to the real one as far as the interaction-induced effects
are small.

Ignoring the line-shape asymmetry yields the phonon
linewidth in the form

�q = ω2
q

S a3
0

64πα
q = ωq

S

64πF
(q a0). (39)

The linear-in-q dependence of the broadening parameter �q
here is very important. Until now our consideration was re-
lated to the bulk phonon-impurity model. Now we perform
the finite-size quantization q → qn(L, p) in Eq. (39). It imme-
diately yields the linewidth dependence on the particle size in
the desirable [38] 1/L form:

�n = ωn νn(p) S
a0

L
. (40)

Here νn(p) is the shape-dependent coefficient which contains
(i) the numerical prefactor 1/64, (ii) the spectrum flatness
parameter F in denominator, and (iii) the strong dependence
on the quantum number n. From the above consideration it
follows that the phonon modes with large n are broadened
stronger than the first one. In particular, for cubic particles
their widths are related to each other as

�nx,ny,nz =
√

n2
x + n2

y + n2
z

3
�1. (41)
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Notice that for Raman-active modes all quantum numbers ni

must be odd in this case (see Eqs. (4) and (A12); for the
detailed discussion of this issue see also Ref. [26]).

Above we investigated how weak disorder affects the
phonon linewidth. For separated levels we observed a semicir-
cle law for the phonon DOS and � ∝ √

S/L3/2 behavior of the
linewidth; the prefactor is some weakly shape and quantum
number dependent quantity. For overlapped levels we found
that the phonon line shape is asymmetric due to the van Hove
singularity in the spectrum. Within the on-shell approximation
we obtained that the damping is proportional to S/L with the
prefactor strongly dependent on the phonon quantum number.

IV. SMOOTH RANDOM POTENTIAL

Section III has been devoted to the treatment of the weak
pointlike (delta-correlated) Gaussian disorder. Now we shall
consider how a smooth character of the (still, weak) ran-
dom impurity potential affects the results of the previous
section. More specifically, instead of the pointlike impurities
of Eq. (14) we shall assume the long-range character of the
impurity-impurity correlation function〈

δm−1
l δm−1

l ′
〉
m2 = 〈δml δml ′ 〉m−2

= S W (|Rl − Rl ′ |; σ ), (42)

where the characteristic scale σ of the potential is much longer
than the lattice parameter, σ � a0, and the correlation func-
tion is Gaussian:

W (r; σ ) = a3
0

(2πσ 2)3/2
exp

(
− r2

2σ 2

)
, (43)

where the prefactor is introduced for proper normalization.
Notice that the specific spatial dependence of the correlator

in Eq. (42) is not essential; the only property needed is its
rapid decay on the scale σ . For instance, we observe that re-
placing the Gaussian correlator in Eq. (43) by the exponential
one does not change qualitatively our results.

A. Separated levels

Here we present our results for separated levels. We obtain
the self-consistent equation for the phonon self-energy in the
following form:

�n(ω) = S ωn

8

∑
l,l ′,n′

(Ynl · Yn′l )Wll ′ (σ ) (Ynl ′ · Yn′l ′ )

× ω2
n′

ω2 − ω2
n′ − 2ωn′�n′ (ω)

, (44)

where we used the shorthand notations Ynl = Yn(Rl ) and
Wll ′ (σ ) = W (|Rl − Rl ′ |; σ ). For nondegenerate phonon levels
this yields

�n(ω) = 2 d 2
n (p) S ω3

n

N

1

ω2 − ω2
n − 2ωn�n(ω)

, (45)

where the parameter dn(p) is given by

d 2
n (p) = N

16

∑
l,l ′

Y 2
nl Wll ′ (σ ) Y 2

nl ′ . (46)

These constants could be calculated for any particular model
and particle shape. Up to the new prefactor [dn(p) instead of
cn(p)] all the results of Sec. III B are applicable for the case
of a smooth random potential. Once again, using the on-shell
approximation we obtain the line broadening in the form

�n = ωn ρn(p)
√

S
(a0

L

)3/2
, (47)

where ρn(p) is the novel shape and quantum number depen-

dent parameter, ρn(p) = dn(p)
√

P3
p/8.

The smooth character of disorder leads to the diminish-
ing of the parameter ρn(p) in comparison with μn(p) (see
Appendix). Two regimes should be distinguished. The first
one could be analyzed via an expansion in the small pa-
rameter qnσ � 1, where qn(L, p) is the quantized discrete
momentum, ωn = ω0 − αq 2

n . The leading order contribution
coincides with the result for pointlike impurities, the first
correction being of the order of (qnσ )2.

The second regime that occurs at qnσ � 1 appears ex-
clusively due to the smoothness of the random potential. In
this regime the wave functions in Eq. (46) experience fast
oscillations on the scale σ and therefore could be replaced
by their average values ∼1/

√
N . As a result, the linewidth as

a function of particle size L saturates:

�n = ωn
1

4(2π )3/4

√
S

(a0

σ

)3/2
. (48)

The damping in this regime is small compared to the delta-
correlated case (cf. Sec. III B).

B. Overlapped levels

The leading contribution to Im �k(ω) is determined by the
same diagram Fig. 4 as for delta-correlated impurities. The
corresponding analytical expression reads

Im �q(ω) = −πSωq

16N

∑
k

ωkW̃ (k − q; σ )δ(ω − ωk ), (49)

where W̃ (q; σ ) is the Fourier transform of Eq. (43):

W̃ (q; σ ) = exp

(
−q2σ 2

2

)
. (50)

Integrating in Eq. (49) one obtains

�q(ω) = −S a3
0 ωq ω

64 π

θ (ω0 − ω)

2 α σ 2 q

×
{

exp

[
−1

2

σ 2

α
(
√

αq − √
ω0 − ω)2

]
− exp

[
−1

2

σ 2

α
(
√

αq + √
ω0 − ω)2

]}
. (51)

The next step is to apply for Eq. (51) the on-shell approxima-
tion ω = ωq. This yields

�q = �0
q f (qσ ), (52)

where �0
q is the bulk phonon damping for delta-correlated

disorder [see Eq. (39)], and the spreading function f (x) is
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given by the following expression:

f (x) = 1 − exp [−2x2]

2x2
. (53)

Now we are ready to apply the finite-size quantization replace-
ment q → qn(L, p) in Eqs. (52) and (53),

�n = �0
n f (qnσ ), (54)

where �0
n is given by Eq. (40). This equation determines

the damping of overlapped vibrational eigenmodes in finite
nanoparticles subjected to the smooth random potential for
arbitrary relation between L and σ .

It is instructive to investigate Eq. (54) in the limiting cases
of small qnσ � 1 and large qnσ � 1 discrete momenta. The
first asymptote yields f (x) → 1 and therefore � ≈ �0; to the
leading order the scale σ drops down from the formula. Thus,
the damping function for the smooth disorder qualitatively
reproduces its behavior peculiar for pointlike impurities. We
conclude that for a finite nanoparticle which is essentially
inhomogeneous on the scale of its size, L � σ , the model of
pointlike impurities qualitatively describes the case of smooth
disorder, as well, and the resulting linewidth still mainly fol-
lows the � ∝ 1/L law.

However, when the discrete momentum is large, qnσ � 1,
then f (x) ≈ 1/(2x2), and the asymptotic behavior of damping
in the smooth disorder described by Eq. (54) becomes �n ∝
1/qnσ

2 thus being drastically different from the Born case.
In terms of finite-size particles this means that the long-range
character of spatial variations of disorder manifests itself only
when it occurs on scales of the order of or longer than the
particle size, σ � L, when the novel regime � ∝ L emerges:

�n = ωn

2

(
1

64πF

)2(a0

σ

)2
ν−1

n (p)S
L

a0
. (55)

Physically, the two regimes of momentum dependence for
�q could be understood from the general scattering theory
[51] after we recognize that the particle velocity vq ∝ ∇q ωq
is proportional to its momentum q. Then the first regime cor-
responds to the scattering of “slow” particles and the second
one describes “fast” particles scattered by soft-core spheres
with radii σ (see the problems in Ref. [51]).

Thus, when the particle size L is larger than the impurity
length scale σ , i.e., when the nanoparticle is essentially inho-
mogeneous, the damping reveals the ordinary dependencies
1/L3/2 for separated and 1/L for overlapped phonon lev-
els. Otherwise, the damping behavior changes to saturation
for separated levels and to the linear-in-L dependence for
overlapped levels; both crossovers occur when L ∼ σ (to be
precise, the numerical factor 2π entering expansions moves
crossovers toward larger L/σ values; see Fig. 7).

V. STRONG IMPURITIES

In this section we investigate the influence of strong rare
impurities on the spectrum of optical vibrations in particles.
We utilize the standard T-matrix approach (see, e.g, Ref. [52])
which treats exactly the multiple scattering events off a single
impurity; see Fig. 4(c). It gives the correct result to the first
order in cimp � 1. A possibility to form the phonon-impurity
bound state is also analyzed.

FIG. 7. Sketch of the phonon linewidth dependence on the parti-
cle size L, with σ being the characteristic length scale of the smooth
random potential. Black line depicts the damping of the first phonon
eigenmode [q1 ≈ 2π/L in Eq. (54)] in the regime of overlapped
levels. At small L the damping behaves as � ∝ L, while for large
L one observes the dependence peculiar for pointlike impurities,
� ∝ 1/L. In the regime of separated levels (orange dashed curve)
the damping monotonically decreases from the finite value at small
L toward zero as � ∝ 1/L3/2 when L increases.

More specifically, instead of the weak (Born Gaussian
distributed) impurities with (δm/m)2 � 1 and zero average
〈δml〉 = 0 we introduce the binary distributed strong disorder
(arbitrary δm � −m). The mass variation reads

δml =
∑

l ′
δll ′ δm, (56)

where the sum runs over all the impurity atoms located at sites
l ′; the masses of host atoms and impurity atoms are given by
m and m + δm, respectively.

We also introduce the dimensionless impurity potential

U = δm

m + δm
, (57)

which will be useful for calculations below.

A. Separated levels

The T-matrix approximation presumes an exact solution
of the single-impurity problem with its subsequent averaging
over disorder configurations; the problem should be solved
self-consistently. Let us discuss the first step. The contribu-
tion to �n(ω) stemming from all multiple scatterings off the
impurity located at the lth site reads

� l
n(ω) = ωn

∞∑
k=1

∑
n1,...,nk−1

(
−U

4

)k

(Ynl · Yn1l )

× (Yn1l · Yn2l ) . . . (Ynk−1l · Ynl )

×ωn1 Dn1 (ω) . . . ωnk−1 Dnk−1 (ω); (58)

the kth term corresponds to the k-fold scattering off this impu-
rity. As the next step, one should sum up the right-hand side
of Eq. (58) over all impurity positions.

The independent-levels approximation allows us to solve
this problem by putting all ni in Eq. (58) equal to n. The
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simple argument |Y(R)| ∼ 1/
√

N allows us to estimate the
kth contribution to Eq. (58) as 1/Nk . Thus, at |U | ∼ 1 it is
sufficient to restrict our consideration by two first terms in
Eq. (58) corresponding to diagrams (a) and (b) in Fig. 4. The
first one is the (size-independent) rescaling of the phonon fre-
quency ωn due to the disorder-induced change of the average
mass of atoms (cf. paper II):

�(1)
n = − 1

4 ωn U cimp. (59)

The second term in Eq. (58) results in the self-consistent
equation for �n(ω) which is equivalent to Eq. (28) where S
should by replaced by cimp U 2. The counterpart of Eq. (31)
reads

�n = ω0 μn(p)
√

cimp|U |
(a0

L

)3/2
. (60)

Addressing the problem of localization of optical phonons
by the impurities we notice that for δm < 0 this localization
can appear at high frequencies ω > ω0 because lighter atoms
have higher vibrational eigenfrequencies. The corresponding
analysis taking into account all phonon modes ni in Eq. (58)
and summing up all contributions of different orders in k can
be realized for any particular set of model wave functions Yn

numerically but is hardly representable in general terms ana-
lytically. Moreover, the capability of an impurity to localize
a phonon turns out to be strongly dependent on its location
in a particle (see paper II). Therefore, we postpone the de-
tailed discussion of localization issues to the next subsection
where the boundary-induced phenomena are excluded from
the consideration due to the “bulk” approach we use and to
the paper II where they are addressed numerically in the most
general form.

B. Overlapped levels

In the bulk all the contributions shown in Fig. 4(c) can
be easily summed up as a geometric progression. After the
averaging over disorder the phonon self-energy acquires the
following standard form:

�q(ω) = −1

4
ωq

cimp U

1 + U

4N

∑
k

ωk D0(ω, k)
. (61)

It is worth mentioning that �q(ω) in Eq. (61) remains finite
even for infinitely strong U (“unitary limit”).

The integration in Eq. (61) is performed similarly to the
Born case. One important difference comes from the fact that
due to the different model of disorder (binary disorder with
nonzero average) now we cannot absorb the constant term into
ω0. As a result we get

1

N

∑
k

ωk D0(ω, k) = ω0

4πα

[
qD

π/2
−

√
ω − ω0

α

]
, (62)

where qD is the Debye momentum (upper limit of integration).
The quantity qD is in fact a sort of adjustable parameter since
its definition presumes that the spherical symmetry of the
long-wavelength phonon spectrum could be extended onto
large momenta. Therefore, the factor π/2 in Eq. (62) could not

be treated seriously, and we just absorb it into the definition
of Debye momentum using q′

D = qD/(π/2) instead of qD.
Plugging Eq. (62) into Eq. (61), at ω < ω0 we obtain

�q(ω) = −ωq 4πF 2 cimp ω0

ωloc − ω

[
a0

ζ
+ i

√
ω0 − ω

Fω0

]
, (63)

where the resonant frequency ωloc (the binding energy of the
phonon-impurity localized state; see below) is determined as
follows:

ωloc = ω0 + αζ−2, (64)

and the characteristic length ζ is given by

ζ−1 = q′
D

(
1 + 16πF

Uq′
Da0

)
. (65)

This length is of the order of 1/q′
D ∼ a0 for regular U and

infinitely increases when U → Umin = −16πF/q′
Da0. At ω >

ω0 we get Im �q(ω) = 0; i.e., the damping is absent.
Consider the on-shell approximation ω = ωq. The damp-

ing acquires the form

�q = ωq 4πF cimp

(
ζ

a0

)
qζ

1 + (qζ )2
. (66)

After applying the finite-size quantization replacement q →
qn (L, p) this yields

�n = ωn 4πF cimp

(
ζ

a0

)
qnζ

1 + (qnζ )2
. (67)

We see that the behavior of the linewidth depends on the
parameter ζ . When the spatial scale generated by this quantity
is short, ζ ∼ a0, the linewidth reveals the conventional 1/L
behavior. If, however, ζ is a sort of critical quantity (this
happens when U ≈ Umin), then it generates the long scale to
be compared with L. For large L � ζ Eq. (67) yields 1/L
particle size dependence with the additional enhancement fac-
tor (ζ/a0)2. In the opposite case L � ζ the size dependence
in Eq. (67) changes to linear-in-L; the situation resembles
the crossover observed for the smooth random potential in
Sec. IV.

Let us present the formula for the phonon linewidth in the
unitary limit U → −∞ (or δm ≈ −m, very light atoms or
vacancies):

�n = ωn

(
32F

a0qD

)2

cimp νn(p)
a0

L
, (68)

the strength of disorder does not enter this result. In contrast,
for large positive δm � m (very heavy impurities) disorder
potential saturates at U → 1 and there is no unitary limit.

In Fig. 8 we plot the linewidth dependence on the potential
U for the first phonon mode in spherical 3 nm nanodiamonds.
One can see the quadratic U dependence at |U | � 1 which
corresponds to weak pointlike impurities (see Sec. III C), the
resonant scattering when U is close to Umin ≈ −0.2, and the
unitary limit at U � −1, when the damping is almost con-
stant.

Importantly, Eq. (62) allows us to study a possibility to
form the phonon-impurity bound state by investigating zeros
of the denominator in Eq. (61) which determines the resonant
energies of these states. At δm > 0 the localized states with
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FIG. 8. Plot of the first phonon mode linewidth dependence on
the disorder potential U in the regime of overlapped levels for spher-
ical 3 nm nanodiamonds. We normalize the damping to its unitary
limit which corresponds to U → −∞ or δm ≈ −m (very light im-
purities or vacancies). At small U the linewidth is proportional to
U 2 as in the case of weak pointlike impurities. At negative U near
the threshold of appearance of the isolated level Umin ≈ −0.2 the
damping dramatically increases due to the resonant scattering. For
phonons with higher momenta the resonance is much smoother.

ω > ω0 do not appear because the denominator is positive in
this frequency domain. Significant perturbations in the density
of states may only be observed at frequencies corresponding
to short-wavelength optical phonons or even below the opti-
cal band. These states are useless for the analysis of Raman
spectra.

In the meantime, for light impurities with δm < 0 the situ-
ation is very different. At U � Umin the equation

1 + Ua0

16πF

(
q′

D −
√

ω − ω0

α

)
= 0 (69)

has a solution given by Eq. (64). When U ≈ Umin, the fre-
quency of localized level ωloc is close to ω0 and the phonon
damping is drastically enhanced due to the resonant charac-
ter of scattering off impurities. With the further decreasing
of U toward unitarity the main contribution to the inte-
gral in Eq. (61) comes from the momenta lying beyond the
range of applicability of the spectral expansion (21) and
Eq. (62) fails. Here we just mention that in the improved
theory ωloc ∝ |U |1/2.

We investigated the phonon damping due to strong dilute
pointlike impurities. For separated levels we observed the
damping proportional to

√
cimp and decaying as L−3/2; for

overlapped levels we found its 1/L dependence. In the “criti-
cal” regime of resonant scattering we obtained the parametric
enhancement of 1/L damping for largest particles and the
crossover to the linear-in-L behavior for smallest ones. We
examine the possibility to form the phonon-impurity bound
state near the phonon band edge for both light and heavy
impurities.

VI. DISCUSSION AND INTERMEDIATE CONCLUSIONS

This section is intended to present the discussion of our
analytical results elucidating the role of disorder in crystalline

nanoparticles. A more complex and detailed summary which
includes the comparative analysis of both analytical and nu-
merical approaches to this problem can be found in paper II.
In the meantime, two general remarks are in order right now.

First, we would like to point out that in the above con-
sideration we did not present the unified analytical theory of
phonons in disordered nanoparticles. Instead, we investigate
the important features of this problem by studying several
simplest models which probably exaggerate and oversimplify
the real experimental situation (cf. paper II). This allows
us to extract the characteristic spatial scales associated with
these features and, more importantly, to formulate the quali-
tative model-free picture of the phonon-impurity scattering in
nanoparticles.

Our second remark is related to the object we addressed
in this paper. We would like to emphasize that we evaluated
the broadening of individual lines in the spectrum of vibra-
tional eigenmodes in nanoparticles of a given shape. Only all
these lines treated together, properly broadened, and elabo-
rated with the use of the theory of photon-phonon interaction
constitute the Raman peak in real experiments. This approach
should be contrasted with the PCM-like theories wherein the
linewidth is a single parameter for the entire Raman peak.

We started our analysis from the treatment of the sim-
plest weak pointlike impurities. We observe that there
exist two drastically different regimes depending on
whether the vibrational eigenmodes are separated or belong
to the (quasi)continuum. In particular, for separated lev-
els the phonon damping behaves as �n ∝ √

S/L3/2, where L
is the particle size and the disorder strength S is a product
of the impurity concentration cimp and the squared relative
variation of the random parameter of the theory (in our case,
atomic mass m). For overlapped levels we find �n ∝ S/L. In
the latter case we solve the bulk problem and perform the
finite-size quantization only in final formulas. This (definitely,
approximate) approach is justified by the evident similarity
between the continuous spectra of propagating phonon modes
and the ones of plane waves; the difference is supposed to be
negligible.

These results were obtained within the on-shell
(Lorentzian) approximation. Beyond this approximation
the line shape in the overlapped regime is shown to be
strongly asymmetric due to the van Hove singularity in the
spectrum of optical phonons, whereas in the separated regime
it obeys the semicircle law. We also establish simple relations
between the linewidths of eigenmodes with different quantum
numbers. The dependence of �n on the quantum number of
the level is observed to be stronger in the overlapped regime
than in the separated one.

Considering a weak smooth disorder with the characteristic
length scale σ we obtain the damping at σ � L similar to the
one for pointlike impurities. In the opposite limit σ � L it is
proportional to L in the overlapped regime and saturates as a
function of particle size if the levels are separated. Such a be-
havior of the phonon linewidth for overlapped levels could be
understood from the general quantum mechanical picture of
fast vs slow particles scattered off the “soft spheres” potential
[51].

Finally, we treated the case of strong impurities with
low concentration cimp � 1 using the T -matrix approach
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borrowed from the theory of dirty fermions [52]. We consider
the replacement impurities of a single sort to be strong so the
effective local potential generated by the mass defect may
even exceed the phonon bandwidth. Our main observation
concerning separated levels is that the result for damping is
almost the same as for the weak-impurities case. The only
difference is an additional shift of the maximal optical phonon
frequency ω0. When regarding the damping for overlapped
levels we observe the same particle size and concentration
dependence as we found for Born impurities with the prefactor
enhancement for light impurity atoms, and an extra crossover
to the linear-in-L size dependence that occurs in the latter
case.

The T-matrix approach allows us to investigate the bound
state of a phonon localized on the impurity. The wave func-
tions of phonons localized in the depth of a particle rapidly
decay with the distance and barely feel the particle boundary.
Neglecting all boundary effects we analyze the bound states
within the bulk approach (or in the overlapped regime). For
the light impurities these bound states just above ω0 appear
starting from some threshold value Umin < 0 of the impurity
potential, whereas heavy atoms may create a bound state only
inside the gap between optical and acoustic phonon branches.
When the impurity potential U → Umin, the phenomenon of
the resonant impurity scattering arises and drastically en-
hances the long-wavelength phonon damping.

Now let us discuss how the separated and the overlapped
regimes cross over. Since the linewidth depends (among other
things) on the quantum number of a level (both directly and
via the particle shape), various parts of the spectrum may
simultaneously exist in different regimes. Information about
this dependence could be extracted either from the analytical
calculations or (for nontrivial particle shapes) from the numer-
ical simulations. In order to identify the regime of broadening
for any couple of spectral lines one should compare the inter-
level distance and the sum of half-widths for these lines, i.e.,

ωn+1 − ωn = 1
2 [ �n+1 + �n ]. (70)

Notice that �n and �n+1 could be in different regimes if say
the levels ωn−1 and ωn are already overlapped while ωn and
ωn+1 are not.

Next, since the linewidths in different regimes reveal dif-
ferent size and disorder dependencies, it is instructive to
determine the characteristic size for these two quantities to
be equal to each other. Dropping the coefficients one obtains

Lc ∼ a0

S
. (71)

Remarkably, the linewidth (in both regimes) reaches the in-
terlevel distance on the same scale. In different terms, Lc is
the spatial scale for the ballistic Thouless time [53] (the time
for a phonon to fly ballistically through the particle) and the
phonon lifetime 1/�n to coincide. Moreover, Eq. (71) can be
inverted, thus determining the critical disorder strength for a
given particle size

Sc ∼ a0

L
. (72)
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APPENDIX: DISORDER IN EKFG FORMALISM

The consideration given in the main body of this paper is
presented in a maximally general form applicable for both the-
ories (DMM-BPM, EKFG) that we developed. This provides
the limitations on the final results including the coefficients
and some relevant dependencies. In this Appendix we illus-
trate how the problem can be solved to the end for some
particular case. As an example we choose the EKFG theory
of a cubic particle which could be treated analytically. Since
the overlapped regime is trivial we concentrate on the regime
of separated levels.

1. Hamiltonian and quantization

We start from the Hamiltonian of the EKFG model:

H0 = 1

2

∫
�

d3r[�2 − C1(∇
)2 + C2

2]. (A1)

Here the quantized field in the Schrödinger representation


(r) =
∑

n

1√
2ωn

[bnYn(r) + b+
n Y ∗

n (r)] (A2)

and momentum operator

�(r) = −
∑

n

i

√
ωn

2
[bnYn(r) − b+

n Y ∗
n (r)] (A3)

are expressed via the phonon creation-annihilation operators
b+

n (bn) and the eigenfunctions of the EKFG model Yn. They
obey conventional commutation relation

[
(r),�(r′)] = −iδ(r − r′). (A4)

It is easy to show that the quantized Hamiltonian reads

H0 =
∑

n

ωn(b+
n bn + 1/2). (A5)

Next, we can define the causal phonon Green’s function

D(r1, t1, r2, t2) = −i〈0|T̂(
(r1, t1)
(r2, t2))|0〉. (A6)

After simple calculations and Fourier transform we get

D0(r1, r2, ω) =
∑

n

Yn(r1)Yn(r2)

ω2 − ω2
n + i0

, (A7)

where the eigenfunctions Yn are real.
Considering the solution of Eq. (2) for a given frequency ω

we obtain

(ω2 − C1)Y − C2�Y = 0. (A8)

First, we should solve the eigenproblem

�Y + q2Y = 0, Y |∂� = 0, (A9)

where q will be referred to as the momentum. Thus, the
spectrum of the problem has the form

ω2
q = C2 − C1q2. (A10)
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This is the equivalent of Eq. (21):

ωq = ω0 − αq2, (A11)

where we put ω0 = √
C2 and α = C1/(2

√
C2).

As an example we consider the cubic nanoparticle with the
edge b. In that case the EKFG equation has obvious solutions
normalized to unity:

Yn =
(

2

b

)3/2

e−iωt sin
πnxx

b
sin

πnyy

b
sin

πnzz

b
, (A12)

where the vector n = (nx, ny, nz ) enumerates the eigenstates,
and the eigenvalues are

ωn = ω0 − α
(π

b

)2(
n2

x + n2
y + n2

z

)
. (A13)

2. Pointlike impurities

The variation of atomic masses in the lattice model corre-
sponds to the variation of parameters C1,2 of Eq. (A1) in the
continuous model. In the range of EKFG validity q a0 � 1
we can neglect the variation of C1. Thus, the disorder-induced
perturbation of the Hamiltonian reads

δH = 1

2

∫
�

d3r[C2(r) − C2]
2. (A14)

Here C2 = ω2
0 stands for the average value of C2(r). Evidently,

C2(r) − C2 ≈ −ω2
0δm(r)/m, and we can write

δH = −1

4

∑
n,n′

∫
�

d3r
ω2

0√
ωnωn′

δm(r)

m

× (bn + b+
n )(bn′ + b+

n′ )Yn(r)Yn′ (r). (A15)

Within the EKFG approximation the disorder correlation
function for weak pointlike impurities is given by

〈δm(r1) δm(r2)〉
m2

= S V0 δ(r1 − r2), (A16)

where V0 is the unit cell volume.
In the limit of weak impurities only the second diagram in

Fig. 4(b) is relevant. By virtue of Eq. (A16) the correction to
the phonon Green’s function yields

δD(r1, r2, ω) = SV0ω
4
0

4

∫
d3r

[∑
n

Yn(r1)Yn(r)

ω2 − ω2
n + i0

×
∑

n′

Yn′ (r)Yn′ (r)

ω2 − ω2
n′ + i0

∑
n′′

Yn′′ (r)Yn′′ (r2)

ω2 − ω2
n′′ + i0

]
.

(A17)

For further analysis it is useful to perform the discrete Fourier
transform of equation

D(r1, r2, ω) = D0(r1, r2, ω) + δD(r1, r2, ω). (A18)

In order to execute this transformation we multiply Eq. (A18)
by Yn(r1)Yn(r2) and integrate it over r1 and r2. This procedure
eliminates the sum in Eq. (A7) and sums over n and n′′ in
Eq. (A17) due to the orthogonality of eigenfunctions Yn. We
can rewrite Eq. (A18) introducing the renormalized complex

eigenfrequencies ω̃n as follows:

ω2 − ω̃2
n = ω2 − ω2

n − �n(ω), (A19)

where

�n(ω) = S V0 ω4
0

4

∫
d3r

∑
n′

Y 2
n (r)Y 2

n′ (r)

ω2 − ω2
n′ + i0

. (A20)

Using the eigenfunctions (A12) we can calculate the self-
energy (A20):

�n(ω) = S V0 ω4
0

32V

∑
n′

∏
i=x,y,z(2 + δnin′

i
)

ω2 − ω2
n′ + i0

, (A21)

where V is the particle volume. We find the phonon damp-
ing analytically using the self-consistent approach and the
isolated-levels approximation:

�n(ω) = 27 S V0 ω4
0

32V

1

ω2 − ω2
n − �n(ω)

. (A22)

Solving this equation, we obtain

�n(ω) =
(ω2 − ω2

n) −
√

(ω2 − ω2
n)2 − 4 27Sω4

0
32N

2
. (A23)

The phonon line obeys the semicircle law (see Fig. 5), and the
width of the phonon line is given by

�n = ω0

√
27S

32N
. (A24)

For a degenerate level n only the coefficient in Eq. (A24)
should be modified. If two quantum numbers in n are equal
to each other then the level is threefold degenerate and
instead of 27/32 we get (27 + 24)/32 = 51/32. For a sixfold-
degenerate level with all three quantum numbers different the
multiplier is 79/32.

Furthermore, from Eq. (A21) one can find the real part of
the correction. This contribution is proportional to S.

Finally, from Eq. (A24) we precisely determine the charac-
teristic crossover scale Lc for the first level:

Lc = 15π4F 2 a0

S
. (A25)

For a diamond F ≈ 0.008, and the prefactor in front of the
model-free ratio in Eq. (A25) is not too small (≈0.093).

3. Smooth disorder

Now we consider a smooth Gaussian disorder with certain
characteristic length scale σ . The correlator reads

〈δm(r1)δm(r2)〉
m2

= S

σ 3(2π )3/2
e−(r1−r2 )2/2σ 2

. (A26)
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Using this correlator we obtain the following correction to the phonon Green’s function:

δD(r1, r2, ω) = S ω4
0

4

∫
d3rd3r′

[∑
n

Yn(r1)Yn(r)

ω2 − ω2
n + i0

∑
n′

Yn′ (r)Yn′ (r′)
ω2 − ω2

n′ + i0

∑
n′′

Yn′′ (r′)Yn′′ (r2)

ω2 − ω2
n′′ + i0

]
e−(r−r′ )2/2σ 2

σ 3(2π )3/2
.

For nondegenerate level n and q2
nσ

2 � 1 we have only a small correction to the damping:

�n = ω0

√
27 S

32 N

(
1 − 2

3
q2

nσ
2

)
. (A27)

For the threefold-degenerate level the damping reads

�n = ω0

√√√√(
51 − 42 π2n2

xσ
2

b2 − 76
π2n2

yσ
2

b2

)
S

32N
, (A28)

and for the sixfold one the result is as follows:

�n = ω0

√
(79 − 66 q2

nσ
2)S

32 N
. (A29)

Thus, at q2
nσ

2 � 1 the smooth random potential yields almost the same result as the pointlike impurities. For first modes with
highest frequencies this condition is equivalent to σ � L; i.e., the length scale of the random potential must be much smaller
than the particle size.
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[21] E. Ōsawa, Pure Appl. Chem. 80, 1365 (2008).
[22] S. V. Koniakhin, M. K. Rabchinskii, N. A. Besedina, L. V.

Sharonova, A. V. Shvidchenko, and E. D. Eidelman, Phys. Rev.
Res. 2, 013316 (2020).

[23] S. Koniakhin, N. Besedina, D. Kirilenko, A. Shvidchenko, and
E. Eidelman, Superlattices Microstruct. 113, 204 (2018).

[24] O. A. Shenderova, I. I. Vlasov, S. Turner, G. Van Tendeloo,
S. B. Orlinskii, A. A. Shiryaev, A. A. Khomich, S. N. Sulyanov,
F. Jelezko, and J. Wrachtrup, J. Phys. Chem. C 115, 14014
(2011).

[25] V. I. Korepanov, J. Raman Spectrosc. 51, 881 (2020).
[26] S. V. Koniakhin, O. I. Utesov, I. N. Terterov, A. V. Siklitskaya,

A. G. Yashenkin, and D. Solnyshkov, J. Phys. Chem. C 122,
19219 (2018).

[27] O. I. Utesov, A. G. Yashenkin, and S. V. Koniakhin, J. Phys.
Chem. C 122, 22738 (2018).

[28] H. Richter, Z. Wang, and L. Ley, Solid State Commun. 39, 625
(1981).

[29] I. Campbell and P. M. Fauchet, Solid State Commun. 58, 739
(1986).

205421-15

https://doi.org/10.1021/nn800445z
https://doi.org/10.1038/s41534-017-0029-z
https://doi.org/10.1038/nnano.2014.216
https://doi.org/10.1103/PhysRevX.7.031040
https://doi.org/10.1021/ar400148q
https://doi.org/10.1039/C8CS00684A
https://doi.org/10.1021/nn901014j
https://doi.org/10.1038/nnano.2016.164
https://doi.org/10.3390/ijms10020441
https://doi.org/10.1002/adfm.201001550
https://doi.org/10.1016/j.diamond.2007.09.011
https://doi.org/10.1016/j.carbon.2017.07.013
https://doi.org/10.1021/acs.jpcc.5b05259
https://doi.org/10.1038/srep38419
https://doi.org/10.1002/pssb.201800365
https://doi.org/10.1126/science.1159832
https://doi.org/10.1103/PhysRevB.80.075419
https://doi.org/10.3390/ma11081285
https://doi.org/10.1023/A:1010067107182
https://doi.org/10.1007/s10404-014-1512-x
https://doi.org/10.1351/pac200880071365
https://doi.org/10.1103/PhysRevResearch.2.013316
https://doi.org/10.1016/j.spmi.2017.10.039
https://doi.org/10.1021/jp202057q
https://doi.org/10.1002/jrs.5815
https://doi.org/10.1021/acs.jpcc.8b05415
https://doi.org/10.1021/acs.jpcc.8b07061
https://doi.org/10.1016/0038-1098(81)90337-9
https://doi.org/10.1016/0038-1098(86)90513-2


UTESOV, YASHENKIN, AND KONIAKHIN PHYSICAL REVIEW B 102, 205421 (2020)

[30] J. Zi, K. Zhang, and X. Xie, Phys. Rev. B 55, 9263 (1997).
[31] G. Faraci, S. Gibilisco, P. Russo, A. R. Pennisi, and S. La Rosa,

Phys. Rev. B 73, 033307 (2006).
[32] V. I. Korepanov, H. Hamaguchi, E. Osawa, V. Ermolenkov, I. K.

Lednev, B. J. Etzold, O. Levinson, B. Zousman, C. P. Epperla,
and H.-C. Chang, Carbon 121, 322 (2017).

[33] W. Ke, X. Feng and Y. Huang, J. App. Phys. 109, 083526
(2011).

[34] Y. Gao and P. Yin, Diam. Relat. Mater. 99, 107524 (2019).
[35] A. Meilakhs and S. Koniakhin, Superlattices Microstruct. 110,

319 (2017).
[36] L. Landau and E. Lifshitz, Mechanics: Volume 1 (Elsevier Sci-

ence, Oxford, UK, 1982).
[37] A. Jorio, M. Dresselhaus, R. Saito, and G. Dresselhaus, Raman

Spectroscopy in Graphene Related Systems (Wiley, 2011).
[38] M. Yoshikawa, Y. Mori, M. Maegawa, G. Katagiri, H. Ishida,

and A. Ishitani, Appl. Phys. Lett. 62, 3114 (1993).
[39] S. V. Koniakhin, O. I. Utesov, and A. G. Yashenkin, Phys. Rev.

B 102, 205422 (2020).
[40] A. G. Yashenkin, O. I. Utesov, and S. V. Koniakhin,

arXiv:2004.12631.
[41] M. Born and K. Huang, Dynamical Theory of Crystal Lattices

(Clarendon Press, Oxford, 1954).

[42] P. Keating, Phys. Rev. 145, 637 (1966).
[43] Mathematica, Version 11.0, Wolfram Research, Inc., Cham-

paign, Illinios, 2010.
[44] J. W. Ager, D. K. Veirs, and G. M. Rosenblatt, Phys. Rev. B 43,

6491 (1991).
[45] S. V. Koniakhin, O. I. Utesov, I. N. Terterov, and A. V. Nalitov,

Phys. Rev. B 95, 045418 (2017).
[46] A. Abrikosov, L. Gorkov, I. Dzyaloshinski, and R. Silverman,

Methods of Quantum Field Theory in Statistical Physics, Dover
Books on Physics (Dover Publications, New York, 2012).

[47] T. Ando and Y. Uemura, J. Phys. Soc. Jpn. 36, 959 (1974).
[48] M. Stone, Quantum Hall Effect (World Scientific, Singapore,

1992).
[49] L. Landau and E. Lifshitz, Statistical Physics: Volume 5

(Elsevier Science, Oxford, 2013).
[50] B. P. Toperverg and A. G. Yashenkin, Phys. Rev. B 48, 16505

(1993).
[51] L. Landau and E. Lifshitz, Quantum Mechanics: Non-

Relativistic Theory (Elsevier Science, Oxford, 2013).
[52] S. Doniach and E. Sondheimer, Green’s Functions for Solid

State Physicists (Imperial College Press, London, 1998).
[53] J. T. Edwards and D. J. Thouless, J. Phys. C 5, 807

(1972).

205421-16

https://doi.org/10.1103/PhysRevB.55.9263
https://doi.org/10.1103/PhysRevB.73.033307
https://doi.org/10.1016/j.carbon.2017.06.012
https://doi.org/10.1063/1.3569888
https://doi.org/10.1016/j.diamond.2019.107524
https://doi.org/10.1016/j.spmi.2017.08.010
https://doi.org/10.1063/1.109154
https://doi.org/10.1103/PhysRevB.102.205422
http://arxiv.org/abs/arXiv:2004.12631
https://doi.org/10.1103/PhysRev.145.637
https://doi.org/10.1103/PhysRevB.43.6491
https://doi.org/10.1103/PhysRevB.95.045418
https://doi.org/10.1143/JPSJ.36.959
https://doi.org/10.1103/PhysRevB.48.16505
https://doi.org/10.1088/0022-3719/5/8/007

