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Scaling behavior in a multicritical one-dimensional topological insulator
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A class of Aubry-André-Harper models of spin-orbit coupled electrons exhibits a topological phase diagram
where two regions belonging to the same phase are split up by a multicritical point. The critical lines which
meet at this point each defines a topological quantum phase transition with a second-order nonanalyticity
of the ground-state energy, accompanied by a linear closing of the spectral gap with respect to the control
parameter; except at the multicritical point which supports fourth-order transitions with parabolic gap-closing.
Here both types of criticality are characterized through a scaling analysis of the curvature function defined from
the topological invariant of the model. We extract the critical exponents of the diverging curvature function at
the non–high symmetry points in the Brillouin zone where the gap closes, and also apply a renormalization
group approach to the flattening curvature function at high symmetry points. We also derive a basis-independent
correlation function between Wannier states to characterize the transition. Intriguingly, we find that the critical
exponents and scaling law defined with respect to the spectral gap remain the same regardless of the order of the
transition.
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I. INTRODUCTION

In symmetry-protected gapped topological materials, each
topological phase of the material is characterized by a
integer-valued topological invariant calculated according to
the symmetry and dimension of the system [1–4]. A change
of the topological invariant, always accompanied by the van-
ishing of the gap in the energy spectrum of the corresponding
system, indicates the occurrence of a topological quantum
phase transition (TQPT). However, since the topological in-
variant remains constant as the system approaches a TQPT,
it does not provide information on the critical behavior of
observables near the transition.

Starting to address this issue, a new branch in the study
of TQPTs is currently being developed. Recent works [5–17]
have explored the question as to whether TQPTs possess
a critical behavior analogous to that of symmetry-breaking
phase transitions, with scaling of observables controlled by
universal critical exponents [18,19]. One approach [8,9] sug-
gests that the topological invariants of the Altland-Zirnbauer
classification [4] can be expressed as an integral of a function
of momentum and the Hamiltonian parameters—a curva-
ture function—whose asymptotic scaling behavior near the
transition is governed by critical exponents and can be ana-
lyzed using a curvature renormalization group (CRG) method.
Moreover, the relation between the curvature function and
the overlap between the bulk Wannier states of the system
(weighted by an operator determined by the relevant sym-
metry class of the Altland-Zirnbauer classification) yields a
correlation length which diverges at criticality [13]. In another
proposal, the scaling laws of a TQPT follow from the behavior
of the localization length of the topological edge states [6],

which was later shown to coincide with the Wannier state
correlation length [10,13].

Recent investigations of TQPTs have uncovered that a
number of topological systems exhibit the fascinating phe-
nomenon of quantum multicriticality. As it is known, when
two or more critical lines intersect at a point—a multi-
critical point—a sudden change of an otherwise smooth
critical behavior may occur [20]. The study of various aspects
of multicriticality—scaling functions, borderline dimensions,
critical and crossover exponents, amplitude ratios, and other
properties—has spawned a huge literature within the the-
ory of classical phase transitions [21], producing insights
and results that have informed our understanding also of
multicritical quantum phase transitions [22]. Drawing rele-
vance to topologically ordered matter [23], the importance
of multicriticality was recognized early on, and there is
now a growing body of works on the subject, starting with
Refs. [24,25]. Examples of multicritical points in the phase
diagrams of symmetry-protected gapped topological matter
include the Haldane model for a Chern insulator [26], the
Creutz model with induced superconductivity [27], and the
dimerized Kitaev chain [28]. The CRG approach to topolog-
ical multicriticality was applied in Ref. [17] to a periodically
driven Floquet-Chern insulator, showing that the coexistence
of a linear Dirac-like transition with a quadratic nodal looplike
transition implies multiple universality classes and scaling
laws. Another take on topological multicriticality was pre-
sented by Rufo et al. [14] who identified a multicritical
line with unusual scaling behavior in the Su-Shrieffer-Heeger
model with an added synthetic potential.

In the present work we draw on the approach introduced
in Refs. [10,13] to investigate the phase transitions uncovered
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in Ref. [29] where a generalized Aubry-André-Harper model
[30,31] for spin-orbit coupled electrons on a one-dimensional
(1D) lattice was shown to display a checkerboard-like phase
diagram supporting trivial and topological gapped phases sep-
arated by critical lines. Crossing a single critical line gives a
TQPT characterized by a jump of the topological invariant,
accompanied by a second-order nonanalyticity of the ground
state energy and a linear closing of the spectral gap with
respect to the control parameter. At multicritical points—
defined by the intersections between two critical lines—the
ground-state energy was still found to be nonanalytical, al-
though only at fourth order, and the gap was still found to
close, although parabolically, even though these points may be
crossed without a jump of the topological invariant or change
of symmetry.

In this article a scaling analysis of the curvature function
for both usual TQPTs and the multicritical points unveils a
remarkable property: Despite the orders of the transitions and
of the gap-closings being different for the two types of tran-
sitions, the scaling of the curvature with respect to the gap is
governed by the same critical exponents and scaling law. This
leads us to suggest that these critical exponents and scaling
law are universal and can be generalized to higher order and
more complicated TQPTs, provided the curvature function
evolves continuously with the Hamiltonian parameters.

The article is laid out as follows: In Sec. II we present
the representative Aubry-André-Harper-type model which we
shall study and discuss its relevant features and possible sym-
metry classes. In Sec. III we revisit the phase diagram of the
model obtained in Ref. [29], and the main properties of the
gapless spectra associated to its critical lines. The curvature
function is derived and its divergence at non–high symmetry
points in the Brillouin zone (BZ) is analyzed in Sec. IV,
from which we extract the critical exponents and scaling
law. In Sec. V we derive a relation between the curvature
function and a “skew polarization” [32], the Fourier trans-
form of which yields a “skew correlation function” between
bulk Wannier states characterized by a diverging correlation
length. In Sec. VI, a CRG analysis is carried out around
a high-symmetry point in the BZ which is a faster method
(in computer time) for obtaining the phase diagram than the
approach used in Ref. [29], and yields additional information
regarding the stability of the critical lines and multicritical
points. Our conclusions and final remarks are presented in
Sec. VII.

II. MODEL

We consider a one-dimensional (1D) lattice with N sites
populated by electrons with nearest-neighbor hopping, two
types of spin-orbit interactions, and a spatially modulated
contribution to each of those terms. The lattice tight-binding
Hamiltonian writes

H =
N∑

n=1

∑
α,α′

hαα′ (n) c†
n,α cn+1,α′ + H.c., (1)

where

hαα′ (n) = t (n)δαα′ + iγR(n)σ y
αα′ + iγD(n)σ x

αα′ , (2)

and c†
n,α (cn,α) is the creation (annihilation) operator for

an electron at site n with spin projection α=↑,↓ along
a z-quantization axis, δαα′ is the Kronecker δ and σ x(y) is
the x (y) Pauli matrix. With this choice of coordinates, the
chain is along the x axis. The spatially modulated param-
eters t (n), γR(n) and γD(n) are modeled as X (n) = −X −
X ′ cos(2πqn + φ) with X = t, γR, γD (X ′ = t ′, γ ′

R, γ ′
D) being,

respectively, the strength of a uniform (modulated) hopping,
Rashba spin-orbit interaction and Dresselhaus spin-orbit in-
teraction; a/q is the wave length of the modulation, with a the
lattice spacing and 1/q an integer number; and φ is a phase
shift. This Hamiltonian belongs to the class of Aubry-André-
Harper models [30,31], with the restriction of a commensurate
periodicity between the external modulation and the under-
lying lattice. A model of this kind was investigated in Ref.
[33] for spinless particles. The spinful extension defined by
Eqs. (1) and (2) was studied in Refs. [29,34] for q = 1/4,
and it was found that the enlarged parameter space due to
the presence of spin-orbit interactions produces a richer phase
diagram than that of the spinless case.

To see how, let us follow the analysis of Ref. [29] and
impose periodic boundary conditions on the Hamiltonian H
in Eq. (1). H is invariant under translations by a unit cell on a
chain with M = Nq cells and r = 1/q sites per cell. Perform-
ing a rotation of basis that diagonalizes the uniform part of
H in spin space, followed by a Fourier transform, yields the
Bloch Hamiltonian represented by the 2r × 2r matrix

H(k) =
[

0 Q(k)
Q†(k) 0

]
, (3)

with the r × r matrix Q(k) given by

Q(k) =

⎡
⎢⎢⎢⎣

A1 0 0 . . . 0 A∗
r z

A∗
2 A3 0 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . A∗
r−2 Ar−1

⎤
⎥⎥⎥⎦, (4)

where z = e−ik and

An =
[
α+

n βn

βn α−
n

]
(5)

are 2 × 2 matrices whose diagonal (off-diagonal) entries are
given by spin-conserving (spin-flipping) hopping amplitudes
ατ

n (βn). In terms of the original parameters, these amplitudes
read

ατ
n = −[t + iτγeff]

− [t ′ + iτ (γRR + γDD)] cos(2πqn + φ),

βn = i(γRD − γDR) cos(2πqn + φ), (6)

with γeff =
√

γ 2
R + γ 2

D, γRR = γ ′
RγR/γeff = γ ′

R cos θ ,

γDD = γ ′
DγD/γeff = γ ′

D sin θ , γRD = γ ′
RγD/γeff = γ ′

R sin θ ,
γDR = γ ′

DγR/γeff = γ ′
D cos θ , and τ = ± labeling the spin

projections along the new quantization axis. It follows that
fixing the values of t, t ′, γ ′

R, γ ′
D, and q, the model gets

parametrized by the parameters γeff, θ and φ. Details of the
formalism can be found in the Supplemental Material to
Ref. [29].
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Together with its spinless variations, the class of models
defined by Eqs. (3)–(6) realize six out of the ten symme-
try classes in the Altland-Zirnbauer classification [1–4], with
topologically nontrivial realizations only for even number of
sites per unit cell. Indeed, for even r, the 2r × 2r spinful
Bloch Hamiltonian H(k) is invariant under chiral (S) and
time-reversal (T ), and thus also particle-hole (C), symme-
tries [29] and hence—when enforcing all symmetries of the
Hamiltonian on the allowed perturbations—belongs to class
CII of the Altland-Zirnbauer classification. In their spinless
version, the 2 × 2 matrices An become complex numbers,
resulting in a violation of T and, thus, placing the now r × r
version of H(k) in class AIII. Imposing real hopping am-
plitudes restores T in the previous case, thus changing the
symmetry class to BDI. It follows that the gapped phases of
both the spinful and spinless chains with an even r are charac-
terized by a Z-topological invariant (or 2Z-invariant in case of
CII). However, when r is odd, the 2r × 2r spinful H(k) breaks
S and, thus, the symmetry class changes from CII to AII. As
before, the spinless version additionally breaks T , sending the
model to class A. Reinstating T by imposing real hoppings
changes the symmetry class to AI. Thus, an odd r implies that
both the spinful and spinless chains have only a topologically
trivial gapped phase. This leads to the observation that the
same system changes from trivial to topological simply by
adding one site in the unit cell.

From the three topologically nontrivial possibilities above,
the class-CII chain is the one of interest here. While the
spinless chain with even r has a one-dimensional topological
phase diagram parametrized by φ only (for, in this case, only
the kinetic hopping term is present), the phases of the spinful
counterpart exist in the three-dimensional θ × φ × γeff param-
eter space. This enlarged topological phase diagram opens
up the possibility for multicriticality. As shown in Ref. [29],
the choice of r = 4 sites per unit cell provides the minimal
realization of the model which supports a multicritical phase
diagram. The particle-hole symmetry of class CII enforces
that the band structure of any second-quantized model with
Bloch Hamiltonian in this class is half filled, that is, referring
to Eq. (3), the lowest (highest) r bands are completely filled
(empty), yielding a band insulator with a gap about zero
energy. The ground state of this band insulator—formed by
the Slater determinant of the Bloch single-particle states of
the filled bands—is unique in both the topologically trivial
and nontrivial insulating phases. With r = 4, the model ac-
quires an off-centered mirror symmetry when φ = π/4 and
this symmetry (in addition to those of the CII class) forces
the band gap to close at zero energy. In this way, multicritical
lines (i.e., lines formed by a dense set of multicritical points)
are generated from the crossings of the critical plane defined
by φ = π/4 and a set of critical surfaces supporting accidental
band crossings.

III. PHASE DIAGRAM

To explicitly show how multicriticality arises in our class
CII model, we revisit the phase diagram obtained in Ref. [29].
For that purpose, we recall that the topological invariant W
characterizing the gapped phases of a 1D system in symmetry
class CII is a 2Z-winding number [1–4] which, for a Bloch

Hamiltonian cast in the form of Eq. (3), is defined as the
number of times that the function det[Q] winds around the
origin of the complex plane as k runs through the BZ from
−π to π . Writing det[Q] = Reiδ , it follows from the definition
that W = −(2π )−1

∫
dδ (where the minus sign is introduced

to make W > 0 for det[Q] winds clockwise, i.e., dδ < 0). Or,
equivalently,

W (M) = − 1

2π

∫ π

−π

∂k δ(M, k) dk, (7)

where M ≡ (θ, φ, γeff ) is a vector in the three-dimensional
parameter space.

Using that iδ = ln(det[Q]) − ln(R), Eq. (7) can be rewrit-
ten as

W (M) = − 1

2π i

∫ π

−π

∂k det[Q(M, k)]

det[Q(M, k)]
dk, (8)

where we used that, differently from det[Q], R is a single-
valued real function of k with R(−π ) = R(π ) and thus the
integral of ∂k ln(R) over the BZ vanishes.

In Ref. [29], W was numerically computed in the θ × φ ×
γeff parameter space for r = 4, yielding a phase diagram con-
sisting of topologically nontrivial and trivial gapped phases
separated by intersecting gapless (critical) surfaces, with the
intersections defining multicritical lines. Figure 1(a) shows
a cross-section of that phase diagram for γeff = 2.5 (in ar-
bitrary units). At the critical lines A and B in Fig. 1(a) the
spectral gap vanishes through the appearance of a pair of
time-reversal symmetric band crossings with linear dispersion
around zero-energy [29] in the BZ. When θ is perturbed along
A or φ is perturbed along B, the nodes move symmetrically
through the one-dimensional BZ, similar to Weyl cones in
a three-dimensional topological semimetal [35,36], with the
difference that here the nodes do not pairwise merge and an-
nihilate at the center or at the boundaries of the BZ. While the
nodes associated to B are accidental, those of A are enforced
by the mirror symmetry present at φ = π/4 [29]. In Ref. [29]
it was also found that the TQPTs across A or across B are sig-
naled through the appearance of a cusp, i.e., a nonanalyticity,
in the second derivative of the ground state energy, and that
the gap closes linearly with respect to the control parameter
in these cases. At the multicritical points, the nonanalyticity
of the ground state energy is pushed to fourth order, while
the closing of the gap with respect to the control parameter
becomes parabolic.

IV. CURVATURE FUNCTION

For the purpose of analyzing quantum criticality near the
TQPTs and near the peculiar multicritical point, we turn to the
method proposed in Refs. [10,13] to investigate the curvature
function. Generally, the curvature function F (M, k) is defined
as the function of momentum and Hamiltonian parameters
whose integration over the BZ yields the prescribed topologi-
cal invariant [13]. From Eq. (8), it follows that

F (M, k) = − 1

2π i

∂k det[Q(M, k)]

det[Q(M, k)]
. (9)
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FIG. 1. (a) Winding number W on the θ × φ plane for γeff = 2.5 (in arbitrary units). The phase diagram consists of topologically nontrivial
gapped phases (dotted) where W = 2 and trivial gapped phases (empty) where W = 0, separated by critical lines A and B which cross at two
multicritical points marked by yellow stars. The green (magenta) path represents a TQPT (transition between equal-W regions) across critical
line A (a multicritical point). (b) Curvature F as a function of momentum k for γeff = 2.5 and θ = 0.1π , with φ varying along the green path
shown in Fig. 1(a); θ and φ varying along the magenta path shown in Fig. 1(a). For both paths, when φ �= φc = π/4, F peaks around two
points in the BZ which converge to the points where the gap closes when φ = φc, with progressively sharper peaks as φ → φc. For the green
(magenta) path the peaks flip (keep) their orientation at the transition.

A direct calculation shows that

det[Q(M, k)] = a cos(2k) + b cos(k) + c

+ i[−a sin(2k) − b sin(k)], (10)

implying that

F (M, k)= 1

2π

2a2+b2+b(3a+c) cos(k)+2ac cos(2k)

a2+b2+c2+2b(a+c) cos(k)+2ac cos(2k)
,

(11)
with real parameters a, b, and c given in terms of the ampli-
tudes in Eq. (6) as

a = (|α+
2 α+

4 |)2 + (β2β4)2 − (|α+
2 |β4)2 − (|α+

4 |β2)2,

c = (|α+
1 α+

3 |)2 + (β1β3)2 − (|α+
1 |β3)2 − (|α+

3 |β1)2,

b = −2	(α+
1 α+

2 )β3β4 − 2	(α+
1 α−

3 )β2β4

− 2	(α+
1 α+

4 )β2β3 − 2	(α+
2 α+

3 )β1β4

− 2	(α+
2 α−

4 )β1β3 − 2	(α+
3 α+

4 )β1β2

− 2	(α+
1 α+

2 α+
3 α+

4 ) − 2β1β2β3β4. (12)

Figure 1(b) shows plots of F as a function of k for fixed
γeff = 2.5 and θ = 0.1π , with φ varying along the green path
shown in Fig. 1(a) (parametrizing a vertical TQPT across crit-
ical line A), as well as for θ and φ varying along the magenta
path shown in Fig. 1(a) (parametrizing a path going through
the left multicritical point). We find that F displays a double-
peak structure in momentum space, and that the peaks are
located away from the high-symmetry poins (HSPs) k0 = 0 or
π . The configuration with two down (up) peaks corresponds
to the topologically trivial (nontrivial) gapped phase where

the momentum integration of F results in W = 0 (W = 2),
in agreement with Fig. 1(a). As the system approaches the
transition, the peaks gradually move to the two points in the
BZ where the gap vanishes, while gradually narrowing and
reaching their extreme points as φ → φc. This asymptotic
behavior of F , with a peak around each gap-closing point, is
in agreement with the prediction of Ref. [13] for linear band
crossings. However, while our model yields a curvature func-
tion with two unpinned peaks—the peaks move symmetrically
in the BZ as a Hamiltonian parameter is varied, following
the movement of the associated band crossings in the spec-
trum (cf., Sec. III)—the curvature function of the linear Dirac
model discussed in Ref. [13] contains only one single peak
always located at the HSP. Interestingly, despite the difference
in the characters of the TQPT (second-order nonanalyticity)
and the multicritical point (fourth-order nonanalyticity), the
critical behavior of the curvature function is found to be very
similar in that the two peaks of F diverge as either type
of critical point is approached. The only difference is that
the two peaks do not flip as the system passes through the
multicritical point, a consequence of the unchangedness of the
topological invariant. Since the critical behavior is extracted
solely from the narrowing of the peaks with no consideration
of the flipping [10,13], this suggests that the TQPTs and the
multicritical point have a similar critical behavior.

To quantify the scaling properties of the two cases above,
we note that each peak of F can be fitted by a Lorentzian
function of the form

F±(k) = 1

2π
+ h

1 + ξ 2(k − k±)2
, (13)

205420-4



SCALING BEHAVIOR IN A MULTICRITICAL … PHYSICAL REVIEW B 102, 205420 (2020)

FIG. 2. Data points and fitting of inverse height h−1 (top) and width ξ−1 (bottom) for (a) TQPTs through the critical line A in Fig. 1(a),
with fixed θ and λ = φ in Eqs. (14) and (15); (b) TQPTs through the critical line B in Fig. 1(a), with fixed φ and λ = θ in Eqs. (14) and (15);
(c) transitions parametrized by (φ − 0.25π ) = a(θ − 0.2114π ), i.e., through the left multicritical point in Fig. 1(a), with λ = θ as the driving
parameter in Eqs. (14) and (15). The results indicate that the critical exponents defined with respect to the control parameter λ = {θ, φ} depend
on the type of transition: γ = ν = 1 for the TQPTs and γ = ν = 2 for the multicritical point. However, when the exponents are defined with
respect to the spectral gap �, one obtains a universal scaling behavior h−1 ∝ ξ−1 ∝ � valid for both types of transitions.

where k± is the location of the peak along the k-axis, h is the
height of the peak and ξ−1 its width. We now define the critical
exponent γ for h and ν for ξ by

h−1(λ) = ±C |λ − λc|γ , (14)

ξ−1(λ) = D |λ − λc|ν, (15)

where C and D are (positive) nonuniversal coefficients, and
λ parametrizes a generic path in the θ × φ parameter space
across a single critical line or a multicritical point, with λc

defining the intersection of this path with the critical line or the
multicritical point. In Eq. (14), the plus (minus) sign applies
for an up (down) peak. By fitting Eq. (13) to Eq. (11) we
extract the values of h−1 and ξ−1 (as well as of k±) for selected
paths in the phase diagram of Fig. 1(a). Figure 2 shows data
points collected for h−1 (top) and for ξ−1 (bottom) for paths
through (a) critical line A, (b) critical line B, and (c) the left
multicritical point in Fig. 1(a). Now fitting Eq. (14) [(15)] to
the data collected for h−1 [ξ−1] we get the critical exponent γ

[ν], as well as the coefficient C [D]. These fits correspond to
the continuous curves in Fig. 2, with the corresponding fitting
parameters listed in the chart below the plots.

Figures 2(a) and 2(b) show that the critical exponents
γ = ν = 1 for the TQPTs across a single critical line, even
for transitions passing very close to the multicritical point
(orange and blue). Transitions connecting phases with the

same W have γ = ν = 2, regardless of the slope a of the
path cutting through the multicritical point, as indicated by
Fig. 2(c). The scaling law γ = Dν derived in Ref. [13] for
a D-dimensional linear Dirac model is thus verified in our
D = 1 model for both the TQPTs (paths across either an A
or B critical line) and through a multicritical point (where one
region of a phase simply gets pinched off from another region
of the same phase). We note that the scaling of h−1 and of
ξ−1 become anomalous for TQPTs along paths which are not
perpendicular to A or to B (not shown in Fig. 2), with different
critical exponents γ and ν at opposite sides of the transi-
tion. This happens because, along such “tilted” TQPTs, the
multicritical point affects the curvature function differently
at opposite sides of the transition point, with comparatively
sharper peaks along the segment of the transition which is
closer to the multicritical point, thus disrupting the scaling.

A vanishing ξ−1 near the transitions (cf., Fig. 2) corre-
sponds to a diverging length ∝ ξ in position space, the latter
being connected to a vanishing energy scale—here given by
the spectral gap � to the first excited level—according to
� � ξ−z, where z is the dynamic critical exponent [18]. This
relation and Eq. (15) lead to the following expression:

�(λ) = J|λ − λc|zν, (16)

with J a nonuniversal coefficient. In Ref. [29] the behavior
of � with the distance to a critical point was analyzed for
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various paths in the phase diagram of Fig. 1(a). It was found
that zν = 1 for TQPTs across a single critical line and zν =
2 for the multicritical point. Combining this result with the
present findings for ν and γ (cf., Fig. 2) yields a dynamic
critical exponent z = 1, and universal scaling relations

h−1 ∝ ξ−1 ∝ �, (17)

valid irrespective of the order of the transition, and of the path
through the transition. This result shows that while transitions
of different orders can be driven depending on the path taken
in the Hamiltonian parameter space, there is still only one
energy scale, namely, the spectral gap, which underpins the
universal scaling behavior. Moreover, the scaling law γ = ν

that stems from the conservation of the topological invariant
[10,13] dictates that h−1 and ξ−1 must scale with � in the
same manner. The distinction between normal criticality and
multicriticality reveals itself only at the level of the individual
scalings of h, ξ , and � with the control parameter θ or φ.

V. SKEW-POLARIZATION AND WANNIER STATE
CORRELATION FUNCTION

In this section, we demonstrate that ξ can be interpreted
as a correlation length between bulk Wannier states. This
interpretation follows from the generalization of the for-
mula connecting the winding number W of a two-band
chiral-invariant Bloch Hamiltonian in D = 1 to a “skew-
polarization” Ã(k) [32],

W = 1

π

∫ π

−π

Ã(k)dk, Ã(k) = i
∑

α

〈uα (k)|S∂k|uα (k)〉,
(18)

where S is the chiral symmetry operator and |uα (k)〉 the
Bloch function for band α, with α summed over all occupied
bands. This expression is similar to that from the theory of
polarization [37–39] which relates the electronic polarization
to the Wannier centers of the occupied bands. In the present
case, the skew-polarization carries information about the dis-
tribution of the localized Wannier functions of the system. In
the following we substantiate this expectation by generalizing
Eq. (18) to any multiband chiral-invariant Bloch Hamiltonian,
in particular our 2r-band model in Eqs. (3)–(6) with even r.

We start from Eq. (9) and note that Q in Eqs. (4) and
(5) is an invertible matrix which allow us to use the trace-
determinant formula and rewrite the curvature function as

F (k) = − 1

2π i
Tr[Q−1(k) ∂kQ(k)], (19)

where, to ease notation, we have suppressed the dependence
on the parameter vector M. Next, let us look at the matrix
product S H−1 ∂kH, where H is the Bloch Hamiltonian of
Eq. (3) and S = σz ⊗ 11r×r is the associated chiral symmetry
matrix. It follows that

SH−1(k)∂kH(k)=
[

Q†−1
(k)∂kQ†(k) 0

0 −Q−1(k)∂kQ(k)

]
,

and thus

Tr[SH−1(k)∂kH(k)]

= (Tr[Q−1(k)∂kQ(k)])∗−Tr[Q−1(k)∂kQ(k)],

where we have used that Tr[A†B†] = (Tr[AB])∗. Evoking now
Eq. (19) and the fact that F is a real function by construction,
we arrive at

F (k) = 1

4π i
Tr[S H−1(k) ∂kH(k)],

or equivalently,

F (k) = 1

4π i

∑
n,x

〈un,x(k)|S H−1(k) ∂kH(k)|un,x(k)〉, (20)

where |un,x(k)〉 is one of the 2r Bloch states at a given momen-
tum k, with n = 1, .., r and x = ± where + (−) labels empty
(filled) states. By labeling the states in this way we are taking
into account that the band structure is half-filled (cf., Sec. II).

To compute the expectation value in Eq. (20) we start with

∂kH|u〉 = ∂kε|u〉 + ε∂k|u〉 − H ∂k|u〉,
where ε is an energy eigenvalue, and, for ease of notation, we
have omitted the indices n and x, as well as the momentum k.
We thus get

〈u|SH−1∂kH|u〉
= ∂kε〈u|SH−1|u〉 + ε〈u|SH−1∂k|u〉 − 〈u|S ∂k|u〉.

The first term on the right-hand side of this expression van-
ishes since 〈u|SH−1|u〉 = ε−1〈u|S|u〉 = 0, as follows from
the orthogonality of S|u〉 and |u〉. Moreover, using the
chiral symmetry property SH−1 = −H−1S , we can write
the second term, ε〈u|SH−1∂k|u〉, on the right-hand side as
−〈u|S∂k|u〉. It follows that

〈u|SH−1∂kH|u〉 = −2〈u|S ∂k|u〉,
and thus, from Eq. (20), that

F (k) = − 1

2π i

∑
n,x

〈un,x (k)|S ∂k|un,x(k)〉.

The summation over all states in the above expression
can be restricted because the contribution from the empty
states equals that of the filled ones. Indeed, since |u+〉 =
S|u−〉, we have that 〈u+|S ∂k|u+〉 = 〈u−|S†S ∂kS|u−〉 =
〈u−|∂kS|u−〉 = 〈u−|S∂k|u−〉. With that we arrive at the final
expression for the curvature function written in terms of the
filled Bloch states

F (k) = − 1

π i

∑
n

〈un,−(k)|S ∂k|un,−(k)〉. (21)

As mentioned above, the relation in Eq. (21) has been pre-
viously proposed in the context of a two-band chiral-invariant
model in D = 1 in Ref. [32], and later also in Ref. [13]. In both
cases, the derivation depends on the basis of the Hamiltonians.
In contrast, our basis-independent formalism above relies only
on two general assumptions: (i) the presence of chiral symme-
try and (ii) that the topological invariant is a Z-number defined
as the winding, on the complex plane, of det[Q], with Q the
off-diagonal matrix appearing in the chiral-symmetric Bloch
Hamiltonian H.
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Finally, a Fourier transform yields the position-space cur-
vature function [10,13]

F̃ (R) = −M

π

∑
n

〈φn,−(0)|S r̂|φn,−(R)〉

= −M

π

∑
n

∫
dr S r W ∗

n (r)Wn(r − R), (22)

where R and 0 are the home cells of the Wannier states,
r̂ is the position operator, M is the number of unit cells,
and |φn,−〉 are the filled bulk Wannier states whose Wannier
functions are 〈r|φn,−〉 = Wn(r − R). Equation (22) expresses
F̃ (R) in terms of the overlap, weighted by the S r̂ operator,
between Wannier states which are a distance R apart. We
thus call F̃ (R) by Wannier state skew correlation function.
Analogous to the correlation functions in the usual Landau
order-parameter paradigm for second-order phase transi-
tions, the correlation function F̃ (R) measures how much the
Wannier state at position R remembers its configuration at the
origin. This remembrance decays with a correlation length ξ

which diverges at the critical point, implying scale invariance
at that point, as we demonstrate below.

We further make use of the Lorentzian fitting in Eq. (13) to
write

F (k) = F−(k)�(−k) + F+(k)�(k),

where �(k) is the Heaviside step function. Fourier transform-
ing the above expression yields

F̃ (R) = 2
∫ π

0
F+(k) cos(kR) dk, (23)

which can be easily evaluated numerically. Figure 3 shows the
result of F̃ (R) (a) for fixed k+ and different values for h and
ξ and (b) for fixed h and ξ and different values for k+. The
plots show that F̃ (R) is an oscillatory decaying function of R,
a consequence of the double-peak structure of the momentum-
space curvature [cf., Fig. 1(b)]. This is to be compared with
the analogous result for a linear two-band Dirac model where
a single-peaked momentum-space curvature yields a mono-
tonically decaying F̃ (R) [10,13]. Here the presence of two
well-separated peaks in momentum-space generates periodic
“revivals” of the correlation between Wannier states through-
out the chain.

As seen in Fig. 3(a), the larger ξ , i.e., the narrower the
peaks in momentum space, the longer the decay length in posi-
tion space. Figure 3(b) shows that the smaller the value of k+,
i.e., the closer the peaks are in momentum space, the longer
the wavelength of the oscillation of F̃ (R). From Fig. 3(a) it
becomes clear that ξ plays the role of the correlation length of
the Wannier state skew correlation function. The divergence of
ξ at the critical point then signifies that proximity to criticality
makes the Wannier states correlated across longer distances
and correlated over an infinitely long range at the critical
point. The difference from the notion of scale invariance in a
usual symmetry-breaking continuous phase transition is that,
instead of converging to a constant everywhere, F̃ (R) remains
oscillating as the system approaches the critical point. This
is because the gap-closing points, and hence also the two
peaks of the curvature F (k), are forbidden by the underlying
symmetries from merging at k = 0 or at k = ±π [29]. As a

FIG. 3. Wannier states skew correlation function F̃ as a function
of the distance R between the Wannier states for (a) fixed k+ and
different values for h and ξ and (b) fixed h and ξ and different values
for k+. F̃ is an oscillatory decaying function of R.

result, the distance 2k+ between the peaks does not vanish as
the critical point is approached, yielding a finite wave length
for F̃ (R) arbitrarily close to criticality.

VI. CURVATURE RENORMALIZATION
GROUP APPROACH

Although the critical behavior of our system is such that the
peaks of F occur at unpinned momenta away from the HSPs,
as shown in Fig. 1(b), the curvature function at HSP k0 = 0
and k = ±π in fact also senses the critical behavior, for F (k)
at different momenta are not independent: they sum up to be
the topological invariant W according to Eqs. (8) and (9). In
this section, we show that the critical behavior at the HSPs,
using k0 = 0 as an example, allows the CRG approach [8,9]
to capture the phase diagram of Fig. 1(a) without explicitly
performing the integration of Eq. (8). As we shall see, the fact
that the bulk gap closes at non-HSPs k± renders the RG flow
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FIG. 4. RG flow in the reduced parameter space M = (θ, φ),
with γeff = 2.5 (in arbitrary units), using a CRG approach. Arrows
indicate the directions of the RG flow dM/d� = (dθ/d�, dφ/d�),
and the color code indicate the magnitude Min(|dθ/d�|, |dφ/d�|).
The orange lines where the magnitude goes to zero and from which
the RG flows away coincide with the phase boundaries of the phase
diagram of Fig. 1(a).

distinct from the usual Dirac models that have gap closing at
a HSP.

The CRG approach is based on the iterative mapping M →
M′ that satisfies

F (M, k0 + δk) = F (M′, k0), (24)

where δk is a small deviation away from the HSP k0. Expand-
ing and keeping terms up to leading order yields the generic
RG equation

dMi

d�
= M ′

i − Mi

δk2
= 1

2

∂2
k F (M, k)|k=k0

∂Mi F (M, k0)
, (25)

where Mi = {θ, φ} is a component of the M vector, which may
be evaluated numerically by

dMi

d�
= F (M, k0 + �k) − F (M, k0)

F (M + �MiM̂i, k0) − F (M, k0)
, (26)

where �k is a small (finite) deviation from the HSP in mo-
mentum space, and �Mi is a small interval in the parameter
space along the M̂i direction. This numerical interpretation
is a great advantage over the integration in Eq. (8), since
for a point M, one is only required to calculate the curva-
ture function at three points F (M, k0 + �k), F (M, k0) and
F (M + �MiM̂i, k0) to obtain the RG flow along the M̂i direc-
tion. The CRG is, therefore, a powerful tool to capture TQPTs
in a multidimensional parameter space, as has been demon-
strated for Floquet systems and interacting systems[40–44].

For the usual Dirac models described by an n-dimensional
parameter space, the phase boundary is an (n − 1)-
dimensional surface from which dM/d� flows away and
where the magnitude |dM/d�| → ∞, a feature inherited from
the divergence and flipping of the single peak of the curvature
function at the HSP. The RG flows in the present model
display a very distinct feature. To make comparison with the
phase diagram in Fig. 1(a), we fix γeff = 2.5 and obtain the RG
flows on the two-dimensional parameter space M = (θ, φ)
shown in Fig. 4. A comparison with Fig. 1(a) then shows
that the phase boundaries coincide with those lines in Fig. 4
from which dM/d� = (dθ/d�, dφ/d�) flows away, but along
which the magnitude of either |dθ/d�| or |dφ/d�| vanishes,
instead of diverges. In other words, the phase boundaries
manifest as lines of unstable fixed points, with the multicrit-

ical point being located where both components of the flow
vanishes, dθ/d� = dφ/d� = 0. A closer investigation reveals
that the vanishing of |dθ/d�| or |dφ/d�| originates from the
vanishing of the numerator of Eq. (25). This is because when
M crosses the phase boundary, ∂2

k F (M, k)|k=k0 changes from
slightly positive if the peaks at k± point upward to slightly
negative if the peaks point downward, indicating that the cur-
vature F (M, k) at k0 and at k± are not independent. Although
a vanishing ∂2

k F (M, k)|k=k0 does not give an additional mean-
ingful length scale, it does serve to unambiguously signal the
phase boundaries, with the great advantage that one needs
not worry about the exact locations of the moving double
peaks. The feature that the phase boundaries manifest as lines
of unstable fixed points bears a striking resemblance with
that uncovered recently in the extended [45] and periodically
driven [40] Kitaev p-wave superconducting chain, where the
flipping of the curvature function at non-HSPs also yields
unstable fixed points.

VII. SUMMARY AND OUTLOOK

We have carried out a scaling analysis of a model of
spin-orbit coupled electrons subject to a spatial modulation
in one dimension. The corresponding class-CII Hamiltonian
[1–4] belongs to a large class of Aubry-André-Harper-type
models [30,31], and exhibits a checkerboard phase diagram
with topologically trivial and nontrivial phases characterized
by distinct values of a winding number topological invariant
[29]. Crossing a single phase boundary entails a TQPT sig-
naled by a cusp in the second derivative of the ground state
energy, accompanied by a linear closing of the spectral gap
with respect to the control parameter. Regions belonging to
the same topological phase are pinched off from each other
by multicritical points where the ground state energy becomes
nonanalytic at its fourth derivative, and where the gap closes
parabolically [29].

Our scaling analysis is based on investigating the momen-
tum space curvature function whose integration yields the
topological invariant. The curvature function in our model
exhibits two peaks away from the HSPs and which move in
the BZ when a Hamiltonian parameter is varied on a surface
parallel and close to a critical surface, mirroring the motion of
the gap closing points on the critical surface. The asymptotic
behavior of the peaks near the TQPTs and the multicritical
points allows to extract the critical exponents γ and ν for the
height and the width of the peaks, respectively. When defined
with respect to the control parameters, these exponents sat-
isfy γ = ν = 1 for the TQPTs across a single critical line
and γ = ν = 2 for the multicritical points. However, while
the value of these critical exponents depend on the type of
transition, the scaling of the curvature peak with respect to
the gap was found to be universal, as described by Eq. (17).
Moreover, the scaling law γ = ν inherited from the conser-
vation of topological invariant is found to be always satisfied,
independent of the type of transition, and for any path across
a transition. This result indicates that the conservation of the
topological invariant imposes a strong constraint which dic-
tates a universal scaling law between the height and the width
of the curvature peak, provided the curvature function evolves
continuously at both sides of the transition.
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Although the critical behavior takes place at the two peaks
away from HSPs, the curvature function at the HSPs can still
sense the critical behavior due to the conservation of the topo-
logical invariant. Based on this fact, the CRG approach can
be applied to efficiently delineate the entire phase diagram.
The phase boundaries were found to be lines of unstable fixed
points of the renormalization group flow, similarly to what has
been recently uncovered for models of p-wave superconduc-
tors [40,45].

In addition to the above results, we have derived a Wannier
state skew correlation function which measures the overlap,
weighted by the skew polarization operator S r̂, of Wannier
states that are a certain distance apart. Our basis-independent
derivation is solely based on the symmetry properties of class
CII and the well-established concept of skew polarization, and
thus applies to any class CII models with arbitrary number of
bands. In the considered model, the double-peak structure of
the curvature function in momentum space yields a decaying
and oscillatory Wannier state skew correlation function in real

space. The inverse of the width of the momentum-space peak
plays the role of the correlation length between the Wan-
nier states which diverges at the critical point. However, the
wave length of the Wannier state skew correlation function
remains finite arbitrarily close to the critical point, a finding
which adds to the monotonically decaying behavior found for
linear two-band Dirac models where the curvature function
formalism was originally developed [13]. Our results indicate
that within the context of TQPTs, the concepts of critical
exponents, scaling laws, correlation functions, and correlation
length are not limited to second-order phase transitions, but
also applicable and useful to describe higher order or multi-
critical phase transitions.

ACKNOWLEDGMENTS

H.J. acknowledges support from the Swedish Research
Council through Grant No. 621-2014-5972, and W.C. is fi-
nanced by the productivity in research fellowship from CNPq.

[1] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,
Phys. Rev. B 78, 195125 (2008).

[2] A. Kitaev, in Advances in Theoretical Physics: Landau Memo-
rial Conference, edited by V. Lebedev and M. Feigelman, AIP
Conf. Proc. No. 1134 (AIP, New York, 2009), p. 22.

[3] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig,
New J. Phys. 12, 065010 (2010).

[4] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Rev. Mod.
Phys. 88, 035005 (2016).

[5] M. A. Continentino, F. Deus, and H. Caldas, Phys. Lett. A 378,
1561 (2014).

[6] M. A. Continentino, Physica B: Condens. Matter 505, A1
(2017).

[7] B. Roy, P. Goswami, and J. D. Sau, Phys. Rev. B 94, 041101(R)
(2016).

[8] W. Chen, J. Phys.: Condens. Matter 28, 055601 (2016).
[9] W. Chen, M. Sigrist, and A. P. Schnyder, J. Phys.: Condens.

Matter 28, 365501 (2016).
[10] W. Chen, M. Legner, A. Rüegg, and M. Sigrist, Phys. Rev. B

95, 075116 (2017).
[11] M. A. Griffith and M. A. Continentino, Phys. Rev. E 97, 012107

(2018).
[12] E. P. L. van Nieuwenburg, A. P. Schnyder, and W. Chen, Phys.

Rev. B 97, 155151 (2018).
[13] W. Chen and A. P. Schnyder, New. J. Phys. 21, 073003

(2019).
[14] S. Rufo, N. Lopes, M. A. Continentino, and M. A. R. Griffith,

Phys. Rev. B 100, 195432 (2019).
[15] M. A. Continentino, S. Rufo, and G. M. Rufo, in Strongly

Coupled Field Theories for Condensed Matter and Quantum
Information Theory, edited by A. Ferraz, K. S. Gupta, G. W.
Semenoff, and P. Sodano (Springer, Berlin, 2020).

[16] W. Chen and M. Sigrist, in Advanced Topological Insulators Ch.
7, edited by H. Luo (Wiley-Scrivener, New York, 2019).

[17] P. Molignini, W. Chen, and R. Chitra, Phys. Rev. B 101, 165106
(2020).

[18] S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cambridge
University Press, Cambridge, UK, 2011).

[19] M. Continentino, Quantum Scaling in Many-Body Systems: An
Approach to Quantum Phase Transitions, 2nd ed. (Cambridge
University Press, Cambridge, UK, 2017).

[20] P. M. Chaikin and T. C. Lubensky, Principles of Condensed
Matter Physics (Cambridge University Press, Cambridge, UK,
1995).

[21] M. E. Fisher, in Multicritical Phenomena, edited by R. Pynn
and A. Skjeltorp (Plenum Press, New York, 1984).

[22] C. Castelnovo, S. Trebst, and M. Troyer, in Understanding
Quantum Phase Transitions, edited by L. Carr (CRC Press,
Boca Raton, 2010).

[23] X.-G. Wen, Rev. Mod. Phys. 89, 041004 (2017).
[24] C. Xu and S. Sachdev, Phys. Rev. B 79, 064405 (2009).
[25] I. S. Tupitsyn, A. Kitaev, N. V. Prokof’ev, and P. C. E. Stamp,

Phys. Rev. B 82, 085114 (2010).
[26] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
[27] D. Sticlet, L. Seabra, F. Pollmann, and J. Cayssol, Phys. Rev. B

89, 115430 (2014).
[28] R. Wakatsuki, M. Ezawa, Y. Tanaka, and N. Nagaosa, Phys.

Rev. B 90, 014505 (2014).
[29] M. Malard, D. Brandao, P. E. de Brito, and H. Johannesson,

Phys. Rev. Res. 2, 033246 (2020).
[30] S. Aubry and G. André, Ann. Israel Phys. Soc. 3, 133

(1980).
[31] P. G. Harper, Proc. Phys. Soc. Sec. A 68, 874 (1955).
[32] I. Mondragon-Shem, T. L. Hughes, J. Song, and E. Prodan,

Phys. Rev. Lett. 113, 046802 (2014).
[33] S. Ganeshan, K. Sun, and S. Das Sarma, Phys. Rev. Lett. 110,

180403 (2013).
[34] M. Malard, P. E. de Brito, S. Östlund, and H. Johannesson,

Phys. Rev. B 98, 165127 (2018).
[35] S. Murakami, New. J. Phys. 9, 356 (2007).
[36] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys.

Rev. B 83, 205101 (2011).

205420-9

https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1016/j.physleta.2014.03.044
https://doi.org/10.1016/j.physb.2016.10.037
https://doi.org/10.1103/PhysRevB.94.041101
https://doi.org/10.1088/0953-8984/28/5/055601
https://doi.org/10.1088/0953-8984/28/36/365501
https://doi.org/10.1103/PhysRevB.95.075116
https://doi.org/10.1103/PhysRevE.97.012107
https://doi.org/10.1103/PhysRevB.97.155151
https://doi.org/10.1088/1367-2630/ab2a2d
https://doi.org/10.1103/PhysRevB.100.195432
https://doi.org/10.1103/PhysRevB.101.165106
https://doi.org/10.1103/RevModPhys.89.041004
https://doi.org/10.1103/PhysRevB.79.064405
https://doi.org/10.1103/PhysRevB.82.085114
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevB.89.115430
https://doi.org/10.1103/PhysRevB.90.014505
https://doi.org/10.1103/PhysRevResearch.2.033246
https://doi.org/10.1088/0370-1298/68/10/304
https://doi.org/10.1103/PhysRevLett.113.046802
https://doi.org/10.1103/PhysRevLett.110.180403
https://doi.org/10.1103/PhysRevB.98.165127
https://doi.org/10.1088/1367-2630/9/9/356
https://doi.org/10.1103/PhysRevB.83.205101


M. MALARD, H. JOHANNESSON, AND W. CHEN PHYSICAL REVIEW B 102, 205420 (2020)

[37] R. Resta, Ferroelectrics 136, 51 (1992).
[38] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651

(1993).
[39] D. Vanderbilt, Berry Phases in Electronic Structure

Theory (Cambridge University Press, Cambridge, UK,
2018).

[40] P. Molignini, W. Chen, and R. Chitra, Phys. Rev. B 98, 125129
(2018).

[41] W. Chen, Phys. Rev. B 97, 115130 (2018).
[42] S. Kourtis, T. Neupert, C. Mudry, M. Sigrist, and W. Chen,

Phys. Rev. B 96, 205117 (2017).
[43] P. Molignini, R. Chitra, and W. Chen, Europhys. Lett. 128,

36001 (2019).
[44] S. Panahiyan, W. Chen, and S. Fritzsche, Phys. Rev. B 102,

134111 (2020).
[45] F. Abdulla, P. Mohan, and S. Rao, arXiv:2003.10190.

205420-10

https://doi.org/10.1080/00150199208016065
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.98.125129
https://doi.org/10.1103/PhysRevB.97.115130
https://doi.org/10.1103/PhysRevB.96.205117
https://doi.org/10.1209/0295-5075/128/36001
https://doi.org/10.1103/PhysRevB.102.134111
http://arxiv.org/abs/arXiv:2003.10190

